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Abstract: Community structure detection is an important and valuable task in financial network
studies as it forms the basis of many statistical applications such as prediction, risk analysis, and
recommendation. Financial networks have a natural multi-grained structure that leads to different
community structures at different levels. However, few studies pay attention to these multi-part
features of financial networks. In this study, we present a geometric coarse graining method based
on Voronoi regions of a financial network. Rather than studying the dense structure of the network,
we perform our analysis on the triangular maximally filtering of a financial network. Such filtered
topology emerges as an efficient approach because it keeps local clustering coefficients steady and it
underlies the network geometry. Moreover, in order to capture changes in coarse grains geometry
throughout a financial stress, we study Haantjes curvatures of paths that are the farthest from the
center in each of the Voronoi regions. We performed our analysis on a network representation
comprising the stock market indices BIST (Borsa Istanbul), FTSE100 (London Stock Exchange), and
Nasdaq-100 Index (NASDAQ), across three financial crisis periods. Our results indicate that there are
remarkable changes in the geometry of coarse grains.

Keywords: financial networks; coarse graining; Voronoi regions; triangular maximally filtered graph;
Haantjes curvature

MSC: 91-10

1. Introduction

Network representation of complex systems that arise in social sciences, biology, neu-
roscience, or finance is widely used to analyze the statistical properties of systems. Besides
these properties, since agents in the nonlinear relationship have heterogeneous interaction
levels, their structural complexities can also be determined in these network representa-
tions. Structural changes of any physical or abstract system under stress conditions can
be observed in the granular particles of the system. For this reason, the granulation of
complex systems is also a very important task to be completed [1–3]. From a mathematical
perspective, the granular structure of a complex system modeled by a network coincides
with clusters formed by system agents. When the network vertices denote the agents of the
system, the cluster of the vertices is called a community graph. In addition to this general
definition, no agreement has been reached on a common mathematical definition [4,5]. Al-
though there are various community identifications and community detection algorithms,
combining meaningful mathematical community definitions with computational effective
methods still remains a challenge.

Cluster problems that arise in subjects such as statistical data analysis, pattern recog-
nition, and machine learning are generally defined on continuous metric spaces. Voronoi
diagram partition, which is frequently used in computational geometry studies, is a method
that determines the set of points closest to certain seeding points of a continuous metric
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space. For example, the sets of points closest in terms of Euclidean distance to the points
taken in a Euclidean space form a Voronoi diagram of this space. Moreover, seeding points
and triangles emerging from the adjacency relation of Voronoi cells constitute the Delaunay
triangulation of the underlying metric space [6–9]. Network models, represented by math-
ematically simple directed/undirected graphs, together with the graph distance, form a
discrete metric space. In determining Voronoi diagrams for this type of metric space, sets of
points with minimum graph distances to seeding points are taken into account [10–12]. In
this study, we present an approach based on the Voronoi diagram used on discrete metric
spaces for vertex clusters, which represent the granular structure of a network. This type of
simple geometric approach provides reliable results at low computational complexity.

Financial complex systems are structures of agents in dense and nonhomogeneous
relations at many levels. The complex systems that we consider in our study are stock
markets. With correlation distances between time series of the daily closing prices cor-
responding to companies traded on the stock market, a weighted network model of the
markets can be obtained. However, due to the intense relationship of agents in financial
systems, the use of complete graphs to represent this type of network causes the loss of
information on network topology and geometry. Various filtering methods are presented
in the literature to overcome this type of problem [13–17]. Filtration methods are based on
the principle of preserving strong network connections and removing weak connections
from the topology. Since the resulting filtration is chordal, i.e., a filtration that preserves
discrete geometry, we use the Triangulate Maximally Filtering Graph approach presented
in [16] in order to filter networks.

Two major problems arise when determining clusters of financial networks with
Voronoi diagrams. The first problem is determining a meaningful length of edges in the
discrete metric space where the network is embedded. Since the correlation distance of
the time series of agents is non-negative, it represents a solution for this type of problem.
The second problem is determining the seeding points of the Voronoi diagrams. In order
to solve this problem, the weighted and unweighted topologies of the filtered network
should be considered separately, and seeding points should be selected based on the
highest local correlation coefficient. At the same time, this selection is made in a controlled
manner so that the granular structure of the network does not differ much. For this reason,
each of the Voronoi cells is called coarse granules, and such Voronoi partition is called
coarse granulation.

