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a b s t r a c t

The present work is devoted to developing two numerical techniques based on frac-
tional Bernstein polynomials, namely fractional Bernstein operational matrix method,
to numerically solving a class of fractional integro-differential equations (FIDEs). The
first scheme is introduced based on the idea of operational matrices generated using
integration, whereas the second one is based on operational matrices of differentiation
using the collocation technique. We apply the Riemann–Liouville and fractional deriva-
tive in Caputo’s sense on Bernstein polynomials, to obtain the approximate solutions
of the proposed FIDEs. We also provide the residual correction procedure for both
methods to estimate the absolute errors. Some results of the perturbation and stability
analysis of the methods are theoretically and practically presented. We demonstrate the
applicability and accuracy of the proposed schemes by a series of numerical examples.
The numerical simulation exactly meets the exact solution and reaches almost zero
absolute error whenever the exact solution is a polynomial.

We compare the algorithms with some known analytic and semi-analytic methods.
As a result, our algorithm based on the Bernstein series solution methods yield better
results and show outstanding and optimal performance with high accuracy orders
compared with those obtained from the optimal homotopy asymptotic method, standard
and perturbed least squares method, CAS and Legendre wavelets method, and fractional
Euler wavelet method.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Fractional integro-differential equations (FIDEs) have attracted a great importance for modeling several problems
n fluid mechanics [1], physical system [2] , dynamical system [3], radio astronomy [4], seismology [5], and electron
mission [6]. Note that, the analytic solutions are usually hard to obtain. Alternatively, and due to the wide range of
pplications of FIDEs, the research community has shown a great contribution for developing numerical methods to
ind approximate solution to these FIDEs. For instance, Ahmed and Elzaki [7] applied some numerical methods to find
he comparative study of fractional integral–differential equations. The Least squares method and shifted Chebyshev
olynomials are introduced in [8] for solving several types of FIDEs. A numerical technique based on the discrete
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collocation method have been used in [9] to solve a class of FIDEs, hat basis functions [10] and Galerkin method [11].
Recently, the authors in [12] have used Riesz wavelets in L2(R) to solve singular fractional integro-differential equations
ith some biological applications. Fractional nonlinear Volterra–Fredholm integral equations involving Atangana–Baleanu

ractional derivative are also investigated in [13], and Bernoulli wavelet method for numerical solution of anomalous
nfiltration in [14].

Bernstein polynomials method (B-polynomials) is one of the most important numerical methods that been considered
o solve different type of differential equations. For example, the authors in [15] have employed the B-polynomials to solve
class of ODE system. It is also used to solve third order ODEs with application to fluid flow in [16]. An improvement on
he constant in Videnskil’s inequality for B-polynomials is introduced in [17]. Fractional Bernstein series solution based
n the B-polynomials are introduced to solve diffusion equations with error estimate [18]. See [19–22], and references
herein for more details.

FIDEs are widely used in many areas of applications in physics, engineering and many other applied sciences, see for
xample [23]. It is worth to state that an extensive development of fractional calculus has been concluded to describe
any applications that using FIDEs. Here, we consider a class of FIDEs defined by,

Dαu(x) = u(x) + λ1

∫ x

0

u(t)
√
x − t

dt + λ2

∫ x

0
K (x, t)u(t)dt + h(x) (1)

under the initial condition,

Dαu(δ) = ui. n − 1 < α ≤ n, n ∈ N, 0 ≤ δ ≤ R, (2)

where K (x, t) and h(x) are known continuous functions on [0, R], Dαu(x) denotes the fractional order derivative of the
nknown u(x), and δ, λi and ui are constants.
In the present work, two numerical techniques are introduced to solve Equation (1) by the means of the matrix relations

etween the Bernstein polynomials Bn(x) and their integrations and derivatives. Riemann–Liouville fractional integral
operator is applied to introduce Bernstein operational matrix of integration Ψ(x), as well as Caputo sense is applied to
ntroduce Bernstein operational matrix of derivative Ω(x). To show the efficiency of the proposed methods, we obtain
he operational matrices of differentiation for the problem which has non-smooth exact solution. We compare the results
ith some known methods such as the optimal homotopy asymptotic method, Standard and Perturbed Least Squares
ethod, CAS Method and Legendre wavelets method and fractional-order Euler functions method.
The structure of this paper is organized as follows. In Section 2, we provide some preliminaries needed on fractional

alculus and necessary definitions related to Bernstein polynomials. In Section 3, the main section, we discuss two
umerical algorithms, the Bernstein series solution (BSS) by using operational matrices of integration (we call it the
SSI) and the BSS by involving operational matrices of differentiation (we call it the BSSD), to solve the proposed FIDEs.
mploying the conditions and applying the Gauss elimination procedure yield the unknown coefficient matrices. To
stimate the absolute error and the stability of the methods, we give the residual correction procedure in Section 3.3.
ection 4 illustrates some numerical experiments to validate the method for different values of n and the conclusion can
e seen in Section 5.

