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ABSTRACT

Up to the present, various methods such as data mining, machine learning, and artificial intelligence 
have been used to get the best assessment from huge and important data resources. Deep learning, 
one of these methods, is an extended version of artificial neural networks. Within the scope of this 
study, a model has been developed to classify the success of tele-marketing with different machine 
learning algorithms, especially with deep learning algorithms. Naïve Bayes, C5.0, Extreme Learning 
Machine, and Deep Learning algorithms have been used for modelling. To examine the effect of class 
label distribution on model success, synthetic minority oversampling technique has been used. The 
results have revealed the success of deep learning and decision trees algorithms. When the data set 
was not balanced, the deep learning algorithm performed better in terms of sensitivity. Among all 
models, the best performance in terms of accuracy, precision, and F-score have been achieved with 
the C5.0 algorithm.

KeywoRdS
Class Label Distribution, Classification, Decision Trees, Deep Learning, Deep Neural Network, Machine 
Learning, Tele-Marketing Banking

INTRodUCTIoN

Today’s world is going through a period in which the amount of data increases rapidly, and knowledge-
based strategies and decisions become more important. This can be seen as a result of the development 
of information and communication technologies and the new systems where more large-scale data 
can be stored, and advanced analyses can be performed. The first step in accessing knowledge is 
storing the data. Today, data is collected from different sources. In order to make this stored data 
meaningful, it should be analyzed with the methods according to the structure of the data. Although 
the data analysis started with the use of statistical methods, today, data analysis is also carried out 
with Machine Learning algorithms as part of Artificial Intelligence (AI).

AI journey, which started with the Alan Turing’s Turing test in the 1950s, continues today with 
driverless vehicles, more effective chat boxes and intelligent robots. AI is the ability to perform mental 
functions such as thinking, reasoning, and learning by computer or computer-controlled machines 
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(Nabiyev, 2005). AI is a field that deals with the development of computer systems capable of 
processing symbols that can be used to solve problems that cannot be solved by algorithmic structures 
(Becerra-Fernandez et al., 2004). There are two basic steps of AI: Learning and practicing. In the 
learning step, various experiences are provided in order to determine the response of the computer 
systems in the face of an event, and in the second step, these systems are provided to produce new 
human-specific response without any command. Machine Learning methods are used in the learning 
step. Machine Learning is defined as the branch of computer algorithms developed to be used for 
transforming the stored data into a smart action by imitating the above-mentioned features of human 
(El Naqa & Murphy, 2015). Also, Deep Learning has recently become a prominent method of AI and 
Machine Learning. Deep Learning algorithms has been obtained by the development of Artificial 
Neural Networks (ANN) in order to make inference at a higher level and increase the predictive 
performance (Greenspan et al., 2016).

While all these developments are taking place, it is possible to talk about a world where 
competition conditions change. As a result of the globalizing world, the rivals have been moved from 
the national to the international level and the competition have become more difficult. At this point, 
to continue their existence and to determine the effective strategies and decisions, enterprises need 
to carry out new marketing and R&D activities and to use knowledge as an intellectual capital more 
effectively. In the banking sector, various campaigns are developed for customers and transactions 
with customers are wished to be kept active. Accordingly, one of the most important methods used to 
increase interactions and sales is marketing. With the development of telecommunication technologies, 
marketing has evolved towards telemarketing (Mustapha & Alsufyani, 2019). Telemarketing is a 
marketing method in which phone and call centers are used to acquire potential customers, sell products 
or provide services to existing customers (Kotler & Keller, 2016). However, the expectations, demands 
and needs of each customer may differ. For this reason, it should be determined which customers 
will be interested in the developed campaigns. With defining target customers, it is possible for the 
campaigns to reach higher success with less time and cost. Classification models to be created with 
machine learning algorithms and recorded data make it easier for tele-marketing managers to make 
more accurate and faster decisions at this point. Increasing marketing efficiency with data recorded 
in the database is one of the main issues that are still emphasized and require intensive research 
(Ghatasheh et al., 2020). Although many researchers carry out various studies with machine learning 
methods in line with this purpose, changing data set characteristics, new methods developed, different 
approaches in obtaining models show that this issue is open to research. For this reason, the problem 
of the success of telemarketing classification has been handled.

With this study, it is aimed to obtain models with high classification performance by using 
machine learning algorithms to determine whether the telemarketing campaign will be successful and 
specially to determine the success of the Deep Learning approach for this problem. In this direction, 
different classification models have been obtained with C5.0 Decision Tree Algorithm, Naive Bayes 
Algorithm (NB), Extreme Learning Machine (ELM), and Deep Learning based ANNs (DL) and 
comparative performance evaluation has been presented.

In the next parts of the study, similar studies in the literature, the study process steps, explanations 
about the used methods, and the model performance values obtained have been included. The results 
have been evaluated and interpreted in the last section.

BACKGRoUNd oF THe STUdy
There are many studies conducted with different Machine Learning algorithms in the literature for the 
problem of tele-marketing success classification. Some of these studies have been summarized below.