Changes in the granular structure of financial systems take place during periods of
economic crisis. This type of structural change can be observed together with the change in
the geometry of granules. In this study, we use a discrete analogous Haantjes curvature of a
curve in a metric space to capture such geometric changes. To examine these changes in the
geometry of the coarse granule structures, we looked at the discrete Haantjes curvatures
of the paths that are furthest from the seeding locations of the Voronoi cells. During crisis
situations, we detected significant changes for Borsa Istanbul, London Stock Exchange,
and NASDAQ. The averages of discrete Haantjes curvatures were used to encode such
changes. Overall, the method presented in this study can serve as a strong indicator of a
financial network.

The rest of the paper is organized as follows. Section 2 presents details on the coarse
graining method based on Voronoi diagrams. Moreover, it features the definition of the
Haantjes curvature and the selection of paths. Section 3 reports detailed results on the
topologies of a granular structure within stock markets throughout an economic crisis
period. We considered three differently sized stock markets and different lengths of crisis
periods. The resulting Haantjes curvatures across economic crises are also presented.
Finally, Section 4 discusses empirical results and presents concluding remarks.

2. Methodology

Complex and dynamic interacting systems can be studied by using graph theory
principles. According to the literature, the terms “graphs” and “networks” are used
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indistinctly. Graphs are discrete mathematical concepts that can be expressed via tuples
such that G = (V, E). In this expression, V stands for the set of vertices, and E stands for
the set of edges. From a mathematical point of view, for vi,vj ∈ V, E =

{
ek
∣∣ek =

(
vi, vj

)}
.

If
(
vi, vj

)
is unordered, then G is called an “undirected graph”. Generally speaking, the

term network is used for graphs that represent real-world objects where vertices are agents
of the system and edges indicate the relationship between agents. Besides, in terms of
different levels of heterogeneity regarding the intensity of connections, complex networks
are usually expressed with a triple G = (V, E, ω), where ω : E→ R . Such triple is called
an edge-weighted graph andω is the weight function.

In the construction of complex network models, the presence or absence of edges
between the vertices to which agents are assigned can be derived from a direct definition
and, in some network models, this situation is uncertain. For example: in movie actor
networks, if two actors played in the same movie, an edge is created between them [18]; if
two servers are connected on a web page in WWW networks, an edge is created between
them [19]; in semantic networks, if the dictionary contains the same meaning, an edge is
created between two distinct words [20]. In networks where agents are expressed by a time
series, however, it is not always clear how to determine the details of the network topology.
In such networks, an edge between vertices is determined by the Pearson correlations of
the respective time series [21–23].

The most common example for networks where edges are determined by the Pearson
correlation is represented by financial networks. In such networks where agents are
stocks, companies, banks, and exchange rates, each agent can be expressed in a time series
according to the daily price. Compared to other correlation networks, financial networks
establish very dense relationships. In order to model such a dense relationship, complete
graph models with an edge assigned between all vertices are used. Let us consider the
logarithmic return of the daily closure price Pi(t) of the stock i at time t as

Cli(t) = logPi(t)− logPi(t− 1). (1)

Then, the Pearson correlation of the stocks i and j

ρij =

〈
CliClj

〉
− 〈Cli〉

〈
Clj
〉√

(〈Cl2
i 〉 − 〈Cli〉2)(〈Cl2

j 〉 −
〈
Clj
〉2
)

(2)

leads a correlation distance function

dρ(i, j) = 2
(

1− ρ2
ij

)
. (3)