. Fractional Bernstein polynomials

In this section, we present the definition of Bernstein polynomials and some preliminaries and properties of the
ractional calculus needed through out the paper [18,24].

efinition 2.1. A real function u(x), x > 0, is said to be in the space Cµ, µ ∈ ℜ, if there exists a real number p > µ, such
hat u(x) = xpu1(x), where u1(x) ∈ C(0, ∞), and it is said to be in the space Cn

µ if and only if h(n)
∈ Cµ, n ∈ N .

efinition 2.2. The Riemann–Liouville fractional integral operator (Jα) of order α ≥ 0, of a function u ∈ Cµ, µ ≥ −1, is
efined as

Jαu(x) =
1

Γ (α)

∫ x

0
(x − s)α−1u(x)ds (α > 0),

J0u(x) = u(x), (3)

where Γ (α) is well-known gamma function. Some of the properties of the operator Jα , which we will need here, are as
follows: For u ∈ Cµ, µ ≥ −1, α, β ≥ 0 and γ ≥ −1:

1. Jα Jβu(x) = Jα+βu(x),
2. Jα Jβu(x) = Jβ Jαu(x),
3. Jαxγ

=
Γ (γ+1) xα+γ .
Γ (α+γ+1)

2
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Definition 2.3. The fractional derivative (Dα) of u(t), in Caputo’s sense is defined as

Dαu(x) =
1

Γ (n − α)

∫ t

0
(x − s)n−α−1u(n)(x)ds, (4)

for n − 1 < α < n, n ∈ N, x > 0, u ∈ Cn
−1.

The following are two basic properties of the Caputo fractional derivative [25]:

1. Let u ∈ Cn
−1, n ∈ N . Than Dαu, 0 ≤ α ≤ n is well defined and Dαu ∈ C−1.

2. Let n − 1 ≤ α ≤ n, n ∈ N and u ∈ Cn
µ, µ ≥ −1. Then

(JαDα)u(x) = u(x) −

n−1∑
k=0

u(k)(0+)
xk

k!
. (5)

For the Caputo derivative we have

Dα
∗
c = 0, (c constant), (6)

Dα
∗
xβ

=

{
0, for β ∈ N0 and β < ⌈α⌉,

Γ (β+1)
Γ (β+1−α)x

β−α, for β ∈ N0 and β ≥ ⌈α⌉ or β > ⌊α⌋.
(7)

Bernstein polynomials of nth degree are given by the following:

Bt,n(x) =

(
n
t

)
xt (R − x)n−t

Rn , t = 0, 1, 2, . . . , n x ∈ [0, R]. (8)

By substituting x → xα into Bk,n(x), we obtain Bα
k,n(x), namely fractional Bernstein polynomials, as

Bα
t,n(x) =

(
n
t

)
xtα(R − xα)n−t

Rn , 0 < α < 1, (9)

t = 0, 1, 2, . . . , n x ∈ [0, R].

3. The numerical techniques

In this section, we provide two solution methods based on the fractional Bernstein polynomials to solve FIDEs
numerically. First, we introduce the first method constituted by Bernstein polynomials and operational matrix of
integration. The second method is performed based on Bernstein polynomials and operational matrix of differentiation.

3.1. BSSI method

We want to approximate the exact solution by the truncated Bernstein series of degree n. Based on the definition
of Bernstein polynomials in Section 2, we can write the approximate solution, Bernstein series solution obtained by
operational matrix of integration (BSSI), of Eq. (1) as

u(x) = Bn(x)Z, (10)

where,

Bn(x) =
[
B0,n(x) B1,n(x) B2,n(x) · · · Bn,n(x)

]
, Z =

⎡⎢⎢⎣
z0
z1
...

zn

⎤⎥⎥⎦ .

Note that, [Bn(x)]T can be written as

[Bn(x)]T =

⎡⎢⎢⎢⎢⎣
B0,n(x)
B1,n(x)
B2,n(x)

...

B (x)

⎤⎥⎥⎥⎥⎦ = X(x)DT,
n,n

3
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where

D =

⎛⎜⎜⎝
d00 d01 d02 . . . d0n
d10 d11 d12 . . . d1n
...

...
...

. . .
...

dn0 dn1 dn2 . . . dnn

⎞⎟⎟⎠ , X(x) = [1 x x2 . . . xn],

dij =

{
(−1)j−i

Rj
(n
i

)(n−i
j−i

)
, i ≤ j

0 , i > j
.

Now, the approximate solution in (10) will be given as

u(x) = X(x)DTZ. (11)

Using Riemann–Liouville fractional integral operator, the relation between the matrix X(x) and its integration Jα[X(x)]
an be introduced as

Jα[X(x)] =

[
Γ (1)

Γ (α+1)x
α Γ (2)

Γ (2+α)x
1+α

· · ·
Γ (n+1)

Γ (n+1+α)x
n+α
]
. (12)

Therefore, Eq. (12) will be given by the following

Jα[X(x)] = [1 x x2 . . . xn]

⎛⎜⎜⎜⎜⎝
Γ (1)

Γ (α+1)x
α 0 . . . 0

0 Γ (2)
Γ (2+α)x

α . . . 0
...

...
. . .

...

0 0 . . .
Γ (n+1)

Γ (n+1+α)x
α

⎞⎟⎟⎟⎟⎠ . (13)

Then, from the matrix form defined in Eq. (13), we have

Jα[X(x)] = X(x)Ψ(x), (14)

where,

Ψ(x) =

⎛⎜⎜⎜⎜⎝
Γ (1)

Γ (α+1)x
α 0 . . . 0

0 Γ (2)
Γ (2+α)x

α . . . 0
...