Pan and Tang (2014) have carried out a study on the distribution of class labels frequently 
observed in the data sets. In this respect, they have applied bagging and boosting methods. In the 
analyses performed with Logistic Regression and Neural Networks, it has been observed that Neural 
Networks performed better. Shashidhara et al. (2015) have conducted a study on the most suitable 
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platform for the analysis of marketing data in the banking sector with Machine Learning techniques. 
In the study, Weka, Scikit Learn, Apache Spark environments have been examined with two different 
data sets. Logistic Regression and Support Vector Machines algorithms have been used for analysis. 
Although the results show that the Scikit Learn environment has the fastest results with a certain size 
data set, the most suitable solution is provided by Apache Spark due to its the parallel programming 
capability when the large data set is considered. Bahari and Elayidom (2015) have developed models 
with ANN and Naive Bayes algorithms using banking marketing data. When the results are examined, 
it is seen that ANNs take a lot of time in terms of processing time even if the evaluation values are 
close for both algorithms. Ruangthong and Jaiyen (2015) have aimed to investigate the effect of class 
label distribution on classification success and to improve the results of the analysis with different 
sampling methods. Synthetic Minority Oversampling Technique (SMOTE) and Rotation Forest 
Algorithm (Rotation Forest) based model has been proposed. ANNs, Naive Bayes, Bayesian Networks 
and Decision Tree (C4.5, Random Forest) algorithms have been used for the evaluation of model 
performance. The results have showed better results with the proposed model. Keles and Keles (2015) 
have aimed to develop an Intelligent Bank Market Management System (IBMMS) that uses Machine 
Learning-based methods to manage marketing campaigns efficiently. In order to develop the learning 
model of the system, decision tree algorithm has been used. The results obtained with the decision 
tree classification model, an inference engine using the decision structures and the expert opinion 
have been compared with other methods such as Neural Networks, Logistic Regression, Naive Bayes 
and Support Vector Machines in terms of accuracy, precision and specificity. Although the results 
indicate that the neural networks show a slightly better result, when considering the system in general 
it has been considered appropriate to use decision trees as a predictive model. Serrano-Silva et al. 
(2016) have applied supervised learning method to predict tele-marketing success. Related analyses 
have been performed using four different versions of a bank data set. C4.5, k-Nearest Neighbour, 
Repeated Incremental Pruning to Produce Error Reduction-RIPPER, Neural Networks (Multilayer-
Feed Forward), Sequential Minimal Optimization, and Naive Bayes algorithm have been preferred to 
create models. Although the best performance was achieved with RIPPER, it has been observed that 
the performance of the algorithm was significantly lower compared to other studies in the literature. 
This situation has been explained by the fact that the unbalanced class label distribution. Parlar and 
Acaravcı (2017) have aimed to determine the most important features to increase the efficiency 
of campaigns. In this respect, information gain and chi-square coefficients have been calculated. 
Customer data obtained from bank marketing processes has been used. As a result, the most important 
attribute is the period of being the customer of the bank. Kachwala and Sharma (2017) have stated 
that customer data should be analyzed by using Machine Learning techniques in order to predict the 
response of customers to the campaigns so that a correct marketing strategy can be developed. In 
this direction, the models have been developed with C4.5, Naive Bayes, Stochastic Gradient Descent 
Algorithm, and ANNs. It has been concluded that the algorithms could predict with the accuracy 
rate of approximately 80%. Palaniappan et al. (2017), performed the classification performance 
evaluation of algorithms using bank telemarketing data. Naïve Bayes, Random Forest, and Decision 
Tree algorithms, accuracy, precision and recall rates performance evaluation measures have been used. 
Koumétio et al. (2018) developed a classification method based on supporting the most important 
features within the model. The researchers who tested the method based on the telemarketing problem 
used Naive Bayes, Decision Trees, Artificial Neural Network and Support Vector Machines algorithms 
for comparison. Hassan et al. (2019), conducted a heuristic and comparative study to evaluate data 
mining techniques. In the study in which bank telemarketing data was used, attribute extraction has 
been made, Neural Network, Support Vector Machine, Decision Trees, k-Nearest Neighbour, Naive 
Bayes and Logistic Regression algorithms have been used. According to the true positive rate, the 
best result was obtained by Logistic Regression. In the study of Halim et al. (2020), a model has been 
developed to predict successful calls with the telemarketing data set. In the model, especially the 
data pre-processing phase has been emphasized, the data set has been passed through various data 
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cleaning, balancing and normalization processes. For classification ANN has been preferred. The 
results obtained show that these processes in the data pre-processing step have a positive contribution 
to the performance of the model. Borugadda et al. (2021) used various machine learning algorithms 
such as Random Forest (RF), Support Vector Machine (SVM), Gaussian Naive Bayes (GNB), Decision 
Tree (DT) and Logistic Regression (LR) to explore the demand for long-term bank deposits. Desai 
and Khairnar (2022) propose a hybrid model based on artificial neural network and extreme gradient 
boosting by examining the comprehensive features associated with a Portuguese bank’s customers, 
products and services. The proposed model was compared with known machine learning methods 
and successful results were obtained. Feng et al. (2022) proposed a method for predicting the success 
of bank telemarketing time deposit sales. The proposed dynamic ensemble selection method takes 
into account average profit maximization as well as forecast accuracy. Compared to known machine 
learning methods, the proposed method has achieved successful results.

When the literature is evaluated, the studies can be grouped as suggestions of new classification 
models with different algorithms, balancing class distribution, and determining important features 
(feature selection).

