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Akın Taşcıkaraoğlu6 İbrahim Can Taştan7 Ali Fuat Büyük7 João P. S. Catalão8

1MaREI Centre, Environmental Research Institute,
University College Cork, Cork, Ireland

2Department of Electrical and Electronics
Engineering, Izmir Katip Celebi University, Izmir,
Turkey

3School of Engineering, University College Cork,
Cork, Ireland

4Department of Electrical and Electronics
Engineering, Fatih Sultan Mehmet Vakif University,
Istanbul, Turkey

5Department of Electrical Engineering, Yildiz
Technical University, Istanbul, Turkey

6Department of Electrical and Electronics
Engineering, Mugla Sitki Kocman University, Mugla,
Turkey

7Smart Systems, R&D, Osmangazi Electricity
Distribution Co., Eskişehir, Turkey
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Abstract

Due to the rising of both economic and environmental concerns in the energy sector,
each subdivision of the community is investigating new solutions to overcome this
critical issue. For this reason, electric vehicles (EVs) have gained more significance in
the transportation sector owing to their efficient and clean operation chance. These
improvements, however, bring new challenges such as installation costs, infrastructure
renovation, and loading of the existing power system. Here, optimal sizing and siting of EV
charging stations (CSs) are examined in a mixed-integer linear programming framework
with the aim of minimizing the number of EVCSs in the distribution system (which in
turn means to minimize CS-related investment while satisfying EV owners’ needs) while
satisfying constraints. The proposed optimization model considers EVCS types with
different charging rate capabilities to provide opportunities for demand-side management.
Moreover, the model takes the actual behaviour of the battery charging pattern into
account by using real measured EV charging data together with the consideration of
an actual distribution system belonging to a region in Turkey. Lastly, a bunch of case
studies is conducted in order to validate the accuracy and effectiveness of the devised
model.

1 INTRODUCTION

Electric vehicles (EV) have gained increasing interest as an
alternative to conventional fossil fuel-powered transportation
vehicles, particularly at the last decade mainly due to the finan-
cial and non-financial incentives provided by governments and
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utilities, and to their potential of curtailing greenhouse gas emis-
sions. The number of EVs on the roads in 2018 has reached 5.1
million worldwide, accounting for 1.8% of the global vehicle
sales [1]. However, widespread public acceptance of EVs is
restricted by some factors and among them, two challenges,
namely, unavailability or limited availability of EV charging
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stations (EVCSs) in especially rural areas and the long waiting
times in EVCSs caused by their insufficient charging capacity
and limited charging rate of charging units have substantial
impacts [2].

In order to address the first problem mentioned above, the
researchers have concentrated on the sizing and siting of EVCSs
by considering various factors such as the relevant costs and
charging demands. As for the latter, the use of faster charging
technologies which have been enabled by the recent develop-
ments in batteries and power electronic equipment has come
into prominence, particularly in the last years. These fast charg-
ing stations (FCSs) have the capability of fully charging a
depleted EV battery in a period of less than 30 min while the
time required to fully charge an EV using a slow charging unit is
in a range between 3 and 17 h depending on the EV specifica-
tions [3, 4]. Therefore, a significant portion of the efforts in the
literature of EVCS has been devoted to the optimal allocation
of EVCS including fast charging technologies.

Among these efforts, aiming at reducing the investment and
operational costs, a stochastic approach for the optimal con-
struction and reinforcement of EVCSs was proposed in ref.
[5], in which EV charging demand is determined by consider-
ing the historical charging demand and driving patterns. With
the same objective, Davidov and Pantos [6] presented an opti-
mization model for the layout of EVCSs and examined the
effects of using a fast charging technology on the costs and
charging times of EVs. Still for minimizing the costs, a mixed-
integer linear programming (MILP) model and a second-order
cone programming model were introduced in refs. [7] and [8],
respectively, for EVCS planning with consideration of the con-
straints for both transportation and power networks. Besides,
Zhou et al. [9] established a bi-level approach for the planning
of FCSs by considering charging demands, where a flow refuel-
ing location method was employed in the upper level to reduce
the planning costs and a traffic assignment method was used
in the lower level to select the spatio-temporal distribution of
EV flows over the network. Several authors have also adopted
different objectives in their studies together with cost minimiza-
tion. Kong et al. [10] developed a location planning approach
for FCSs with the objective of optimizing various metrics such
as traffic efficiency, the economy of operators and power loss of
EVs in addition to total construction and operational costs. In
order to determine the number and locations of EVCSs through
their spatial distribution, Dong et al. [11] implemented a method
based on a shared nearest neighbor clustering algorithm, which
aims to minimize the sum of the charger and waiting costs.
Mixed-integer non-linear programming (MINLP) problem was
employed for optimal placing and sizing of EVCSs, which min-
imizes charging loss, together with station development and
electrification costs [12].