...
. . .

...

0 0 . . .
Γ (n+1)

Γ (n+1+α)x
α

⎞⎟⎟⎟⎟⎠ . (15)

Now, if we define the integration of Eq. (11) as

Jα[u(x)] = Jα[X(x)DTZ] = [JαX(x)]DTZ, (16)

then, from the relations in (14) and (16), we conclude the operational matrix of integration Jα as

Jα[u(x)] = X(x)Ψ(x)DTZ. (17)

For the part λ1
∫ x
0

u(α)(t)
√
x−t dt in the above equation, and using the formula given in [26], we have∫ x

0

tn
√
x − t

dt =

√
πx(

1
2 +n)Γ (n + 1)

Γ (n +
3
2 )

,

By using Eq. (11), we get

λ1

∫ x

0

u(α)(t)
√
x − t

dt = λ1

[∫ x

0

X(t)
√
x − t

dt
]
DTZ = λ1OxDTZ, (18)

here

Ox =

[√
πx

1
2 Γ (1)

Γ ( 32 )

√
πx

3
2 Γ (2)

Γ ( 52 )
. . .

√
πx(

1
2 +n)Γ (n + 1)

Γ (n +
3
2 )

]
.

Now by applying the Riemann–Liouville fractional integral operator Jα into (18), we have the following relation

Jα[λ1OxDTZ] = λ1OxDTZ, (19)

here Ox = Jα[Ox]. Note that, for the part λ2
∫ x
0 K (x, t)u(α)(t)dt , we have

λ2

∫ x

K (x, t)u(α)(t)dt = λ2

[∫ x

K (x, t)X(t)dt
]
DTZ = λ2SxDTZ, (20)
0 0

4
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where

Sx =

[∫ x

0
K (x, t)dt

∫ x

0
K (x, t)tdt . . .

∫ x

0
K (x, t)tndt

]
.

By applying the Riemann–Liouville fractional integral operator Jα into (20), we get the relation

Jα
[
λ2SxDTZ

]
= λ1SxDTZ, (21)

where Sx = Jα(Sx). Again, applying the operational matrix of integration Jα into (1), we get the relation

Jα [uα(x)] = Jα [u(x)] + Jα
[
λ1

∫ x

0

u(t)
√
x − t

dt
]

+ Jα
[
λ2

∫ x

0
K (x, t)u(t)dt

]
+ Jα [h(x)] . (22)

Now, substituting the matrix forms given in Eqs. (17), (19), and (21) into (22), we conclude the following equation

u(x) = u(0) + Jα [u(x)] + Jα[λ1OxDTZ] + Jα
[
λ2SxDTZ

]
+ R(x). (23)

Thus,

X(x)DTZ − X(x)Ψ(x)DTZ − λ1OxDTZ − λ2SxDTZ = u(0) + R(x), (24)

where R(x) = Jα[h(x)], and so[
X(x)DT

− X(x)Ψ(x)DT
− λ1OxDT

− λ2SxDT] Z = E(x), (25)

where E(x) = u(0) + H(x).
By using the collocation points {xi : 0 ≤ i ≤ n} in ), the matrix V = V(n+1)×(n+1) will be obtained, where

V = X(x)DT
− X(x)Ψ (x)DT

− λ1OxDT
− λ2SxDT. (26)

The collocation points that we consider here are the roots of Chebyshev polynomials given by

xi =
1
2

+
1

2 cos
(
(2i + 1) π

2n

) , i = 0, 1 . . . n. (27)

So, the main matrix Eq. corresponding to Eq. (1) can be formed as augmented matrix

VZ = E or [V; E]. (28)

For the initial conditions given in Eq. (2) and based on Eq. (11), we can obtain the corresponding matrix forms as

X(δ)DTZ = [ui], 0 ≤ δ ≤ R, i = 0, 1, . . . ,m. (29)

Hence, we have

ΥiZ = [ui], i = 0, 1, . . . ,m, (30)

here,

Υi = X(δ)DT. i = 0, 1, . . . ,m. (31)

Combining [V, E] and using the Gauss elimination method, we obtain [Υi, ui]. So, the new system will be of the
ollowing form [V̄, Ē]

[Ṽ, Ẽ] =

(
V , E
Υi , ui

)
, (32)

hich can be easily solved.

.2. BSSD method

Let us constitute the second method by applying operational matrix of derivative with applications. We want to get
n approximate solution, namely Bernstein series solution obtained by operational matrix of differentiation (BSSD), for
he proposed problem

u(x) = Bn(x)C, (33)

here C is the unknown coefficient matrix. A Similar argument to the BSSI method, the BSSD solution and its fractional
erivative can be written as

u(x) = X(x)DTC. (34)
5
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Then

DαuN (x) = [DαX(x)]DTC. (35)

By using the Caputo definition in (7), the relation between the matrix X(x) and its derivative Dα
[X(x)] can be introduced

s

Dα
[X(x)] =

[
0 Γ (2)

Γ (2−α)x
1−α Γ (3)

Γ (3−α)x
2−α

· · ·
Γ (n+1)

Γ (n+1−α)x
n−α
]
. (36)

The Equation defined in (36) can be written as

Dα
[X(x)] = [1 x x2 . . . xn]

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 . . . 0
0 Γ (2)

Γ (2−α)x
−α 0 . . . 0

0 0 Γ (3)
Γ (3−α)x

−α . . . 0
...