As can be seen from the literature, classical machine learning algorithms especially Decision Tree, 
Naïve Bayes and ANN have been used for the models. When using ANNs, a deep neural nets approach 
has not been used. On the other hand, when Deep Learning studies are examined, it is seen that the 
studies are carried out with non-structural data such as images and sound, and various deep learning 
architectures are used. Kim et al. (2015) have adopted the deep learning approach for the telemarketing 
success classification, but unlike this study, they have benefited from Convolutional Neural Network 
architecture. In this study, especially ANNs have been deepened without any architecture, and the 
performance of the model obtained accordingly has been evaluated. Also, Extreme Learning Machine 
Algorithm, which is a different ANN based algorithm, has been also used for model production.

Ruangthong and Jaiyen (2015), have applied the sampling process over the whole data set. While 
over sampling methods produce new records for the minority class, sometimes they can repeat the 
same records. It may occur that these records are in both data sets to be used for model training and 
testing. In this study, considering this situation, the balancing process has been carried out in two 
ways, both balancing the data used for model training and balancing the whole data set.

Machine learning model performance varies depending on factors such as algorithms, parameters, 
pre-processing steps, selected performance validation methods, feature selection methods preferred 
by the researcher. Model performance, on the other hand, is evaluated according to various measures, 
process time, and easy applicability of the model on the business side, and the best model is selected 
as a result of this evaluation. In this study the opportunity to make an evaluation according to all 
performance evaluation measures that can be obtained with the confusion matrix has been provided.

MeTHodoLoGy
The study has been carried out in accordance with the Cross Industry Standard Process for Data 
Mining (CRISP-DM) steps used for both Data Mining and Machine Learning. The CRISP-DM 
process consists of six steps:

Step 1: Understanding the problem
Step 2: Understanding the data
Step 3: Preparing the data for analysis
Step 4: Developing the models
Step 5: Evaluating the model performances
Step 6: Choosing the best model and application

Accordingly, the problem has been identified first.
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Understanding the Problem and the data
Enterprises need more complex techniques to model customer behavior due to the increasing costs and 
low response rates of marketing campaigns. Because the ability to predict the reaction of a customer 
before the campaign will provide a great advantage in the mentioned issues. Within the scope of the 
study, the problem of telemarketing success classification has been addressed. For this reason, it is 
aimed to present a model that produces better results than similar studies in the literature according 
to various performance indicators and to create a different option for managers.

To be more detailed, in order to determine the success of the telemarketing campaign offered by 
a bank to its customers, it is aimed to

• obtain the success performances of well-known machine learning algorithms,
• use a model to be created with Deep Learning based ANNs,
• perform comparative performance analysis,
• and determine the effect of class label distribution on model performance.

Bank Marketing dataset from UCI Machine Learning Repository has been used in the study 
(URL1). This data set has been obtained by the Portuguese banking institution as a result of direct 
marketing campaigns during the campaign period between May 2008 - November 2010. The data set 
consists of 21 attributes, one of which is class label. The class attribute has two values as “success” 
and “fail”. Therefore, the problem is handled as a binary classification problem. 41188 records. 36548 
records belong to failed and 4640 records (11%) belong to the successful campaign. As can be seen 
from the rates, class attribute distribution is not balanced. In other words, while the rate of records 
(or samples) belonging to one class (success) in the whole data set is 11%, the number of records (or 
samples) belonging to the other class (fail) is 89%.

data Pre-processing
The most important points for achieving the best performance of the model are that the data must 
be suitable for the model to be used in the analysis and pre-processed accordingly. The values of the 
attributes in the data set may have different ranges. Some attributes’ values range from 0 to 1, while 
values for other attributes can take values that are much larger. This may affect the results of the 
analysis. In this study, the data set has been subjected to linear data transformation. The following 
equation has been used to convert all values in the data set to values in the range [0-1].

x
x x

x xnormalValue
min

max min

=
−

−
 (1)

On the other hand, categorical attribute values cannot be used in some algorithms especially 
based on ANN. In this case, categorical attribute values can be introduced as numerical values to 
models with the help of dummy attributes. In this study, categorical attribute values in the data set 
have been transformed into binary values with the help of dummy variables. With the use of dummy 
attributes, the data set consists of 63 attributes, one of is class label.

The «euribor3m» variable has been removed from the data set because it generated noise. The 
pdays attribute field shows the time elapsed over the last call with customer for previous campaign 
and receives numerical values. However, for customers that have not been contacted before, this field 
is defined as 999. Values have been changed from 999 to 0.

Within the scope of this study, due to the unbalanced distribution of the class attribute included 
in the data, the necessary configuration has been performed by the Synthetic Minority Oversampling 
Technique (SMOTE) algorithm. With this method, the number of samples in the minority class, which 
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has fewer records in the whole data set, is synthetically increased. Thus, the records numbers of the 
two classes are balanced. Two approaches have been considered for sampling. The first is balancing 
the class attribute field values only in the training data set during the training phase of the models, 
and the second is balancing the class attribute field values for the whole data set. This is because 
when the model is trained with a balanced data set, it is desired to observe how the classification 
performance will be against an unbalanced test data set.

Modelling
For the solution of the problem, a Deep Learning based classification model has been created 
according to the different parameter values. For the comparison of the model performance, different 
classification models have been obtained with C5.0 Decision Tree Algorithm, Naive Bayes Algorithm, 
and Extreme Learning Machine. Algorithm descriptions have been given below.