Apart from the objective of minimizing the EVCS costs
such as investment and operational costs, various single- or
multi-objective functions have been also considered in the lit-
erature of EVCS planning. For instance, using an objective
function of increasing EV demand, a flow refueling location
problem was used in ref. [13] to select the locations and num-
bers of EV fast charging modules. For the same target, Wang
et al. [14] examined the siting and sizing problem of FCSs in

a highway network, and Wu and Sioshansi [15] developed an
approach based on a flow capturing location model for optimiz-
ing the location of FCSs. Similarly, in order to meet the charging
demands, Zhang et al. [16] developed a combined approach for
sizing and siting of FCSs by considering the outputs of an agent-
based simulation method, called BEAM, which describes the
behaviours of transportation systems and passengers in cities,
and produces mobility estimations. Besides, considering differ-
ent objectives, an optimal planning solution for FCSs based on
the formulation of EV fast charging demand was presented
in ref. [17] for maximizing the expected CS profit, a planning
model of FCSs based on Nash bargaining theory was presented
in ref. [18] for determining their optimum size and site as well
as optimizing the price of energy transacted between utility and
EVCS, and long-distance travel data was used in ref. [3] to allo-
cate EVCSs for increasing long-distance trip completions. The
use of fast charging technologies in EVCSs might be a vital
necessity in the case that charging times are critical for EV
users. For instance, due to the higher number of charging oper-
ations during 1 day, electric taxis need to charge in very short
periods. In order to enable this task, Morro-Mello et al. [19]
studied a decision-making methodology to identify the optimal
locations for FCSs. In another study for EV taxis [20], a data-
driven optimization problem was presented in order to allocate
EVCSs in a city with the objective of reducing investment
costs.

It is evident from the studies above that most of the recent
existing researches have considered the FCSs in the sizing and
siting optimization problem and neglected the other types of
charging facilities. However, in order to implement a more real-
istic approach, multi-type charging types, which might serve
various EV types, might be taken into account. Motivated by
this fact, Mehrjerdia and Hemmati [21] presented an approach
for optimizing the sizing and siting of the EVCSs including
slow, medium, and fast speed charging facilities with the objec-
tive of minimizing the investment and operational costs. For
the purpose of minimizing energy losses, optimal sizing of CSs
which have chargers with various charging levels and have the
capability of providing reactive power support for EVs was
investigated in ref. [22]. With the objective of determining the
location of three types of charging units, a spatio-temporal flow
capturing location model was proposed in ref. [4]. In order to
mitigate the amount of over discharge rate of EVs, a mathemat-
ical layout optimization model for charging infrastructure was
presented in ref. [23] by examining the proportions of slow and
fast charging points.

In a few studies, multi-objective optimization problems were
put forward for the EVCSs with different charging facilities. An
EVCS allocation optimization model was developed in ref. [24]
for minimizing the costs of investment, reinforcement, oper-
ation, and network loss of EVCSs comprising multi-types of
charging facilities. Graber et al. [25] proposed a model to deter-
mine the type and number of EVCSs with different types of
charging modes in a parking area while balancing the tradeoff
between energy cost minimization and quality of service for
users. A novel concept simultaneously optimizing the allocation
of EVCSs with different charger levels, renewable generation
units, and energy storage systems was developed in ref. [26] for
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TABLE 1 Taxonomy of the study compared to the research in the literature