A stock market can be modeled by a weighted complete graph Kn =
(
V, E, dρ

)
, where

V is the set of stocks operating on the market and |V| = n. Since −1 ≤ ρij ≤ 1, 0 ≤ dρ(i, j)
≤ 2. Although the complete graph model includes all relationships, it also comprises the
weights close to 2, so it is difficult to determine the local and global topological properties
of the network structure. Various filtering techniques are presented in the literature to
overcome this problem. In the seminal paper of [24], Minimum Spanning Trees (MST) are
used to determine the hierarchical structure of financial networks. Such filtering encodes
the subdominant ultra-metric structures of financial networks. MST filtration is a method
that can be used to extract a spanning tree from the correlation distance matrix. Similarly,
another filtration method based on the correlation distance matrix but including more
edges than MST is proposed in [25]. Planar Maximally Filtering Graph (PMFG) is a method
that adds edges to the MST filtration by embedding the graph on a manifold with genus g
and by maintaining the filtered topology as planar. Although the PMFG filtering technique
elicits more effective results via cluster analysis than the MST technique, it ignores the
underlying network geometry. This situation causes the network to be embedded only
in spherical, toric, and handled-toric manifolds and, hence, the information about the
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hyperbolic geometry of financial networks is reduced. Therefore, in this study, we use the
Triangulated Maximally Filtered Graph (TMFG) [16] method in order to filter the weighted
complete graph Kn.

TMFG is a filtering of a network that allows the resulting graph to be chordal. Besides,
TMFG has better computational complexity than PMFG filtering. Moreover, in the case of
financial networks, TMFG keeps the underlying geometry of financial agents by allowing
chordal property, since zero-mean stationary time series can be embedded in a Hilbert
space with an inner product (considering the Pearson correlation coefficient) [26]. The
definition of dρ(i, j) indicates that values closer to 0 show strong negative or positive
correlations. Hence, in order to construct a TMFG filtration, we determined the graph
distance matrix with entities of 2 − dρ(i, j), where the values closer to 2 show strong
negative or positive correlations.

In network theory, a measure of the degree to which network vertices tend to cluster
together is called the clustering coefficient. This measure can be considered global or local.
The local clustering coefficient of a vertex in a network is the fraction of triangles that
actually exist over all possible triangles in its neighborhood and an indication of the embed-
dedness of single vertices [27,28]. A network modeled by the complete graph Kn derived
from a correlation matrix tends to have n!

6(n−3)! many triangles. A correlation between the
vertices i and j and a correlation between the vertices i and k trigger a correlation between
j and k, since there are edges assigned between each of the vertices. Hence, there is no
correlation coefficient in this network. Now, let us assume that the TMFG filtration of
Kn = (V, E,ω) is GT = (V, ET ,ω). In this case, a correlation between the vertices i and
j and one between i and k results in a correlation between j and k even ejk /∈ ET . This
property raises the clustering coefficient on GT .

Most studies on clustering coefficients assume the non-negativity of weights. Since
we use the correlation distance function as the weight function, we employed the local
clustering coefficient in this study as

Ci =
1

deg(i)(deg(i)− 1) ∑
i<j,k<NROI

(ω(i, j)ω(i, l)ω(i, k))1/3

maxi′ ,j′ i′ j′
, (4)

where deg(i) denotes the degree of the vertex i and NROI stands for the graph region of
interest [29,30].

Granulation and granular computing for complex systems have become subject to
many research studies recently. The denotation of granulation and relation among granular
structures is the main aspect of granular computing. Granular computing can be performed
by using partition, coverage, and neighboring. In the context of the financial system,
such granulation can be considered as the covering partition of network vertices in dense
relations and can be achieved by using non-overlapping graph communities. However,
in order to perform geometric structural computations, graph communities may need to
include strong restrictions. For instance, in [26], the authors briefly showed that geodetic
convex boundary curvatures of graph communities vary throughout an economic crisis.
The approach in [26] is focused on the embedding of actors to the metric space endowed
by correlation distance. However, the approach entailed a restriction, namely that paths
be geodetic. In the present study, we propose a spatial clustering regarding the network
geometry by using weighted Voronoi regions, which eliminates topological restrictions
on paths.

Voronoi diagrams are classic computational geometric data structures that partition
the plane into convex polygons. Each polygon contains exactly one generating point and
every point in a given polygon is closer to its generating point than to any other point.
Given a particular subset of agents in the financial network, we aim to determine which
vertices of the network are most likely affected by changes throughout an economic crisis.
Let dT be a weighted graph distance on GT = (V, ET ,ω) and V = {1, . . . , n}. We call
the cluster
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Vm(i) = {υ|dT(υ, i) < dT(υ, j) i f i 6= j, dT(υ, i) = dT(v, j) < dT(v, k)
i f i < j and i, j 6= k}, (5)

where i, j, k, v ∈ V, the weighted network Voronoi region associated with i. Moreover,
we consider VDG = ∪mVm to be coarse graining of GT . VDG addresses the question
of how the granular geometry of a network changes throughout an economic crisis by
decomposing the network into regions of influence of central vertices. This approach also
gives additional insights into the functional relationships existing in the network.