Artificial Neural Networks and deep Learning
Artificial Neural Networks (ANN) is a computer system developed to automatically realize the ability 
to derive, produce and discover new information through learning, like the functions of the human 
brain, without any help (Öztemel, 2016). ANN have been designed considering the human biological 
neural networks. The biological nerve cell consists of synapses, dendrite, cell body and axon structures 
to collect and reprocess electrical signals and then transmit the new signal to other nerve cells. The 
operation of ANN is like biological neural networks. Accordingly, the signals from the input layer 
are collected in the nerve cell (neuron), the nerve cell produces an output of its own with the help of 
a function, and the output produced is transmitted to the next layer (neuron).

In the process of Machine Learning, each attribute field in the dataset constitutes the input layer. 
The values from the input layer and the weights determined for these values are converted to the Net 
Input Information (NII) value by means of the selected addition function. NII is converted to output 
value by an activation function together with output weights. The resulting output value indicates 
the class of the sample given as input.

Let (xj, yj) be N different and randomly selected examples, xj= {xj1, xj2, ..., xjn}
T be input, and 

yj={yj1,yj2,...,yjm}T be output. The mathematical model of the Single Hidden Layer Feed-Forward 
Neural Network (SLFN) is as follows:

i

Ñ

i i j i j
g w x b

=
∑ +( ) =
1

0b � (j=1,2,...,N) (2)

Ñ: Number of neurons. N is the number of samples in the training data set Ñ<N
g(x): Activation function
wi={wi1,..., win}

T weight vector that associates the hidden neuron i with input
βi={βi1,..., βin}

T the weight vector that correlates hidden neuron i with output
bi: Threshold value for the process element i
The model’s error is calculated by comparing the output values produced by the estimation 

models obtained with ANNs and the real values that should be. To obtain a correct model, this error 
is eliminated according to the structure of neural network. The error is distributed backward into the 
network in feedback neural network which is commonly used. In this direction, the calculations are 
done backwards, the error rates are calculated, and the weights are re-determined (Öztemel, 2016; 
Özkan et al., 2018). The formulas for the calculations have been given below. Let ŷ  be the output 
value, the total error E is calculated as:
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Partial derivatives are obtained according to the following formula in order to measure the effect 
of each change in weight on the total error.
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 represents the new weight and w
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'  represents the previous weight value; weights are updated 

as follows:
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For an ANN, calculations are made based on various variables such as inputs given to the network, 
architecture of the network, algorithm to be used in the learning step and activation function in order 
to produce output in the education phase (Özen & Gülseçen, 2016). In ANNs, the representation of 
the input with different feature vectors, the selection of the features in the network, the fewer neurons 
and the deepening of the network with more hidden layers provide the transition from the ANN to 
the Deep Learning structure. Deep Learning has gained importance due to the fact that it does not 
experience problems which occurs in other ANN algorithms in the discovery of complex structures 
in high dimensional data and it can be applied in many fields (LeCun et al., 2015). Chen et al. (2015) 
describe Deep Learning as a type of neural network, typically consisting of more than three layers. 
The most important difference of Deep Learning from other methods is that feature extraction is 
done by this method without the need for using a different method. Representative learning is a 
set of methods that allow a machine to feed raw data and to automatically discover the necessary 
impressions for classification (LeCun et al., 2015), and Deep Learning is a method of learning from 
data representation (Şeker et al., 2017). There are various structures used with Deep Learning such 
as autoencoders, restricted Boltzmann machine, deep belief network, and convolutional networks.

C5.0 decision Tree Algorithm
One of the methods frequently used in the literature is Decision Trees. A decision tree has a hierarchical 
structure, and, in this structure, models are created similar to a real tree structure. The model includes 
a root node, branches, and leaves attached to it. With the decision tree model, a series of rules are 
formed, and decisions are made according to the branching in the tree structure. Each path from the 
root node to the leaf node represents a rule (Quinlan, 1987). Unlike other algorithms, pruning is 
performed in C5.0 algorithm against the excess branching situation that may occur in decision trees 
algorithms. Pruning is carried out by including the pruned leaves in the upper nodes or by replacing 
the pruned sub-tree with the tree that uses this pruned sub-tree the most (Silahtaroğlu, 2008; Akpınar, 
2014). In this regard, Quinlan (1996) proposed the use of the Gain Ratio (GR) value. Accordingly, 
branching is realized by selecting the attribute value having the highest gain ratio.

extreme Learning Machine
The method developed by Huang et al. (2004) based on ANNs differs from neural networks in the 
output layer. The solution of the matrix obtained in this layer is based on Moore-Penrose method. The 
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solution is obtained by calculating the output weights minimizing the error. Advantageous aspects 
of the method include the need to define fewer parameters and faster processing. The mathematical 
model of the method used in this article is same with single hidden layered neural networks.

Naive Bayes Algorithm
Naive Bayes algorithm is a statistical and probability-based algorithm based on Bayesian Theorem. The 
model of the algorithm is constructed according to the conditional probability equation. Conditional 
probability is the expression of the probability of occurrence of one event depending on the probability 
of occurrence of another event.

Performance Validation and evaluation
Hold-out and cross-validation performance validation methods have been used in the classification 
models. In the hold-out method, 70%-30% (training-test) and 80%-20% (training-test) ratios have 
been used to determine the training-test data sets. The results of the cross-validation method have 
been obtained for 5 and 10 folds.

Five different performance evaluation measures have been used to measure the performance of 
the models: accuracy, F-score, sensitivity (also known as recall), specificity, and precision.