EVCS

References Objective FCS CS

Siting and

Sizing

Power

Losses

Battery Energy

Management

Real Distribution

Network Uncertainties

[5] Min. The investment and operational cost ✓ ✓ ✓ ✓ - - ✓

[6] Min. The investment and operational cost ✓ ✓ ✓ - - - ✓

[7, 8] Min. The investment and operational cost ✓ - ✓ ✓ - - ✓

[9] Min. The investment and operational cost ✓ - ✓ ✓ - - ✓

[10] Min. The investment and operational cost ✓ - ✓ ✓ - ✓ -

[11] Min. The sum of chargers and waiting cost ✓ - ✓ - - - ✓

[12] Min. The total cost ✓ - ✓ ✓ - ✓ -

[13] Max. The EV demand and flow coverage ✓ - ✓ - - - -

[14] Max. The overall EV flow ✓ - ✓ - - - -

[15] Max. The prospective EVs ✓ - ✓ - - - ✓

[16] Min. The total cost ✓ - ✓ - - - -

[17] Max. The expected CS profit ✓ - ✓ - - - ✓

[18] Max. The expected CS and distribution system
operator profit

✓ - ✓ ✓ - - -

[19] Sustainable planning ✓ - ✓ - - - ✓

[20] Min. The investment cost ✓ ✓ ✓ - - - -

[21] Min. The investment and operational cost ✓ ✓ ✓ - - - ✓

[22] Min. The energy losses ✓ ✓ ✓ ✓ - - -

[23] Min. The total discharge ✓ ✓ - - - - -

[24] Min. The investment and operational cost and losses ✓ ✓ ✓ ✓ - ✓ ✓

[25] Min. The total cost ✓ ✓ ✓ - ✓ - ✓

[26] Min. The total loss and Max. The CS penetration ✓ ✓ ✓ ✓ - ✓ -

[27] Min. The investment cost and energy losses ✓ ✓ ✓ ✓ - - ✓

[28] Min. The investment and operational cost, losses,
emissions and traffic costs

✓ - ✓ ✓ - ✓ ✓

This study Min. The total number of CSs ✓ ✓ ✓ ✓ ✓ ✓ ✓

either loss minimization or penetration maximization of EVCSs,
renewable units, and storage systems. Another multi-objective
planning model was introduced in ref. [27] for EVCSs with
different types of charging stations in order to minimize the
investment cost and energy loss of the distribution system and
to maximize the annually captured traffic flow. Luo et al. [28]
proposed a joint optimization method for minimizing invest-
ment and operational costs, as well as emissions, line losses, and
traffic costs, without taking into account different types of CSs.
The studies referred to above clearly show the increasing inter-
est in the optimal EVCS planning problem including multi-type
charging facilities. Besides, the importance of considering dif-
ferent types of charging facilities in CSs has been highlighted
in other studies such as refs. [29–31], where slow charging sta-
tions were used and the use of FCSs was planned as a future
study. Furthermore, a taxonomy is created in Table 1 to reflect
the contributions of this work by considering the studies in the
literature in a comparable manner. It can be deduced from the
mentioned table that the study has some superiorities to the lit-
erature such as using real distribution system data and taking

the uncertain behaviour of EVs into account together with the
impact of battery energy management.

Here, therefore, the optimal sizing and siting problem of
EVCSs with multi-type charging facilities in a distribution net-
work is addressed. An MILP model for the mentioned problem
is provided while evaluating the effectiveness of the proposed
approach by different case studies.

The contributions of the study can be given as follows:

∙ The sizing and siting of EV charging stations with differ-
ent charging rate levels are provided by an optimization
framework in a real distribution system in which an active
demand-side management capability can also be enabled.

∙ The proposed optimization model is also reformulated by
modifying the objective function so that the siting and
sizing of the EVCSs’ number are minimized for a given
demand, which has, to the best of our knowledge, not been
investigated before.

∙ The real measured data are used for EV power demand, by
doing so the battery energy management system of the EVs
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has been modelled and the case studies are performed in a
real distribution system to obtain more realistic results. In
addition, the historic data are considered in order to address
the EV-related uncertainties.

Table 1 summarizes the contribution of this study to the
existing literature.

The remainder of the paper is organized as follows: the
proposed optimization model is presented in Section 2. Then,
the effectiveness of the proposed methodology is examined
through a representative test case with relevant discussions in
Section 3. Finally, concluding remarks and directions for future
studies are presented in Section 4.

2 SYSTEM DESCRIPTION AND
METHODOLOGY

A MILP-based model is propounded for the optimal sizing
and siting of different CS types in a distribution system in this
study. Furthermore, the proposed model takes into consider-
ation the power flow among the buses with the aid of linear
approximation of the losses on the branches.

2.1 Objective function

The main objective of the devised model is to minimize the total
number of CSs in the system for the fulfilment of the charging
necessity of EVs, as stated in (1).

min TCSC =
∑

i

∑
n

∑
j

ui,n, j ∗ P
CS−cap
n (1)

Where the number of each type of CSs in different nodes is
calculated using (2).

NCS
i,n =

∑
j

ui,n, j (2)

2.2 The distribution system constraints

Equation (3) describes the overall power balance of the system
for each period for each node. The term P

load_other
i,t represents

the other loads fed at the related node for the period t . The
total power consumption of EVs connected to each node for
the period t is expressed by P

EV_dem_tot
i,t . The summation of

both quantities has to be equal to the power flowing to the
related node on the branches during the period t . It is wor-
thy to underline that the power flow in this model is assumed
as from upstream grid to the loads in a single direction as dis-
tributed generation (DG) availability is not considered in this
study. Besides, the power transmission capacity of each branch
is determined by (4). Also, the power balance for the upstream
node is described in (5). In this equation, Pi,t indicates the

power limit of the generator located at node i. Hence, the power
demands of the other loads and EVs along with the power losses
on branches can be met from the upstream grid. Moreover, the
power limit of generator needs to be determined as in (6).