In the method of determining the granular structure of the graph GT, the local cluster-
ing value defined in Equation (4) is used to determine the central vertices, namely seeds
of the VDG. In other words, i is a seeding of VDG if Ci > Cj, where j ∈ V and i 6= j.
However, in this case, a problem arises concerning the number of seeding points that
need to be chosen. Of course, the number of seeding points determines the cardinality of
VDG. To overcome this problem, one can consider the VDG cardinality to be constant for
each filtering. However, such an approach would be ineffective due to large changes in Ci
values. At this point, TMFG appears as a highly effective filtering method not only with the
advantage of computational complexity but also for the use of the unweighted topology
of the network. Since the network topology of the GT = (V, ET) is chordal, it contains
only 3- and 4-cliques. Let λGT (i) be the number of 3-cliques on i ∈ V of GT = (V, ET) and
τGT (i) be the number of subgraphs with 2 edges and 3 vertices, one of which is i such that
deg(i) = 2. Then, the local clustering coefficient of a vertex i in an unweighted graph is
defined as

C∗i =
λGT (i)
τGT (i)

. (6)

Hence, the C∗i values of all i ∈ V of GT do not vary significantly; that is, most of the
local clustering coefficient values on GT have certain ratios. Therefore, we choose seedings
of VDG as the vertices i with the greatest C∗i value. Then, amongst them, we eliminate the
ones with lower weighted Ci values. It is not always possible to set a sharp lower limit, as
the Ci values because this type of elimination varies considerably. For this reason, we call
this VDG coarse graining from the standpoint of this study.

In addition to the Ollivier and Forman type Ricci curvatures, which are used quite
frequently in the literature [31–41], there are also different types of curvatures defined in
metric spaces. For example, [42] defined metric curvature by comparing the ratio between
the length of the curve arc and the chord on which it rests [43]. In the context of general
metric spaces, the definition of Haantjes curvature can be presented as follows:

Let (X, d) be a metric space. Let γ be a curve in (X, d) and p, q, and r points on γ,
with p standing between q and r. Then, the Haantjes curvature of γ at p is given by the limit

κ2
H(p) = 24 lim

q,r→p

`(qr)− d(q, r)

(d(q, r))3 , (7)

where `(qr) is the length of the arc qr and 24 is the normalization coefficient.
Now, let us assume that (X, d) is a network endowed with a graph topology. In this

case, an arc ij turns to be a graph path π = v0, v1, . . . , vn in which the initial point is i = v0
and the terminal point is j = vn, or vice versa. In the discrete setting, the limiting process
has no relevance. Moreover, the normalizing constant 24, which assures that the limit
coincides with the conventional concept in the case of smooth planar curves, is unneeded
in this instance. Then, the Haantjes curvature of π is defined as

κ2
H(π) =

|π| − dG(v0, vi)

(dG(v0, vi))
3 , (8)

where |π| is the (weighted) length of the path and dG is the graph distance on the network.
The details about the Haantjes curvature in a graph setting can be found in [43].
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In Figure 1, we present an example of the VDG partition of a GT formed by correlation
distance. The filtered weighted graph in this example has a total of 327 vertices and
90 Voronoi cells. When the network in the example is examined, it is seen that locally high
degree vertices have a central tendency. However, Voronoi regions do not only occur over
those vertices. In addition, the number of vertices in some regions is quite low. It can be
said that the curvature calculation will not affect the general average in these regions.
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We use a similar curvature definition presented in Equation (8) for subnetworks
induced by VDGs of GT = (V, ET ,ω). Now, let us assume that a subnetwork induced by a
VDG of GT is GV

T . The selection of paths π in GV
T is important for the geometry of coarse

grains. In particular, if the paths π are chosen as the paths furthest away from the center of
GV

T , which is the seeding point of VDG, the curvature of these paths encodes information
about the compactness of the GV

T and the factors influencing its boundaries. Let vs be the
seeding vertex of a VDG and GV