...
...

. . .
...

0 0 0 . . .
Γ (n+1)

Γ (n+1−α)x
−α

⎞⎟⎟⎟⎟⎟⎟⎠ . (37)

So, we have

Dα
[X(x)] = X(x)Ω(x), (38)

where,

Ω(x) =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 . . . 0
0 Γ (2)

Γ (2−α)x
−α 0 . . . 0

0 0 Γ (3)
Γ (3−α)x

−α . . . 0
...

...
...

. . .
...

0 0 0 . . .
Γ (n+1)

Γ (n+1−α)x
−α

⎞⎟⎟⎟⎟⎟⎟⎠ . (39)

Hence, we can write the relation in (35) as

u(α)(x) = X(x)Ω(x)DTC. (40)

Now, using the formula (given in [26]),∫ x

0

tn
√
x − t

dt =

√
πx(

1
2 +n)Γ (n + 1)

Γ (n +
3
2 )

,

he part λ1
∫ x
0

u(α)N (t)
√
x−t dt in Eq. (40) can be simplified as

λ1

∫ x

0

u(α)
N (t)

√
x − t

dt = λ1

[∫ x

0

X(t)
√
x − t

dt
]
Ω(x)DTC = λ1QxΩ(x)DTC, (41)

here,

Qx =

[√
πx

1
2 Γ (1)

Γ ( 32 )

√
πx

3
2 Γ (2)

Γ ( 52 )
. . .

√
πx(

1
2 +n)Γ (n + 1)

Γ (n +
3
2 )

]
.

imilarly,

λ2

∫ x

0
K (x, t)u(α)(t)dt = λ2

[∫ x

0
K (x, t)X(t)dt

]
Ω(x)DTC = λ2SxΩ(x)DTC, (42)

where,

Sx =

[∫ x

0
K (x, t)dt

∫ x

0
K (x, t)tdt . . .

∫ x

0
K (x, t)tndt

]
.

Substituting Eqs. (40), (41) and (42) into Eq. (1), we obtain the substantial matrix equation[
X(x)Ω(x)DT

− X(x)DT
− λ1QxΩ(x)DT

− λ2SxΩ(x)DT] C = H(x). (43)

y substituting the collocation points {xi : 0 ≤ i ≤ n} into Eq. (43), the matrix V(n+1)×(n+1) will be obtained. The collocation
points are given by the following relation, where

xi =
i
, 0 ≤ i ≤ n. (44)
n
6
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Hence, Equation in (43) become,[
XΩDT

− XDT
− λ1QΩDT

− λ2SΩDT] C = H, (45)

hich can be written as a fundamental matrix form given by,

WC = H or [W;H], (46)

here,

W = XΩDT
− XDT

− λ1QΩDT
− λ2SΩDT.

he initial conditions in (2) can be written in the matrix forms as follows

X(δ)DTC = [ui], 0 ≤ δ ≤ R, i = 0, 1,

r

ΥiC = [ui] = [ui0 ui1 . . . uin], i = 0, 1, . . . ,m. (47)

Combining [W,H] and [Υi, ui], we obtain a new system [W̄, H̄],

[Ṽ, W̃] =

(
V , H
Υi , ui

)
. (48)

f the matrix W̆ is square matrix and invertible, then we can find the unknowns C = [c0, c1 · · · cn] by

C = (W̆)−1H̆.

ote that, we omit the stability analysis and residual correction procedure for the method as it can be done in the same
ashion to the stability analysis of the BSSI given in Section 3.3.

.3. Stability analysis of BSSI and residual analysis

In this section, we will constitute the stability estimation as follows. Suppose that the solution of the perturbing system
s up

n, i.e., u
p
n is the solution of the following perturbing system:

uα(x) = u(x) + λ1

∫ x

0

u(α)(t)
√
x − t

dt + λ2

∫ x

0
K (x, t)u(α)(t)dt + h(x),

u(i)(δ) = ui + ε.

Then, performing the proposed method yields the following:

V̄C = ¯Z+∆Z̄. (49)

Let Cp
= be the perturbed solution of (49). Then, C is bounded as follows [27]

∥∆C∥

∥C∥
≤ cond(V̄)

∆Z̄
Z̄ .

Similarly, for the error that may occur in V̄ as a result of arithmetic operations, we consider the perturbed problem(
¯V+∆V̄

)
C = Z̄ + ∆Z̄. (50)

s the same notation, the change in C caused by perturbing the initials and arithmetic operations is bounded above as
ollows [27].

∥∆C∥

∥C∥
≤

cond(V̄)

1 − cond(V̄)

∆V̄
V̄
(∆V̄

V̄ +

∆Z̄
Z̄
)

.

Thus, for the given Eq. (49) and based on the BSSI we have,⏐⏐un(x) − up
n(x)

⏐⏐ = |Bn(x) (C − (C + ∆C))| (51)
≤ ∥Bn(x)∥ ∥∆C∥

≤ ∥Bn(x)∥ cond(V̄)

∆Z̄
 ∥C∥Z̄ .