P
f , load

i,t +
∑

b∈B∶i∈Ω
j

l

fb,t −
∑

b∈B∶i∈Ωi
l

fb,t =

P
EV_dem_tot

i,t
+ P

load_other
i,t

∀i ∈ I , ∀t ∈ T

(3)

0 ≤ fb,t ≤ f max
b

, ∀b ∈ B, t ∈ T (4)

Pi,t = P
f ,load

i,t +
∑
b∈B

P loss
b,t

, ∀i ∈ Ω
f

i , t ∈ T (5)

0 ≤ Pi,t ≤ Pmax
i , ∀i ∈ Ω

f

i , t ∈ T (6)

2.3 Linear approximation of the losses

Equation (7) expresses the total power losses on a related
branch, consisting of a second-order function with d and c con-
stants. However, this expression has a non-linear term ( fb,t

2)
that has to be linearized. To serve this purpose, a well-known
linearization method, named Special Order Sets of Type 2
(SOS2), is included so as to obtain convenient approximation
into the MILP framework. Equation (8) indicates the SOS2 vari-
ables during the approximation of power flow on the branches
with the constraints given in (9) and (10).

P loss
b,t

= d ∗ | fb,t | + c ∗ fb,t
2
, ∀b ∈ B, ∀t ∈ T (7)

∑
p∈P

zb,t ,p = 1, ∀b ∈ B, ∀t ∈ T (8)

fb,t =
∑
p∈P

Xp ∗ zb,t ,p, ∀b inB, ∀t ∈ T (9)

Fb,t =
∑
p∈P

Yp ∗ zb,t ,p, ∀b inB, ∀t ∈ T (10)

2.4 EV charging limitations and battery
constraints

The total power demand of EVs in node i during period t

is equal to the summation of the power demand of each EV
charging from the CS located in the related node, as stated
in (11). The power consumption of an EV cannot exceed the
charging limit of the mentioned EV imposed by (12) based on
activation of different phases regarding charging power levels of
a CS type based on EV state-of-energy (SoE) due to the phase
transitions considering (13) and (14). Equation (15) describes
the SoE changes of the related EV during the charging period,
in which SoEEV

i,k,t−1 represents the previous SoE level of the EV

and PEV
i,k,t

∗ CEEV
k

∗ ΔT stands for the charging energy during
period t. Furthermore, Equations (16)–(18) determine the initial
SoE level of the EV when it is plugged in, the desired SoE level
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FIGURE 1 Single line diagram of the evaluated distribution system

of the EV at the departure period, and the boundaries for the
SoE of the EV battery, respectively. Finally, the SoE and the
charging power values of each EV must not take any value in
the periods when it is not plugged in any CS, as provided in (19).

P
EV_dem_tot

i,t =
∑

k

PEV
i,k,t

, ∀i, ∀T (11)

∑
k

PEV
i,k,t

≤ PEV-ch-lim
i,k,t

, ∀i, ∀k, ∀t ∈ [T a
i,k
, T d

i,k
] (12)

PEV-ch-lim
i,k,t

=
∑

p

∑
n

Pch-lim
n,p ∗ y

ph

i,k,n,p,t
,

∀i, ∀k, ∀t ∈ [T a
i,k
, T d

i,k
]

(13)

∑
p

∑
n

SoEEV-lim
k,p

∗ y
ph

i,k,n,p,t
,

∀i, ∀k, ∀t ∈ [T a
i,k
, T d

i,k
]

(14)

SoEEV
i,k,t

= SoEEV
i,k,t−1 + PEV

i,k,t
∗ CEEV

k
∗ ΔT ,

∀i, ∀k, ∀t ∈ [T a
i,k
, T d

i,k
]

(15)

SoEEV
i,k,t

= SoE
EV,ini
i,k

, ∀i, ∀k, t = T a
i,k

(16)

SoEEV
i,k,t

= SoE
EV,des
i,k

, ∀i, ∀k, t = T d
i,k

(17)

SoE
EV,min
i,k

≤ SoEEV
i,k,t

≤ SoE
EV,max
i,k

, ∀i, ∀k, ∀t (18)

SoEEV
i,k,t

= 0, PEV
i,k,t

= 0, ∀i, ∀k, ∀t ∉ [T a
i,k
, T d

i,k
] (19)

2.5 Additional logical constraints

In order to perform the charging transactions of each EV prop-
erly with the purpose of minimizing the number of CS to be

FIGURE 2 Comparison of state of charge realized percentage increase
and estimated percentage increase rate for ZoE-1 and ZoE-2 vehicles

located in the system, some additional logical constraints are
implemented into the devised model.