T =
(
VV , EV

T ,ω
)
, where vs ∈ VV and EV

T ⊂ ET . ∀vi ∈ π,

max
{

2− dρ(vi, vs)
∣∣vi ∈ π

}
(9)

is called the distance of π to vs. Since ω ∼= 2− dρ
∼= d′ρ′ , we choose maximum whenever

we define graph distance. For the set of all possible paths Π composed of the paths πm
that are furthest away from the central vertex, vs /∈ πm; and then, the Haantjes curvature
reads as

κH(πm) =

√
|πm| −maxd′ρ(vi, vs)

(maxd′ρ(vi, vs))
3 . (10)

Then, the total coarse boundary curvature of VDG can be computed as

∑
πm∈Π

κH(πm). (11)
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3. Results

In this study, in order to analyze the variations of the coarse graining method and
coarse boundary curvatures of each VDG region, we have discussed three different stock
market networks and three different economic crises. Agents of each stock market network
are selected as companies traded in that market. Each time series must be of equal length
in order to define the Pearson correlation of the time series created with logarithmic returns
of companies’ daily closing prices. In each time frame, in order to eliminate the effect of the
moving window size, each time window is selected to span ten transaction days and to be
sampled twice a week.

Stock market indices were selected in order to differ in terms of both the number of
agents and the time frame. Hence, we considered the Financial Times Stock Exchange 100
Index or FTSE100 (London Stock Exchange, UK), the Borsa Istanbul Index or BIST (Borsa
Istanbul, Turkey), and the Nasdaq-100 Index (NASDAQ, USA). The closing prices of stocks
were obtained from the website yahoo.com and they were cross-checked with the data from
investing.com for the market indices FTSE100 and Nasdaq-100. The BIST closing stock
prices were retrieved from Borsa Istanbul.

The economic crisis period for the FTSE100 market index was represented by the
Brexit referendum process, which was voted on 23 June 2016 in order for the UK to leave
the European Union. As a result of this referendum, 51.9% of participants opted for the UK
to exit the European Union. On 29 March 2017, the UK government initiated the procedure
to leave the European Union based on article 50 of the EU Treaty. Hence, in terms of the
FTSE100 index, the reference time frame comprises the moment when Brexit was voted
until the moment when the UK authorities started the exit procedure.

2018 was a stressful year for the Turkish economy. In August, when the depreciation
of the Turkish Lira against the US Dollar was the most dramatic, the European Central
Bank expressed its growing concerns about the biggest lenders of the Euro Area. During
the same period, US President Donald Trump released various statements concerning the
doubling of Turkish steel and aluminum trade tariffs. This period was also characterized
by the investment pledges of Qatari authorities and the precautions taken by the Turkish
government. As for the BIST index, 2018 was the reference period.

One of the recent major economic downturns was the 2008 economic crisis. In the
United States, irresponsible credit practices within the banking system and problems stem-
ming from the housing market have been the catalyst for this crisis. With the bankruptcy of
Lehman Brothers, the fourth-largest US investment bank, the 2008 crisis is considered the
biggest global downturn after the 1929 Great Depression. In terms of the NASDAQ market
index, 2008 was the reference period.

The networks of each stock market index are obtained via the TMFG filtering approach
applied to the distance matrix that emerges from 2− dρ distance of the time series. The
following measurements are used to evaluate the topological structures of these networks:

Let Gj
T =

(
V, Ej

T ,ω
)

denote the TMFG filtration of K j
N at j-th time window.

For Gj
T , the characteristic path length is used to evaluate the average maximal path

between pairs of vertices and it is defined as:

CPL =
1

|V||V− 1| ∑
i,j,i 6=j

`ij, (12)

where `i j is the number of edges in the longest path between nodes i and j. Equation (12) is
defined for the Gj

T similarly to the measure given in [44].
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The variation in the density of Gj
T will be measured by the concept of the mean

occupational layer [45]. Let us consider that the central node vs, which has zero level, hence
the mean occupational layer can be defined for Gj

T as:

MOL =
1
|V|

|V|

∑
i=1

lev(vi), (13)

where lev(vi) denotes the level of node vi regarding vs. For the consistency of our method,
we determine the central vertex as the vertex with the highest local clustering coefficient.