Tools
R programming language and RStudio editor have been used for coding all models (R Development 
Core Team, 2008; RStudio Team, 2016). The following packages have been used in this study:

• Read and write the dataset - xlsx (Dragulescu & Arendt, 2018)
• Data transformation - clusterSim (Walesiak & Dudek, 2017)
• Hold-out - caret (Kuhn, 2018)
• Cross validation - TunePareto (Müssel et al., 2012)
• Support Vector Machine Algorithm - e1071 (Meyer et al., 2015)
• Extreme Learning Machine Algorithm - elmNNRcpp (Mouselimis & Gosso, 2018)
• Decision Tree Algorithm - C50 (Kuhn & Quinlan, 2018)
• Naive Bayes Algorithm - naivebayes (Majka, 2018)
• SMOTE Algorithm – DMwR (Torgo, 2010)
• Deep Learning Algorithm – h2o (LeDell et al., 2019)

FINdINGS
In this section, the performance evaluation measure values of the models created within the scope 
of the study have been given. Some initials have been used in all tables. The explanations for these 
initials are as follows:

HO70: Algorithm performs with hold-out method with 70% train-30% test data,
HO80: Algorithm performs with hold-out method with 80% train-20% test data,
CV5: Algorithm performs with cross-validation with 5-fold,
CV10: Algorithm performs with cross-validation with 10-fold,
SMOTE_HO70: Algorithm performs with hold-out method with 70% train-30% test data, and the 

trained data is balanced with SMOTE algorithm
SMOTE_HO80: Algorithm performs with hold-out method with 80% train-20% test data, and the 

trained data is balanced with SMOTE algorithm
SMOTE_CV5: Algorithm performs with cross-validation with 5-fold, and the trained data is balanced 

with SMOTE algorithm
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SMOTE_CV10: Algorithm performs with cross-validation with 10-fold, and the trained data is 
balanced with SMOTE algorithm

SMOTE_V2_HO70: Algorithm performs with hold-out method with 70% train-30% test data, and 
the whole data is balanced with SMOTE algorithm

SMOTE_V2_HO80: Algorithm performs with hold-out method with 80% train-20% test data, and 
the whole data is balanced with SMOTE algorithm

SMOTE_V2_CV5: Algorithm performs with cross-validation with 5-fold, and the whole data is 
balanced with SMOTE algorithm

SMOTE_V2_CV10: Algorithm performs with cross-validation with 10-fold, and the whole data is 
balanced with SMOTE algorithm

Firstly, all performance evaluation measure values obtained from the models have been classified 
according to the classification algorithms used for model training.

Findings of C5.0 Decision Tree Algorithm have been given in Table 1.

According to Table 1, the highest accuracy value is 95.67% and the F-score reached the highest 
value of 95.22% with the use of SMOTE sampling method (applied to all data set), and hold-out 
method with 80-20% training-test rates, the highest specificity value is 96.95% obtained by dividing 
the data set by hold-out method without sampling.

Findings of Naive Bayes Algorithm have been given in Table 2.
According to Table 2, the highest accuracy value with 88.88% and the highest specificity value 

with 92.87% have been obtained by dividing the data set by hold-out method without sampling. The 
highest precision rate is 81.49% and the highest F-score value is 79.68%. These values have been 
obtained by dividing the data set by cross validation method with SMOTE sampling (applied to all 
data set).

Table 1. Findings of C5.0

Model Accuracy Sensitivity Specificity Precision F-score

HO70 0,9170 0,5309 0,9661 0,6652 0,5905

HO80 0,9144 0,4806 0,9695 0,6667 0,5585

CV5 0,9126 0,5095 0,9638 0,6419 0,5675

CV10 0,9141 0,5119 0,9652 0,6519 0,5726

SMOTE_HO70 0,8779 0,8937 0,8759 0,4775 0,6225

SMOTE_HO80 0,8821 0,8675 0,8840 0,4870 0,6238

SMOTE_CV5 0,8723 0,8696 0,8727 0,4648 0,6056

SMOTE_CV10 0,8756 0,8750 0,8757 0,4725 0,6134

SMOTE_V2_HO70 0,9560 0,9470 0,9636 0,9559 0,9514

SMOTE_V2_HO80 0,9567 0,9491 0,9630 0,9553 0,9522

SMOTE_V2_CV5 0,9565 0,9478 0,9637 0,9561 0,9519

SMOTE_V2_CV10 0,9565 0,9478 0,9637 0,9561 0,9519
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Findings of Extreme Learning Machine have been given in Table 3.
When the analyses were performed by selecting the number of 50 neurons, sigmoid activation 

function and separating the training and test data set by 10-fold cross validation, the accuracy (89.65%) 
has reached the highest value. When the analyses were performed by selecting the number of 150 
neurons and sinus activation function, separating the training and test data set by %80-20 ratio, and 
using SMOTE (applied to all data set), the F-score (71.56%) has reached the highest value. When 
the SMOTE sampling method was included in the models with hold-out method, an increase in 
sensitivity and F-score has been observed.

Findings of Deep Learning Algorithm have been given in Table 4.
It can be seen from Table 4, when the training and test data set were separated by 80-30% 

and balanced with SMOTE method (applied to all data set), the analyses were performed with the 
RectifierWithDropout activation function, the accuracy, and F-score have reached their highest 
values with 90.55% and 89.76% respectively. When the SMOTE sampling method was included in 
the models, a significant increase especially in sensitivity has been observed for all performance 
validation methods. Generally, the highest accuracy values for all performance evaluation methods 
have been obtained by using RectifierWithDropout activation function.