A CS of type n can be located into a single node thanks to
the binary variable stated in (20). Equation (21) prevents the
total number of EVs in charging state by a CS type within each
period t to exceed the number of the mentioned type of CS in
the related node. Constraint (22) determines the matching of
EVs to a CS type. Herein, if an EV starts to charge, there can-
not be any new EV to be plugged in at the same CS until the



6 SENGOR ET AL.

FIGURE 3 The initial state-of-energy values of the considered electric vehicles

(a) Histogram of Arrival Times (b) Q-Q Plot of Arrival Times

(c) Histogram of Parking Periods (d) Q-Q Plot of Parking Periods

FIGURE 4 Statistics for 4-year real data of a parking lot. (a) Histogram of Arrival Times, (b) Q-Q Plot of Arrival Times, (c) Histogram of Parking Periods, and
(d) Q-Q Plot of Parking Periods

current EV reaches to the desired SoE level regarding the con-
straints in (23)–(26). Different charging phases cannot be active
simultaneously or cannot be activated if the mentioned EV is
not in charging status based on (27). The dynamics of differ-
ent phases of charging status are modelled using (27)–(31) while
the consecutive transition between them to enable the mimicry
of the realistic relationship between SoE of EV and maximum
power limit of a CS is considered using (32) where the end of

the active status of a charging phase automatically initiates the
activation of the following phase.

∑
i

ui,n, j ≤ 1, ∀n, ∀ j (20)

∑
k

yi,k,n,t ≤

∑
j

ui,n, j , ∀i, ∀n, ∀t (21)
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FIGURE 5 The arrival and departure times of the considered electric
vehicles

∑
n

yi,k,n,t ≤ 1, ∀i, ∀k, ∀t ∈ [T a
i,k
, T d

i,k
] (22)

yi,k,n,t − yi,k,n,t−1 = xi,k,n,t − zi,k,n,t ,

∀i, ∀k, ∀n, ∀t ∈ [T a
i,k
, T d

i,k
]

(23)

xi,k,n,t + zi,k,n,t ≤ 1, ∀i, ∀k, ∀n, ∀t ∈ [T a
i,k
, T d

i,k
] (24)

∑
n

∑
t

xi,k,n,t = 1, ∀i, ∀k (25)

∑
n

∑
t

zi,k,n,t = 1, ∀i, ∀k (26)

∑
p

y
ph

i,k,n,p,t
= yi,k,n,t , ∀i, ∀k, ∀n, ∀t ∈ [T a

i,k
, T d

i,k
] (27)

y
ph

i,k,n,p,t
− y

ph

i,k,n,p,t−1 = x
ph

i,k,n,p,t
− z

ph

i,k,n,p,t
,

∀i, ∀k, ∀n, ∀p, ∀t ∈ [T a
i,k
, T d

i,k
]

(28)

x
ph

i,k,n,p,t
+ z

ph

i,k,n,p,t
≤ 1,

∀i, ∀k, ∀n, ∀p, ∀t ∈ [T a
i,k
, T d

i,k
]

(29)

∑
t

x
ph

i,k,n,p,t
= 1, ∀i, ∀k, ∀n, ∀p (30)

∑
t

z
ph

i,k,n,p,t
= 1, ∀i, ∀k, ∀n, ∀p (31)

z
ph

i,k,n,p,t
= x

ph

i,k,n,p+1,t ,

∀i, ∀k, ∀n, ∀p < card (p), ∀t ∈ [T a
i,k
, T d

i,k
]

(32)

3 TEST AND RESULTS

3.1 Input data

The proposed optimization model has been tested with the
Bozuyuk region, which is a part of the Turkey distribution sys-
tem managed by Osmangazi Elektrik Dagitim A.S. (OEDAS).
Figure 1 shows the single line diagram of Bozuyuk distribu-

tion region with the demonstrations of substations and CSs. In
addition, the other loads fed by the transformers in the related
region are also considered throughout the simulations. Besides,
state-of-charge (SoC) patterns based on the actual measure-
ments performed during two different charging processes of
the Renault ZOE, one of Renault’s EV brands, are provided.
During the testing of the devised model, the charging process
is realized by using these patterns to obtain a more realistic
SoE (SoC values are converted to the SoE values and here-
after referred to as SoE) change. Hence, the actual dynamics
of the EV battery charging process are provided as an input to
the model. Regression analysis for Renault ZOE-1 and ZOE-
2 vehicles has been performed; the level of significance for
both measurements has been obtained as quite lower than 5%,
almost equals to zero. Figure 2 demonstrates the comparison
of SoC realized and estimated percentage increase for ZOE-1
and ZOE-2, respectively. By doing so, the battery energy man-
agement system for the Renault ZOE vehicle is modelled to
obtain more realistic charging pattern. The charging rates for
ZOE are determined as 22 kW up to 80% (33 kWh), 11 kW
between 80% and 95% (33–39 kWh), and 1.2 kW after 95% (39
kWh). A group of EVs includes 50 Renault ZOE models, which
have different initial SoE levels just before plug-in along with
various arrival times that are considered during the simulations.
The initial SoE levels and distributed bus names are given in
Figure 3.