Voronoi diagrams are a common way to create cells closest to the elements of a
particular set of continuous metric spaces called seeds. The separation of the discrete
metric space into VDG regions, like a network structure, corresponds to the detection of
graph communities of the network structure. One of the most commonly used methods for
determining graph communities is called modularity. In [46,47], an efficient modularity
index in a network is defined as

Qj =
NC

∑
i=1

 Ek
|Eτ |
− 1

4|Eτ |2

(
∑

j∈Vk

deg(j)

)2
, (14)

where NC is the number of clusters, deg(j) is the degree of a vertex j in Gj
T , Ek is the number

of edges and Vk ⊂ V is the set of vertices in the k-th cluster.
In the following, we present detailed results on the FTSE100, BIST, and Nasdaq-100

network indices.

3.1. Results for the FTSE100 Index

In this study, we evaluated the daily closing prices of stocks comprised in the FTSE100
index from October 2014 to March 2018 and the Brexit Referendum was chosen to be
covered in this time frame. In order to define the Pearson correlation of time series, we
used 94 stocks with equal time series lengths. Throughout this period, we observed a total
of 295 moving windows. For each window, we obtained the TMFG filtration for K j

94 graphs.
The values of network measures that were given by Equations (4), (12), and (13) and the
global clustering coefficient are presented in Figure 2. For CPL and MOL measures, we
used Maximal Spanning Trees of each Gj

T .

For each Gj
T of the FTSE100, we grained networks coarsely by determining VDG

regions. The seeds of each VDG are obtained by the highest Ci and C∗i scores. Since

VDGs can be considered as graph communities of each Gj
T , we used modularity given

in Equation (14) to measure cluster consistency. In Figure 3, we presented modularity
measures and the histogram of the sizes of VDGs for FTSE100.

From the histogram with the VDS sizes, it can be seen that some regions have really
small sizes. Such grains are assumed to have no coarse boundary, in other words, they
have ∑

πm∈Π
kH(πm) = 0. Since we compute total Haantjes curvatures of coarse boundaries

of coarse grains, we presented the means of total curvatures in Figure 4.

3.2. Results for the BIST Index

For the second example, we evaluated the daily closing prices of stocks comprised by
the BIST index from January 2018 to December 2018. This was a period of dramatic fall on
the exchange rates of the Turkish Lira. In this sense, Trump’s tweets on increased tariffs
were chosen to be covered. In order to define the Pearson correlation of the time series,
we used 317 stocks with equal time series lengths. The stocks under consideration belong
to the A and B segments of the BIST. Throughout the time frame, we observed a total of
81 moving windows. For each window, we obtained the TMFG filtration for K j

317 graphs.
The values of network measures that were given by Equations (4), (12), and (13) and the
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global clustering coefficient are presented in Figure 5. For the CPL and MOL measures, we
used Maximal Spanning Trees of each Gj

T .
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considered as graph communities of each Gj
T , we used modularity given in Equation (14) to

measure the consistency of vertex clusters. In Figure 6, we presented modularity measures
and the histogram of the sizes of VDGs for BIST.
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3.3. Results for the Nasdaq-100 Index

We evaluated the daily closing prices of stocks included in the Nasdaq-100 Index from
January 2004 to December 2015 and the year 2008 was considered the benchmark period.
In order to define the Pearson correlation of time series, we used 77 stocks with equal time
series lengths.

Throughout the time frame, we obtained a total of 1,004 moving windows. For each
window, we obtained the TMFG filtration for K j

77 graphs. Values of network measures that
are determined by Equations (4), (12), and (13), and the global clustering coefficient are
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presented in Figure 8. For the CPL and MOL measures, we again employed the Maximal
Spanning Trees of each Gj

T .
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For each Gj
T of the index, we grained networks coarsely by determining the corre-

sponding VDG regions. The seeds of each VDG were obtained by the highest Ci and C∗i
scores. Since VDGs can be considered as graph communities of each Gj

T , we used modu-
larity given in Equation (14) to measure the consistency of vertex clusters. In Figure 9, we
presented modularity measures and the histogram of the sizes of VDGs for Nasdaq-100.
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In Figure 10, we displayed the mean values of the total Haantjes curvatures of coarse
grains. Since mean values regarding the PMFG filtration vary between 0.0 and 0.15 we
have omitted the PMFG results for Nasdaq-100.
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4. Conclusions and Discussion

It is fundamental to analyze the granular structure of a system, as well as the complex
network modeling of systems formed by financial agents at different levels of interaction.
In this study, we advanced a method for graining networks that model stock markets.
By means of this coarse graining method, we examined the geometrical changes in the
granular level of the network under the impact of an economic crisis.