Similar conclusions can be achieved for Eq. (50)
7
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To construct the residual correction procedure for the problem, let Rn be defined as follows,

Rn(x) := uα
n (x) − un(x) − λ1

∫ x

0

u(α)
n (t)

√
x − t

dt − λ2

∫ x

0
K (x, t)u(α)

n (t)dt.

Then, adding and subtracting the term Rn from Eq. (1) gives the following problem for the absolute error

eα
n (x) = en(x) + λ1

∫ x

0

e(α)n (t)
√
x − t

dt + λ2

∫ x

0
K (x, t)e(α)n (t)dt + h(x), (52)

here en = u − un with the following initial condition

e(α)n (δ) = 0. (53)

y applying the method into Eq. (52) with the condition (53), we can obtain an approximate solution, which is denoted
y en,m, for the absolute error where m is the degree of approximation.
Note that un,m := un+en,m is another approximate solution, called corrected BSSI solution, and its error function is en,m.

f
en − en,m

 < ∥y − en∥, then un,m is a better approximation than un in the norm. On the other hand, we can estimate
n by en,m whenever

en − en,m
 < ε is small.

. Numerical implementation

In this section, four examples are considered to illustrate the properties and effectiveness of the methods. Three of
hem have the smooth exact solutions and the last one has the non-smooth exact solution. We compare the results with
ome known methods.

xample 1

Consider the fractional integro-differential equation,

u(0.5)(x) =
8x1.5 − 6x0.5

3
√

π
+

x
12

+

∫ 1

0
xtu(t)dt, (54)

ith an initial condition,

u(0) = 0.

he exact solution (see [28,29]) of this problem is given by

u(x) = x2 − x.

y applying the BSSI method into Eq. (54), we get the relation

J0.5
[
u(0.5)(x)

]
= J0.5

[∫ 1

0
xtu(t)dt

]
+ J0.5

[
8x1.5 − 6x0.5

3
√

π
+

x
12

]
, (55)

hich can be written as

u(x) − J0.5
[∫ 1

0
xtu(t)dt

]
= u(0) + J0.5

[
8x1.5 − 6x0.5

3
√

π
+

x
12

]
. (56)

he fundamental matrix equation for Eq. (54) is obtained as[
X(x)DT

− X(x)Ψ(x)DT
− SxDT] Z = E(x). (57)

By substituting the collocation nodes (27) into (57) when n = 2, the following matrices are obtained,

Ψ(x) =

⎛⎜⎝
Γ (1)

Γ (1.5)x
0.5 0 0

0 Γ (2)
Γ (2.5)x

0.5 0
0 0 Γ (3)

Γ (3.5)x
0.5

⎞⎟⎠ , DT
=

( 1 0 0
−2 2 0
1 −2 1

)
,

Z =

[ z0
z1
z2

]
=

[ 0
−0.5
0

]
, V =

( 0.7250 0.2429 0.0109
0.7250 0.2429 0.0109

−0.0279 0.1511 0.5802

)
, E =

[ 0.1214
0.1214
0.0755

]
.

hen, by using Eq. (11), the BSSI solution is obtained by the following

u(x) = [1 x x2]

( 1 0 0
−2 2 0
1 −2 1

)[ 0
−0.5
0

]
= x2 − x,

hich gives the exact solution.
8
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Table 1
A comparison between the BSS algorithms and other methods for Example 1.
x SLM [29] PLM [29] OHAM [28] BSS methods

0.0 3.48 × 10−5 1.08 × 10−5 0 0
0.1 1.67 × 10−5 9.10 × 10−5 0 0
0.2 2.74 × 10−6 7.88 × 10−5 0 0
0.3 7.26 × 10−6 7.13 × 10−5 0 0
0.4 1.32 × 10−5 6.84 × 10−5 0 0
0.5 1.51 × 10−5 7.01 × 10−5 5.55 × 10−17 0
0.6 1.31 × 10−5 7.62 × 10−5 0 0
0.0 6.99 × 10−6 8.67 × 10−5 0 0
0.8 3.15 × 10−6 1.01 × 10−4 1.11 × 10−16 0
0.9 1.73 × 10−5 1.20 × 10−4 1.11 × 10−16 0
1.0 3.55 × 10−6 1.43 × 10−4 1.11 × 10−16 0

If we apply the BSSD method to solve the problem in Eq. (54), the fundamental matrix equation for Eq. (54) is obtained
as [

XΩDT
− SDT] C = H. (58)

For n = 2, we get the following matrices,

Ω(x) =

⎛⎝ 0 0 0
0 Γ (2)

Γ (2.5)x
−0.5 0

0 0 Γ (3)
Γ (3.5)x

−0.5

⎞⎠ .

W =

(
−0.7915 −0.7915 −0.9697
0.6705 0.6705 −0.4301
0.0477 0.0477 0.9730

)
, DT

=

( 1 0 0
−2 2 0
1 −2 1

)
, H =

[
−0.3352
−0.3352
−0.0728

]
.