In order to make a comparative analysis of the classification models used, Table 1, Table 2, Table 
3, and Table 4 have been summarized in Table 5. The methods are ordered according to the best 
accuracy, the best sensitivity and the best F-score performance evaluation measures of the algorithms.

When the table is examined, it is seen that the highest accuracy value reaches 95.67% with 
C5.0 decision tree algorithm. The lowest value belongs to the analysis performed with Naive Bayes 
algorithm and the accuracy is 88.88%. The accuracy value of Deep Learning is 90.55%. When the 
methods are ordered according to the sensitivity values from the highest value to the lowest value, it 
is seen that the highest sensitivity value reached to 94.91% with C5.0 decision tree algorithm. The 
lowest value belongs to the analysis performed by Extreme Learning Machine algorithm and the 
sensitivity is 57.84%. For the F-score also, the successful ranking of the algorithms has not changed.

Table 2. Findings of Naive Bayes

Model Accuracy Sensitivity Specificity Precision F-score

HO70 0,8874 0,5675 0,9280 0,5003 0,5318

HO80 0,8888 0,5744 0,9287 0,5057 0,5378

CV5 0,8801 0,5612 0,9206 0,4730 0,5133

CV10 0,8801 0,5614 0,9206 0,4732 0,5135

SMOTE_CV5 0,8373 0,6851 0,8566 0,3776 0,4868

SMOTE_CV10 0,8367 0,6856 0,8558 0,3765 0,4860

SMOTE_HO70 0,8466 0,6739 0,8686 0,3943 0,4975

SMOTE_HO80 0,8442 0,6832 0,8647 0,3906 0,4971

SMOTE_V2_HO70 0,8189 0,7825 0,8493 0,8122 0,7971

SMOTE_V2_HO80 0,8168 0,7791 0,8482 0,8105 0,7945

SMOTE_V2_CV5 0,8193 0,7794 0,8524 0,8149 0,7968

SMOTE_V2_CV10 0,8193 0,7794 0,8524 0,8149 0,7968
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Table 3. Findings of Extreme Learning Machine

Model Act. 
Func*

NN* Accuracy Sensitivity Specificity Precision F Score

HO70 sig 50 0,8960 0,1594 0,9905 0,6829 0,2585

sin 10 0,7003 0,2641 0,7563 0,1220 0,1669

radbas 150 0,8890 0,0342 0,9986 0,7619 0,0654

sig 500 0,8863 0,0014 0,9998 0,5000 0,0028

HO80 sig 50 0,8960 0,1695 0,9913 0,7200 0,2743

sin 10 0,7004 0,2657 0,7575 0,1257 0,1707

radbas 150 0,8866 0,0335 0,9986 0,7619 0,0641

sig 500 0,8838 0,0010 0,9997 0,3333 0,0021

CV5 sig 50 0,8963 0,1524 0,9908 0,6782 0,2488

sin 10 0,6952 0,2735 0,7487 0,1214 0,1678

sig 200 0,8960 0,1136 0,9953 0,7558 0,1971

sig 500 0,8900 0,0336 0,9987 0,6555 0,0625

CV10 sig 50 0,8965 0,1565 0,9905 0,6775 0,2538

sin 10 0,7007 0,2683 0,7556 0,1223 0,1675

radbas 150 0,8914 0,0569 0,9973 0,7396 0,1053

sig 500 0,8909 0,0450 0,9983 0,7075 0,0826

SMOTECV5 sig 10 0,8941 0,1373 0,9901 0,6377 0,2257

radbas 500 0,7170 0,4662 0,7488 0,3840 0,3111

sig 500 0,8876 0,0084 0,9993 0,5534 0,0165

SMOTEHO80 sig 10 0,8915 0,1297 0,9915 0,6667 0,2172

sin 500 0,8725 0,2427 0,9552 0,4158 0,3065

sin 50 0,7397 0,2793 0,8002 0,1551 0,1994

sig 150 0,8903 0,0921 0,9951 0,7097 0,1630

sig 500 0,8837 0 0,9997 0 NaN

SMOTEHO70 sig 10 0,8937 0,1445 0,9899 0,6465 0,2362

radbas 500 0,8886 0,1808 0,9794 0,5292 0,2695

sin 150 0,7633 0,3174 0,8205 0,1849 0,2337

sig 100 0,8882 0,0313 0,9981 0,6769 0,0599

sig 500 0,8863 0,0014 0,9998 0,5000 0,0028

SMOTE_V2_ 
HO70

sin 200 0,7849 0,5435 0,9861 0,9702 0,6967

radbas 500 0,7197 0,3874 0,9966 0,9897 0,5568

sig 500 0,5526 0,0162 0,9995 0,9658 0,0319

SMOTE_V2_ 
HO80

sin 150 0,7910 0,5784 0,9682 0,9381 0,7156

sin 500 0,7668 0,4912 0,9966 0,9917 0,6570

sig 500 0,5493 0,0088 0,9996 0,9535 0,0175

SMOTE_V2_ 
CV5

sin 500 0,7810 0,5246 0,9948 0,9886 0,6844

sin 150 0,7764 0,5355 0,9772 0,9538 0,6839

sig 500 0,5552 0,0220 0,9995 0,9527 0,0424

*Act Fun: Activation function, NN: Neuron number
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Table 4. Findings for Deep Learning