Four years of data consisting of 715,651 vehicles from a park-
ing lot in Istanbul, Turkey, is utilized to estimate the arrival and
departure times of EVs. The histogram and quantile–quantile
(Q–Q) graphics of the arrival times and parking times of the
vehicles are shown in Figure 4. It can be seen that the pattern of
the dataset used is similar to that of a normal distribution. Thus,
a random normal distribution can be used to generate synthetic
EV parking data. The arrival and departure times of the 50 EVs
utilized in this study are calculated using these statistics from 4
years of real data using Python SciPy library.

3.2 Simulation and results

The model has been coded in GAMS 24.0.2 and solved by the
commercial solver CPLEX 12 on a computer with a 2.3 GHz
CPU and 32 GB of RAM. To investigate the effectiveness of the
devised model, three different case studies have been created
as follows: departure times of EVs are generated using yearly
statistics in Case 1 and Case 2. It is assumed that EVs should
lastly leave the charging stations at 7 PM, 9 PM, and 12 AM in
Case 3, Case 4, and Case 5, respectively, to analyze the effect
of long parking periods. Arrival and departure times of EVs are
depicted in Figure 5. Also, it should be noted that Cases 3, 4, and
5 are not presented in this graph for convenience of analysis.
Two types of CSs are considered, namely Type I and Type II,
with capacities of 7.2 and 22 kW, respectively.

Table 2 encapsulates the final results for each case study
and provides a comprehensive comparison among them. It
can be seen in Table 2 that the greatest number of CS is
located in Cases 3–5 due to the fact that all EVs have the same



8 SENGOR ET AL.

0
1 3

4

5

7

8

9

16
12

13

18 20 21

22

24

b1

b2

b3

b11

b4

b5
b6

b7

b8

b9
b10

b12

b13 b14
b15

b16

Type 1IType 1

2

0
1 3

4

5

7

8

9

16
12

13

18 20 21

22

24

b1

b2

b3

b11

b4

b5
b6

b7

b8

b9
b10

b12

b13 b14
b15

b16

Type 1IType 1

2

0
1 3

4

5

7

8

9

16
12

13

18 20 21

22

24

b1

b2

b3

b11

b4

b5
b6

b7

b8

b9
b10

b12

b13 b14
b15

b16

Type 1IType 1

2

(a) Case-1

(b) Case-2

(c) Case-3

FIGURE 6 Demonstration of the located charging stations in the evaluated distribution system for (a) Case 1, (b) Case 2, and (c) Case 3

departure time. However, because of the long parking times,
Case 5 has the least Type-II chargers. The charging demand is
met using Type-I chargers rather than Type-II chargers when
the amount of parking time increases. Consequently, there are
far fewer Type-II chargers in the system. In Case 5, only one
Type-II charger is needed. Moreover, it can be concluded that as
the main aim of the model, the number of total CSs is minimized
in each bus thanks to the different arrival times of related EVs.
Furthermore, the departure time limitations have also impact on

clarifying the total number of CSs. The detailed demonstration
of located CS types on the considered distribution system for
each case study is shown in Figure 6.

Figure 7 shows the power consumption of Bus 8, Bus 9, Bus
18, and Bus 20, which same number of CS types are located in to
charge the plugged EVs. The power consumption for different
cases is different due to the departure time of EVs, as seen in
each subfigure. Moreover, five EVs have reached Bus 8, Bus 9,
Bus 18, and Bus 20 for charging operations. Due to the arrival
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FIGURE 7 The results of the buses without changes in number and type of charging stations among Case 1, Case 2, and Case 3. (a) Bus-8, (b) Bus-9, (c)
Bus-18, and (d) Bus-20

FIGURE 8 The results of the buses with changes in number and type of charging stations among Case 1, Case 2, and Case 3 . (a) Bus-2, (b) Bus-5, (c) Bus-13,
and (d) Bus-22

times of EVs, the proposed model has sited one Type-II CS in
each bus for all cases. However, it is obviously seen that Case
3 has fewer power peaks for all buses since Case 3 has longer
parking periods than Case 1 and Case 2.