Using collocation points in (44) with n = 2 and substituting these points to Eq. (58), we have

C =

[ c0
c1
c2

]
=

[ 0
−0.5
0

]
.

ow, from Eq. (11) the BSSD solution is obtained as

u(x) = [1 x x2]

( 1 0 0
−2 2 0
1 −2 1

)[ 0
−0.5
0

]
= x2 − x,

hich gives again the exact solution. Note that, for both methods the exact solution is obtained for n = 2. We compare
hese results with optimal homotopy asymptotic method (OHAM), Standard Least Squares Method (SLM) and Perturbed
east Squares Method (PLM). All of them ended up with the exact solution whereas the methods SLM [29], PLM [29]
nd OHAM [28] ended by an approximate solution within a good accuracy, however not exact for n = 2 and for this
pecific example. Table 1 presents the error bound achieved using the BSSI and BSSD methods and compared with other
echniques.

xample 2

Let us consider the fractional integro-differential equation [30]

D(0.25)u(x) =
1
2

∫ x

0

u(t)
√
x − t

dt +
1
3

∫ 1

0
(x − t)u(t)dt + g(x), (59)

ith an initial condition is u(0) = 0, where

g(x) =
Γ (3)

Γ (2.75)
x1.75 +

Γ (4)
Γ (3.75)

x2.75 −

√
πΓ (3)

2Γ (7/2)
x5/2 −

√
πΓ (4)

2Γ (9/2)
x7/2 −

7x
36

+
3
20

.

The exact solution of this formulation is

u(x) = x2 + x3.

Consider n = 3, and apply the BSSI method, we get the following

J0.25
[
u(0.25)(x)

]
= J0.25

[
1
∫ x u(t)

√ dt
]

+ J0.25
[
1
∫ 1

(x − t)u(t)dt
]

+ J0.25 [g(x)] ,

2 0 x − t 3 0

9
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Table 2
A comparison between our methods fro n = 3, and other methods for Example 2.
x CAS method [30] Legendre wavelets method [30] BSSD method Exact

0.0 0.0400000000 0.0000000000 0.0000000000 0.0000000000
1/6 0.0900000000 0.0600000000 0.0324074074 0.0324074074
2/6 0.1900000000 0.1800000000 0.1481481481 0.1481481481
3/6 0.4000000000 0.4000000000 0.3750000000 0.3750000000
4/6 0.7200000000 0.7800000000 0.7407407407 0.7407407407
5/6 1.1800000000 1.2800000000 1.2731481480 1.2731481480

and the matrix equation[
X(x)DT

−
1
2
OxDT

−
1
3
SxDT

]
Z = E(x),

where,

Ψ(x) =

⎛⎜⎜⎜⎝
Γ (1)

Γ (1.5)x
0.25 0 0 0

0 Γ (2)
Γ (2.5)x

0.25 0 0
0 0 Γ (3)

Γ (3.5)x
0.25 0

0 0 0 Γ (4)
Γ (4.5)x

0.25

⎞⎟⎟⎟⎠ ,

DT
=

⎛⎜⎝ 1 0 0 0
−3 3 0 0
3 −6 3 0

−1 3 −3 1

⎞⎟⎠ , V =

⎛⎜⎝ −0.2472 −0.2201 0.0956 0.8191
−0.2444 −0.0513 0.3249 0.1155
−0.1587 0.2518 0.1860 0.0271
0.6157 0.2708 0.0634 0.0313

⎞⎟⎠ ,

Z =

⎡⎢⎣ z0
z1
z2
z3

⎤⎥⎦ =

⎡⎢⎣ 0
0
1
3
2

⎤⎥⎦ , E =

⎡⎢⎣ 1.1786
0.6255
0.1888
0.0716

⎤⎥⎦ .

Thus, the BSSI solution reveals the solution as x3 + x2, which is the exact.
If we apply the BSSD method to the problem, the fundamental matrix equation for Eq. (54) is obtained as[

X(x)Ω(x)DT
−

1
2
QxΩ(x)DT

−
1
3
SxΩ(x)DT

]
C = H(x). (60)

y applying the method with n = 3, we get the following matrices

Ω(x) =

⎛⎜⎜⎝
0 0 0 0
0 Γ (2)

Γ (2.5)x
−0.5 0 0

0 0 Γ (3)
Γ (3.5)x

−0.5 0
0 0 0 Γ (4)

Γ (4.5)x
−0.5

⎞⎟⎟⎠ .

W =

⎛⎜⎝ −1.11457 −1.244036 −1.2272 −0.43640
−.3697304 −.240228 0.370244 0.2735
−.457121 .2139 .27826 0.058117

0.8066644211 0.08699 0.9730 0.063659

⎞⎟⎠ , DT
=

⎛⎜⎝ 1 0 0 0
−3 3 0 0
3 −6 3 0

−1 3 −3 1

⎞⎟⎠ .

Putting in the discretized points to Eq. (60) yields the following matrices,

H =

⎡⎢⎣ 1.4609
0.8213
0.2667
0.1466

⎤⎥⎦ C =

⎡⎢⎣ c0
c1
c2
c3

⎤⎥⎦ =

⎡⎢⎣ 0
6.4850E − 20

0.3334
1.9999

⎤⎥⎦ .

ence, the BSSD solution is obtained as 1.9455(E − 19)x + 1.0x3 + 0.9999x2.
In Table 2, we provide some numerical experiments for the BSSD solution when n = 3 compared with some known

ethods. It is clear that the BSS methods gives us more accurate results than the CAS wavelets and Legendre wavelets
ethods [30] for this problem. The approximate solutions obtained by BSS methods for n = 2 and n = 3 are depicted in
ig. 1. Table 3 shows the stability results based on the BSSD method.
10
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Fig. 1. The BSS solutions for n = 2 and n = 3 with the exact solution for Example 2.