As a first step, we used a method based on correlation distance to create networks.
Hence, the complete graph representation of agents was chosen so that the weights be
dialyzed. Moreover, we used correlation distances of time series obtained by logarithmic
returns of daily closing prices of agents. The complete graph representation provided us
with weak statistical information on network dynamics since the relationship was dense.
At the same time, the network representation contained geometrically missing information
as it was isomorphic to an n-dimensional abstract manifold. For these reasons, we applied
TMFG filtering in order to obtain networks.

We examined network models of three different stock market indices. In this sense, we
used moving windows to observe the structural change of each market. In each window,
the TMFG filtering was applied to complete graphs formed by the agents’ time series.
To compare the topological structures of the TMFG graphs, measurements such as CPL,
MOL, mean LCC, and global clustering coefficient, frequently used in the literature, were
applied to these graphs. We determined the CPL and MOL measurements in Maximal
Spanning Tree structures since we dualized the correlation distance. During the crisis
periods impacting the FTSE100, BIST, and Nasdaq-100 indices, high oscillations were
observed for all measurement values. Moreover, only significant changes are elicited for the
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global clustering coefficients. Hence, these measurements alone are not strong indicators
for TMFG filtering.

To define a stronger indicator and analyze the granular structure of financial systems
for TMFG networks, we presented a Voronoi region based on the clustering method.
Seeding points for VDG, which is a geometric partition for discrete metric spaces, were
selected from the points of the TMFG graph with the most appropriate LCC score in
both weighted and unweighted topologies. Therefore, we called the VDG graining of the
network coarse graining. The modularity index was used to analyze the VDG clustering.
According to the results, modularity values for the FTSE100, BIST, and Nasdaq-100 indices
fell into the ranges (0.19–0.42), (0.35–0.44), and (0.1–0.5), respectively. The volumes of
the VDG cells also had a significant distribution according to the number of agents they
have for all three stock markets and the time frame used in the analysis. According to the
modularity indices, it can be stated that the BIST index had the tightest granular structure
as compared to the other two indices.

We studied the discrete Haantjes curvatures of the paths, which are furthest from
the seeding points of the VDG cells, in order to observe changes in the geometry of the
coarse granule structures. We noticed that remarkable changes occurred in the geometries
of the granules for all three stock market indices during crisis periods. Such changes were
encoded in the averages of discrete Haantjes curvatures. Overall, the most noticeable
change occurred for the BIST market index because VDG cells formed tighter granules.
When the average Haantjes curvatures are examined, it is observed that there is more
variation for the FTSE100 index than for the BIST and Nasdaq-100 values. This shows
that the Brexit process causes more stress in the FTSE100 index in the periods before and
after. While the market is always looking for the market equilibrium after short-acting
stress periods in the BIST index and long-term stress periods in the Nasdaq-100 index, this
process takes longer for the FTSE100 index. The findings are compared to PMFG filtering in
order to see if the Haantjes curvature is a better indication in TMFG filtering. The average
Haantjes values exhibit higher oscillations in TMFG filtering during stress times, according
to the data collected.

All in all, it can be stated that the method presented in this study can serve as a strong
indicator of a financial network. The method can be extended to networks that model
not only financial systems but also different types of complex systems [48–50]. Hence,
the approach from our study can serve as a starting point for research studies focused
on geometrical, topological, and statistical aspects of network science [51,52]. In many
quantitative financial models, the correlation matrix of asset returns is based on Pearson’s
linear correlation. However, when used for fat-tailed financial time series such as stock
returns and exchange rates, which have significant volatility changes, the linear correlation
may cause some distortion [53,54]. The correlation matrix of unfiltered sample data series
with a moving window, as a result, has basic flaws that are generally acknowledged by
academics and practitioners. Yet, the approach is still extensively employed due to a lack
of alternatives.
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