Figure 8 presents the power drawn from the Bus 2, Bus 5, Bus
13, and Bus 22 for Case 1, Case 2, and Case 3. It is needed to
highlight that there are five, three, four, and three EVs for charg-
ing operation at Bus 2, Bus 5, Bus 13, and Bus 22, respectively.
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FIGURE 9 The results of the Case 3, Case 4, and Case 5 with different departure times for (a) Bus-5, (b) Bus-13, and (c) Bus-24

FIGURE 10 The change of power consumption in Bus 18 after electric
vehicles included for Case 3

Since less number of EVs are charged at Bus 5, Bus 13, and Bus
22, the power consumption of the related buses is not remark-
ably as much as that of Bus 2. Another reason for that reduction
is the arrival times of EVs, because the model can minimize the
total number of CSs owing to the more flexible time periods.
In addition, the power demand curve has few peaks in Case 3
compared to the other cases because of the more flexible park-
ing period. By further detailed examination in Figure 8d, it can
be observed that even there are three EVs at Bus 22; while one
and two Type-I chargers are enough to fully charge the EVs in

FIGURE 11 The state-of-energy variation of EV16 with respect to charging power
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TABLE 2 The results for located number of different charging station types

Case 1 Case 2 Case 3 Case 4 Case 5

Bus No. of EVs Type I Type II Type I Type II Type I Type II Type I Type II Type I Type II

Bus 2 5 0 1 0 1 2 0 2 0 4 0

Bus 4 5 0 1 0 2 0 1 2 0 2 0

Bus 5 3 2 0 0 1 2 0 1 0 1 0

Bus 8 5 0 1 0 1 0 1 2 0 1 0

Bus 9 5 0 1 0 1 0 1 2 0 1 1

Bus 13 4 3 0 0 1 2 0 0 1 1 0

Bus 16 5 0 1 0 1 3 0 2 0 2 0

Bus 18 5 0 1 0 1 0 1 1 1 1 0

Bus 20 5 0 1 0 1 0 1 0 1 1 0

Bus 22 3 1 0 0 1 2 0 1 0 1 0

Bus 24 5 0 1 1 1 0 1 2 0 2 0

TOTAL 50 6 8 1 12 11 6 15 3 17 1

Case 1 and Case 3, respectively, one Type-II charger is sited in
Case 2. Case 1 and Case 3, on the other hand, have more flat-
tened power curves; however, using a Type-II charger produces
more peaks than the other cases. In addition, in cases where
fast charging is used, frequent power changes occur due to the
battery management system model proposed in this study that
manages the varying charging power at different SoC levels. As
a result, power variations should be taken into account when
designing a system.

Figure 9 illustrates how the length of the parking period
affects the amount of power drawn from the grid in case stud-
ies 3–5. When the Bus 5 results are analyzed, it is clear that the
peak power is reduced because Cases 4 and 5 do not require the
Type-II charger that was required in Case 3. While the charging
demand is satisfied by two Type-II CS in Case 3, the charging
demand can be fulfilled by one Type-II charger in Case 4 in Bus
13, as shown in the Figure 9b. However, this results in new peak
power. In Case 5, with the prolongation of the parking period,
Type-II charger becomes unnecessary and one Type-I charger
is sufficient to meet demand. In Case 3, one Type-II charger is
used to meet the charging needs of EVs in Bus 24 as shown in
Figure 9c, whereas in Cases 4 and 5, charging demand is fulfilled
by two Type-I chargers without the requirement of a Type-II
charger. Additionally, the peak power is decreased. Besides it is
seen in Case 5 that the charging power is dispersed throughout
the day due to the long parking period.

Figure 10 indicates the variation of the power consumption at
Bus 18 after the penetration of EVs. While the black graph rep-
resents the fixed power demand of the related transformer, the
grey one shows the total power curve by EVs’ charging requests.
Although there is only one Type-II charger at Bus 18, the power
demand is noticeably increased after EVs introduction. It is
solid proof that during the new installations related to CSs at
any bus in the distribution system, the impact of charger type
should be considered in terms of both economic and technical
aspects. Figure 11 represents the relations between the charging

power rate and the SoE level variation of EV16. It can be clearly
seen in the graphs that the devised model can mimic the actual
charging rate steps, which are modelled by using real measured
charging patterns of two different Renault ZOE. The charging
rate steps are a maximum of 22 kW charging rate up to 80%
SoC (33 kWh), 11 kW between 80% and 95% (33–39 kWh),
and 1.2 kW after 95% (39 kWh). Last but not least, the charging
rates take value under those charging rate limits so as to perform
active demand-side management which is obviously proven in
that figure.