Table 3
Stability results of the system obtained by BSSD method for Example 2.

n = 2 n = 3 n = 4

cond(W̄ ) 12.82 15.24 28.07
∥∆C∥ 8.00 × 10−10 1.19 × 10−16 1.07 × 10−9

∥C∥ 1.92 2.00 2.00
∥∆H∥ 10−16 10−16 10−16

∥H∥ 1.38 1.46 1.49
Upper bound obtained by (51) 7.12 × 10−15 1.66 × 10−14 5.99 × 10−14un − up

n
 1.0 × 10−16 2.0 × 10−16 3.0 × 10−16

Example 3

Now, we consider the following fractional integro-differential equation [31]

D
1
3 u(x) = p(x)u(x) +

∫ x

0

u(t)
√
x − t

dt + g(x), (61)

here the initial condition is given to be u(0) = 0, and

g(x) =
6
11 x

8
3 + (

32
−

Γ ( 12 )Γ ( 73 )
17 )x11/6 + Γ (

7
)x, p(x) =

−32
x

1
2 .
Γ ( 3 ) 35 Γ ( 6 ) 3 35

11



M.H.T. Alshbool, M. Mohammad, O. Isik et al. Results in Applied Mathematics 14 (2022) 100258

w

T

Table 4
The absolute error of the BSSD solution for n = 3, 6, 8 for Example 3.
x n = 3 n = 6 n = 8

0.0 0 0 0
0.1 5.54 × 10−4 1.58 × 10−3 1.51 × 10−4

0.2 6.93 × 10−3 1.35 × 10−4 4.69 × 10−4

0.3 1.07 × 10−2 1.10 × 10−3 4.87 × 10−4

0.4 1.10 × 10−3 1.02 × 10−4 3.75 × 10−4

0.5 8.61 × 10−3 1.16 × 10−3 3.68 × 10−4

0.6 4.55 × 10−3 1.10 × 10−3 1.73 × 10−4

0.7 5.19 × 10−4 8.54 × 10−5 4.83 × 10−4

0.8 1.69 × 10−3 6.77 × 10−4 1.16 × 10−4

0.9 1.68 × 10−4 5.10 × 10−4 2.23 × 10−4

1.0 7.12 × 10−3 3.53 × 10−6 2.73 × 10−6

Table 5
The correction procedure of the BSSD solution for n = 3, and m = 10, 12, 14 for Example 3.

x e3,3 e10,103,3 e12,123,3 e14,143,3

0.0 0 0 0 0
0.1 5.54 × 10−4 3.01 × 10−4 1.23 × 10−4 8.59 × 10−5

0.2 6.93 × 10−3 2.70 × 10−4 9.20 × 10−5 1.19 × 10−5

0.3 1.07 × 10−2 1.34 × 10−5 1.16 × 10−4 1.22 × 10−5

0.4 1.10 × 10−3 2.18 × 10−4 1.78 × 10−4 1.00 × 10−5

0.5 8.61 × 10−3 2.54 × 10−4 1.24 × 10−4 9.42 × 10−5

0.6 4.55 × 10−3 5.15 × 10−5 5.90 × 10−5 5.88 × 10−5

0.7 5.19 × 10−4 1.86 × 10−4 5.47 × 10−5 8.16 × 10−5

0.8 1.69 × 10−3 2.32 × 10−4 6.02 × 10−5 3.87 × 10−5

0.9 1.68 × 10−4 1.21 × 10−4 5.92 × 10−5 1.74 × 10−5

1.0 7.12 × 10−3 2.14 × 10−5 6.00 × 10−6 5.00 × 10−6

Table 6
Stability results of the system obtained by the BSSD method for Example 3.

n = 3 n = 6 n = 10

cond(W̄ ) 16.7202 107.7649 1685.8626
∥∆C∥ 2.2981 × 10−16 3.0 × 10−20 2.2 × 10−19

∥C∥ 1.9928 1.9999 2.0000
∥∆H∥ 10−16 10−16 10−16

∥H∥ 2.0813 2.2989 2.3483
Upper bound obtained by (51) 1.6009 × 10−15 9.3842 × 10−15 1.4359 × 10−13un − up

n
 2.5 × 10−16 2.50 × 10−16 3.5 × 10−16

The exact solution here is defined as

u(x) = x3 + x
4
3 .

By applying the BSSD method for n = 3, n = 6, and n = 8, the results are tabulated in Table 4. We apply the residual
correction procedure given in Section 3.3 to the problem for n = 3 and m = 10, 12, 14 where some of the numerical
observations are presented in Fig. 2 and Table 5. We can say from Fig. 2 and Table 5 that the absolute error for n = 3 is
estimated well by using the residual correction procedure. We get the corrected solutions for n = 3 and m = 10, 12, 14
and give the absolute errors in Fig. 3. It can be inferred from Fig. 3 that the corrected solution is better than those obtained
from the BSSD solution for n = 3 and m = 10, 12, 14. We also show some stability results for the BSSD method in Table 6.