Model Activation Func. Acc.* Sen.* Spec.* Pre.* F-score

HO70 RectifierWithDropout 0,8972 0,6932 0,9234 0,5372 0,6053

Tanh 0,8885 0,6676 0,9168 0,5073 0,5765

MaxoutWithDropout 0,8834 0,7680 0,8982 0,4918 0,5996

HO80 RectifierWithDropout 0,9012 0,7312 0,9235 0,5565 0,6320

Tanh 0,8963 0,6538 0,9282 0,5444 0,5941

MaxoutWithDropout 0,8842 0,7688 0,8993 0,5007 0,6064

CV5 RectifierWithDropout 0,8982 0,7073 0,9224 0,5364 0,6100

Tanh 0,8829 0,7644 0,8979 0,4882 0,5954

MaxoutWithDropout 0,8785 0,7515 0,8946 0,4757 0,5824

CV10 RectifierWithDropout 0,8935 0,7310 0,9141 0,5207 0,6072

Tanh 0,8901 0,7237 0,9112 0,5089 0,5974

MaxoutWithDropout 0,8822 0,6864 0,9071 0,4904 0,5454

SMOTE HO70 RectifierWithDropout 0,8525 0,8633 0,8511 0,4265 0,5710

Tanh 0,7619 0,7964 0,7575 0,2964 0,4320

MaxoutWithDropout 0,6809 0,7338 0,6741 0,2241 0,3434

SMOTE HO80 RectifierWithDropout 0,8374 0,9100 0,8279 0,4098 0,5651

Tanh 0,8282 0,8818 0,8212 0,3930 0,5437

MaxoutWithDropout 0,7764 0,8243 0,7701 0,3201 0,4611

SMOTE CV5 RectifierWithDropout 0,8360 0,8851 0,8297 0,3980 0,5489

Tanh 0,7975 0,8084 0,7962 0,3366 0,4746

MaxoutWithDropout 0,7851 0,7938 0,7840 0,3345 0,4626

SMOTE CV10 RectifierWithDropout 0,8355 0,8672 0,8314 0,3952 0,5427

Tanh 0,7599 0,8392 0,7499 0,3320 0,4692

MaxoutWithDropout 0,7537 0,8216 0,7451 0,3082 0,4441

SMOTE_V2_HO70 RectifierWithDropout 0,8479 0,8338 0,8597 0,8320 0,8329

Tanh 0,8745 0,9026 0,8511 0,8347 0,8673

MaxoutWithDropout 0,7120 0,6134 0,7942 0,7129 0,6594

SMOTE_V2_HO80 RectifierWithDropout 0,9055 0,9116 0,9003 0,8840 0,8976

Tanh 0,8611 0,8666 0,8565 0,8342 0,8501

MaxoutWithDropout 0,7960 0,5793 0,9767 0,9539 0,7208

SMOTE_V2_CV5 RectifierWithDropout 0,8843 0,9029 0,8687 0,8512 0,8761

Tanh 0,8763 0,8965 0,8596 0,8419 0,8682

MaxoutWithDropout 0,8708 0,8972 0,8489 0,8339 0,8636

SMOTE_V2_CV10 RectifierWithDropout 0,8785 0,8808 0,8766 0,8560 0,8681

Tanh 0,8589 0,8614 0,8568 0,8347 0,8470

MaxoutWithDropout 0,7881 0,8056 0,7735 0,7605 0,7779

*Acc.: Accuracy, Sen.: Sensitivity, Spec.: Specificity, Pre.: Precision
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dISCUSSIoN ANd CoNCLUSIoN
In addition to technological advances, human expectations, and interest play an important role in 
increasing the importance of data and knowledge day by day. The first step in accessing knowledge is 
storing data. In this direction, the data collected from different sources are kept in various data storage 
environment and various methods are developed for processing this data stack, which is increasing 
in size and changing in structure. One of these methods is Machine Learning. Machine Learning is 
a component of AI and is used to simulate human learning ability by computers or computer-aided 
machines. One of the methods of Machine Learning is ANN which has been developed based on human 
biological nerve cells. Deep Learning method has been developed to eliminate the problems with 
ANNs in the use of data which are difficult to process such as image, sound, and text. Accordingly, 
in Deep Learning method the data is converted to various representations and, feature extraction, 
estimation, and definition stages are performed.

Machine Learning methods are used to solve problems in different fields such as health, education, 
finance, and security. One of these problems is classification of tele-marketing success. In this study, 
the effectiveness of different machine learning algorithms in solving the problem was investigated by 
using the data of a bank’s tele-marketing campaign. In addition, it is aimed to measure the success of 
Deep Learning algorithms against classical machine learning algorithms and to determine the effect of 
balancing the data set. Within the scope of the study, a bank’s tele-marketing campaign data has been 
used and the data set has been organized in two different types according to algorithms that can work 
with both numerical data and mixed data. Since the class attribute field of the data set is unbalanced 
distributed, the balancing process has been applied using the SMOTE method. The balancing process 
has been carried out in two ways, both balancing the data used for model training and balancing the 
whole data set. C5.0, NB, ELM, DL algorithms and as the performance validation method, hold out 
(with 70-30% and 80-20% training-test rates) and cross validation (5 and 10 folds) have been applied. 
Accuracy, sensitivity, specificity, precision, and F-score performance evaluation measures have been 
calculated for all models. All models have been coded with R programming language.