4 CONCLUSIONS

This study investigates an optimization model that provides
optimal sizing and siting of EVCSs in a distribution system.
The main objective of the devised model is to minimize the
total number of EVCSs to fulfill the EVs’ charging demand
by considering the network constraints along with the actual
EV battery charging pattern. Real measured data pertaining
to charging power patterns belonging to two different Renault
ZOEs are utilized throughout the study. Also, the developed
model is tested in a real distribution system, which is in a part
of Turkey, managed by the OEDAS so as to show the validity
of the model by considering three different case studies. The
other measured loads fed by the related substations are also
taken into consideration during the test of the model. Based
on the findings, it is concluded that the proposed model is
able to determine the optimal number of EVCSs based on
different charging types. As well as enabling active demand-side
management, the proposed model also provides an opportunity
to charge EVs. It is worth underlining that the installation costs
and additional renewal of the existing infrastructure might
be prevented successfully owing to the devised model. How-
ever, this study does not examine the peak powers resulting
from increased charging power and the possible effects of
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ancillary services that EVs can provide to the distribution
system through different battery operation types such as
vehicle-to-grid and vehicle-to-vehicle. In future study, this study
would be improved by taken into account distribution system
operator (DSO) and CS interactions.
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NOMENCLATURE

The abbreviations, sets and indices, parameters, and variables
used throughout the study are stated below.

Abbreviations

CS Charging station
DG Distributed generation
DS Distribution system

FCS Fast charging station
EV Electric vehicle

EVCS Electric vehicle charging station
MILP Mixed-integer linear programming

SoE State-of-energy

Sets and Indices

b Set of branches
i Set of nodes
j Set of CSs
k Set of EVs
n Set of CS types
t Period of the day index in time units [min]

Parameters

ΔT Time granularity
CEEV

k
Charging efficiency of EV k [%]

f max
b

Power transmission capacity of branch b [%]
N Sufficiently large positive number

P
CS−cap
n Capacity of CS type n [kW]
Pch−lim

n,p Charging power limit of phase p of CS type n [kW]

P
f ,max

i Power injection limit of upstream grid [kW]

P
loadother

i,t Power demand of other loads at node i for the
period t [kW]

SoE
EV ,des
i,k

Desired SoE of EV k in the region fed by node i

at the departure time [kWh]
SoE

EV ,ini
i,k

Initial SoE of EV k in the region fed by node i

[kWh]
SoE

EV ,lim
k,p

SoE limit of charging phase p of EV k [kWh]

SoE
EV ,max
i,k

Maximum SoE of EV k in the region fed by node
i [kWh]

SoE
EV ,min
i,k

Minimum SoE of EV k in the region fed by node
i [kWh]

T a
i,k

Arrival time of EV k in the region fed by node i

T d
i,k

Departure time of EV k in the region fed by node
i

Yp Y-Coordinate of point p used in SOS2
Xp X-Coordinate of point p used in SOS2

Decision Variables

Fb,t Approximate value of the square of the power
flow on branch b in period t [kW 2]

fb,t Active power flow on branch b in period t [kW]
NCS

i,n Number of CS j of type n in node i

Pi,t Power drawn from the grid during period t [kW]
PEV

i,k,t
Charging power of EV k in the region fed by node
i during period t [kW]

PEV −ch−lim
i,k,t

Charging power limit of EV k in the region fed by
node i during period t [kW]

P
EV _dem_tot

i,t The total power demand of EVs in node i during
period t [kW]

Ploss
b,t

Power losses of branch b in period t [kW]

SoEEV
i,k,t

SoE of EV k in the region fed by node i during
period t [kWh]

TCSC Total capacity of CSs located in the distribution
system

ui,n, j The binary variable representing the availability of
CS j of type n in node i: 1 if available, else 0

xi,k,n,t The binary variable representing the beginning of
active status of charging status of EV k connected
to CS j of type n in the region fed by node i during
period t

x
ph

i,k,n,p,t
The binary variable representing the beginning of
active status of charging phase p during period t

for EV k connected to CS j of type n in the region
fed by node i

yi,k,n,t The binary variable representing the active status
of charging status of EV k connected to CS j of
type n in the region fed by node i during period t

y
ph

i,k,n,p,t
The binary variable representing the active status
of charging phase p during period t for EV k con-
nected to CS j of type n in the region fed by node
i

zi,k,n,t The binary variable representing the end of active
status of charging status of EV k connected to
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CS j of type n in the region fed by node i during
period t

z
ph

i,k,n,p,t
The binary variable representing the end of active
status of charging phase p during period t for EV
k connected to CS j of type n in the region fed by
node i
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