Example 4

Consider the fractional integral–differential equation

u(0.5)(x) = u(x) +

∫ x

0
u(t)dt +

Γ (3)
Γ (2.5)

x1.5 −
1
3
x3 − x2, (62)

ith initial condition defined by

u(0) = 0.

he exact solution of this problem is [32]

u(x) = x2.
12
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Fig. 2. Estimation of absolute error of the BSSD solutions for n = 3, and m = 10, 12, 14 for Example 3.

The fundamental matrix equation for Eq. (62) is obtained as

J0.5
[
u(0.5)(x)

]
= J0.5 [u(x)] + J0.5

[∫ x

0
u(t)dt

]
+ J0.5

[
Γ (3)

Γ (2.5)
x1.5 −

1
3
x3 − x2

]
. (63)

This can be simplified as follows.

u(x) − J0.5 [u(x)] − J0.5
[∫ x

0
u(t)dt

]
= u(0) + J0.5

[
Γ (3)

Γ (2.5)
x1.5 −

1
3
x3 − x2

]
. (64)

Obtaining the matrix form yields[
X(x)DT

− X(x)Ψ(x)DT
− SxDT] Z = E(x), (65)

Using the initial condition, we have

X(0)DTC = 0.

The augmented matrix is formed as

VC = Z or [V; Z]. (66)
13
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Fig. 3. Comparison the absolute error for n = 3 with the absolute errors obtained by the corrected BSSD solutions for n = 3, m = 10, 12, 14 for
xample 3.

For n = 2 and α = 0.5, we get the following matrices as

Ψ(x) =

⎛⎜⎝
Γ (1)

Γ (1.5)x
0.5 0 0

0 Γ (2)
Γ (2.5)x

0.5 0
0 0 Γ (3)

Γ (3.5)x
0.5

⎞⎟⎠ , DT
=

( 1 0 0
−2 2 0
1 −2 1

)
,

Z =

[ z0
z1
z2

]
=

[ 0
−0.5
0

]
, V =

( 0.33869 0.33869 −0.52661
0.171035 0.171035 −0.33378
0.01630 0.01630 0.22469

)
, E =

[ 0.01630
0.01630
0.22469

]
.

Then, by using Eq. (11), the BSSI solution is obtained as

u(x) = [1 x x2]

( 1 0 0
−2 2 0
1 −2 1

)[ 0
0
1

]
= x2,

hich is the exact solution.
If we applying the BSSD method, then the fundamental matrix equation for Eq. (62) is obtained as[

X(x)Ω (x)DT
− X(x)DT

− S DT] C = H(x), (67)
x

14



M.H.T. Alshbool, M. Mohammad, O. Isik et al. Results in Applied Mathematics 14 (2022) 100258

w

f

5

o
o
p
r
c
t
C
n
b
o

D

a

Table 7
The absolute error of the BSS methods for n = 2, and other methods for Example 4.
x FEFs method n = 4 [32] Legendre wavelets method n = 6 [33] BSS methods n = 2

0.0 1.63 × 10−16 5.55 × 10−16 0
0.1 1.06 × 10−15 6.66 × 10−16 0
0.2 1.04 × 10−15 9.15 × 10−16 0
0.3 5.22 × 10−16 1.27 × 10−15 0
0.4 1.42 × 10−16 1.63 × 10−15 0
0.5 6.75 × 10−16 2.04 × 10−15 0
0.7 8.59 × 10−16 2.52 × 10−15 0
0.8 5.14 × 10−16 3.27 × 10−15 0
0.9 5.06 × 10−16 3.77 × 10−15 0

Now, for n = 2, we get the below matrices,

X(x) = [1 x x2], Ω(x) =

⎛⎝ 0 0 0
0 Γ (2)

Γ (2.5)x
0.5 0

0 0 Γ (3)
Γ (3.5)x

0.5

⎞⎠ ,

C =

[ c0
c1
c2

]
, DT

=

( 1 0 0
−2 2 0
1 −2 1

)
,

Using the collocation points with n = 2,

xi = [x0 x1 x2] = [0 0.5 1],

we have,

C =

[ c0
c1
c2

]
=

[ 0
0
1

]
.

From Eq. (11), we get an approximate solution

u(x) = [1 x x2]

( 1 0 0
−2 2 0
1 −2 1

)[ 0
0
1

]
= x2,

hich is again the exact one.
Table 7 shows a comparison between the BSS methods with some known techniques such as the fractional-order Euler

unctions method and the Legendre wavelet method.

. Conclusions

In this paper, we proposed two numerical techniques of operational matrices based on B-polynomials to solve a class
f integro-differential equations of fractional order. The first method (the BSSI), is constituted of operational matrices
f integral with applications, whereas the second one (the BSSD) depends on the operational matrices of derivative. We
resented the residual correction procedure for the methods in order to estimate the absolute error and study the stability
esults based on the techniques. We also tested the proposed methods on some examples to demonstrate its efficiency. We
ompare the methods with some known results, where it is clearly the used algorithm showed more accurate results than
hose obtained by for example the optimal homotopy asymptotic method, standard and perturbed least squares method,
AS method and Legendre wavelets method and fractional-order Euler functions method for the considered examples. The
umerical implementations indicate that these is a good agreement between the theoretical and numerical results. This
een achieved in Tables 1–7 and Figs. 1–3. Throughout the presented examples, we provided the fundamental matrices
f integration and differentiation Ψ(x),Ω,D,V, Z, and E generated based on our techniques.
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