The algorithms have been analyzed both within themselves and comparatively according to 
accuracy, sensitivity and F-score performance evaluation measures. In the comparative evaluation, 

Table 5. Summary of performance analysis of classification models.

Performance 
Measure Alg.* Model Acc.* Sen.* Spec.* Pre.* F-score

Accuracy

C5.0 SMOTE_V2_HO80 0,9567 0,9491 0,9630 0,9553 0,9522

DL SMOTE_V2_HO80 0,9055 0,9116 0,9003 0,8840 0,8976

ELM CV10 0,8965 0,1565 0,9905 0,6775 0,2538

NB HO80 0,8888 0,5744 0,9287 0,5057 0,5378

Sensitivity

C5.0 SMOTE_V2_HO80 0,9567 0,9491 0,9630 0,9553 0,9522

DL SMOTE_V2_HO80 0,9055 0,9116 0,9003 0,8840 0,8976

NB SMOTE_V2_HO70 0,8189 0,7825 0,8493 0,8122 0,7971

ELM SMOTE_V2_HO80 0,7910 0,5784 0,9682 0,9381 0,7156

F-score

C5.0 SMOTE_V2_HO80 0,9567 0,9491 0,9630 0,9553 0,9522

DL SMOTE_V2_HO80 0,9055 0,9116 0,9003 0,8840 0,8976

NB SMOTE_V2_CV5 0,8193 0,7794 0,8524 0,8149 0,7968

ELM SMOTE_V2_HO80 0,7910 0,5784 0,9682 0,9381 0,7156

*Alg.: Algorithm, Acc.: Accuracy, Sen.: Sensitivity, Spec.: Specificity, Pre.: Precision
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it is seen that the best classification model is obtained with the C5.0 algorithm. C5.0 is followed 
by DL, NB and ELM algorithms, respectively. In this ranking, it is seen that, in terms of accuracy, 
by far better results have been obtained with the C5.0 algorithm, especially as a result of balancing 
the data set. On the other hand, when the distribution of the class attribute field is balanced using 
the SMOTE algorithm, a decrease in the accuracy values has been observed, while an increase in 
the sensitivity values has been detected. When examining performance values, it can be said that 
besides the accuracy value, sensitivity and F-score gain more importance in terms of evaluation. 
The sensitivity is the success of predicting positive class among all positive classes. Positive classes 
are successful calls in the data set. That is, positive classes represent customers that a bank will pay 
attention for its marketing campaign. The accuracy value provides an overall assessment, while the 
sensitivity provides an assessment for target customers. The findings obtained in this direction show 
that models using C5.0 and Deep Learning algorithm have been successful by a significant difference 
(over 90%). Success in sensitivity is interpreted as follows: “Of all successful calls, successful calls 
can be accurately predicted (above 90%) using C5.0 or DL models.” Again, the most unsuccessful 
algorithm according to the sensitivity measure is ELM. F-score, on the other hand, is a measure 
calculated according to both precision and sensitivity. Even if the best F-score and sensitivity values 
among all models belong to the C5.0 algorithm, when the data set is not balanced, the DL algorithm 
performs better than the C5.0 algorithm in all model validation methods according to sensitivity and 
F-score. From this point of view, it can be said that DL algorithm can be preferred in unbalanced 
data sets if resampling method is not used.

For similar problem, Ruangthong and Jaiyen (2015) reached accuracy value of 91.24% in their 
study, the highest accuracy value reached by Shashidhara et al. (2015) was 90.81% and the highest 
sensitivity value was 94.48%. In the study of Kim et al. (2015), who performed Deep Learning 
application with CNN, the highest accuracy value was reached with 76.70%. Keles and Keles (2015) 
achieved 82.96% accuracy and 87% sensitivity with the decision support system they developed. In the 
models that Kachwala and Sharma (2017) obtained using different data sets and different classification 
algorithms, accuracy values in the range of 90-95% were obtained. When the results obtained with 
this study are evaluated, it is seen that better results are obtained in terms of performance indicators 
compared to similar studies in the literature.

Another visible result of the study is the effect of balancing data set on model performances. As 
mentioned before, balancing has been examined from two aspects. It is thought that the better the 
model is trained, the better the model classification performance will be. For this reason, it has been 
tested whether it would be sufficient to perform the class attribute field balancing process only for 
the training data set. The results obtained show that if the test data set as well as the training data set 
is balanced similarly, improvement can be achieved in all performance indicators. Otherwise, there 
may be improvements especially in the sensitivity measure, but it has been observed that there is not 
enough improvement in values such as accuracy and F-score. In this direction, it is thought that the 
efficiency of the data balancing process will be at a certain level for real life problems. At this point, 
the success of the Deep Learning algorithm, which can produce better results than other algorithms 
with an unbalanced data set, is also important.

According to the indicators, it can be concluded that C5.0 and DL algorithms perform better 
for solving the problem. On the other hand, especially for DL and ELM algorithms, it is necessary 
to specify more parameters than other algorithms. Therefore, it will be possible to improve the 
performance of these algorithms with more sensitive parameter tuning. Considering the structure 
of the data set, it can be said that the data set is more suitable for C5.0 or NB. Therefore, achieving 
higher success for these algorithms can be considered normal. If the models obtained are evaluated in 
terms of an enterprise, the models to be selected according to the determined performance indicators 
are at a level to help the enterprise to make successful calls.
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