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ABSTRACT
In this paper, we consider the estimation problem for the semipara-
metric regression model with censored data in which the number of
explanatory variables p in the linear part is much larger than sample
size n, often denoted as p � n. The purpose of this paper is to study
the effects of covariates on a response variable censored on the right
by a random censoring variable with an unknown probability distri-
bution. It should be noted that high variance and over-fitting are a
major concern in suchproblems.Ordinary statisticalmethods for esti-
mation cannot be applied directly to censored and high-dimensional
data, and therefore a transformation is required. In the context of this
paper, a synthetic data transformation is used for solving the censor-
ing problem. We then apply the LASSO-type double-penalized least
squares (DPLS) to achieve sparsity in the parametric component and
use smoothing splines to estimate the nonparametric component. A
Monte Carlo simulation study is performed to show the performance
of the estimators and to analyse the effects of the different censor-
ing levels. A real high-dimensional censored data example is used to
illustrate the ideas discussed herein.
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1. Introduction

In this paper, we are interested in a censored semiparametric model with a divergent num-
ber of covariates. In order to better understand the censoring mechanism, let yi, ci, and
{xi, ti} be the survival times, the censoring times and their associated explanatory vari-
ables, respectively. Correspondingly, let zi = min(yi, ci) be the observed survival times
and δi = I(yi ≤ ci) be the censoring indicator. Here, δi indicates whether the survival time
(or lifetime) yi corresponds to an event (δi = 1) or is censored (δi = 0), and zi is equal to
yi, if the survival time is observed, and to ci if it is censored. In this case, a convenient way
to analyse the relationship between y =(y1, . . . , yn) and (x, t) in a statistical framework is
required to consider the following observed data

{(xi, ti, zi, δi), i = 1, . . . , n} (1)
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Given i.i.d observations (1), we suppose that the data can be described using a semi-
parametric model

yi = xiβ + f (ti) + εi, 1 ≤ i ≤ n (2)

where yi′s are the observations of the response variable, xi = (xi1, . . . , xip) and ti′s are the
observations of the explanatory variable, β = (β1, . . . ,βp)

′ is an unknown p-dimensional
vector of parameters to be estimated, f (.) is an unknown univariate smooth function, and
εi

′s are supposed to be uncorrelated random variables withmean zero and a common vari-
ance σ 2, and independent of the explanatory variables. For notational simplicity, ti is scalar
and takes values in [0, 1] and the intercept term is not included. However, it is possible to
achieve a model without intercept can by centring the variables. We should also note that
the vector of response variable y depends parametric linearly on the vector of explanatory
variables xi and nonlinearly on a scalar variable t.

Generally speaking, when the number of parametric effect p is fixed (or p < n), the
estimation of parametric and nonparametric components in model (1) with uncensored
data have been studied in various investigations including smoothing spline [1–3], kernel
smoothing [4], and regression spline [5] Similarly, a number of authors have studied the
case of semiparametric regression model based on censored data. More detailed discus-
sions are available in numerous studies, such as Orbe et al. [6], and Aydin and Yilmaz [7]
among others.

With recent developments in science and technology, high-dimensional data has
become of increasing importance, especially in medical studies, genomics and some areas
of computational biology. In this context, many applications are constructed for possibly
sparse models in high-dimensional settings when p is not fixed (often written as p � n).
It is important to remember that when p increases with the increase of the sample size n,
the sparsity of the true model is commonly assumed. Sparsity states that some explanatory
variables do not contribute to the response variable, in the sense that some parametric coef-
ficients in the model (2) are exactly zero. For example, Xie and Huang [8], Gao et al. [9],
and Cheng et al. [10] are mainly focused on statistical inference for the coefficients in the
linear part of the model (2). It should be noted that the studies given above use uncensored
data.

In this paper, we study the high-dimensional semiparametricmodelwith right-censored
data. Our main contribution is to modify the LASSO-type penalty for high-dimensional
censored data case with double-penalized least squares (DPLS), proposed in Ni et al. [11],
and obtain an estimator that can deal with extra difficulties caused by the high-dimensional
censored data and the nonlinear part of the model. It should be noted that this type cen-
sored data has drawn much attention in the past decade, especially for variable selection
in a semiparametric model (see Ma and Du [12], for a detailed discussion of this topic).
Furthermore, various penalization procedures have been proposed for uncensored data,
such as the least absolute shrinkage and selection operator (LASSO, proposed in [13]),
the smoothly clipped absolute deviation (SCAD, discussed in [14]), minimax concave
penalty (MCP, examined in [15]), least angle regression (LARS, stated in [16]), and adaptive
LASSO [17].

The rest of this paper is organized as follows: In Section 2, we discuss the required con-
ditions and the model description and motivation. In Section 3, we derive the estimation
of the right-censored high-dimensional semiparametric model using the DPLS method
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based on smoothing spline. Section 4 introduces the selection of the penalty parameters.
The simulation results and a real data application are expressed in Section 5. Lastly, we
present our concluding remarks and recommendations in Section 6.

2. Preliminaries

Suppose that the probability distribution functions of the survival times (yi) and cen-
soring times (ci) are denoted with F and G, respectively. In other words, the unknown
distribution function of yi can be expressed as F(t) = P(yi ≤ s) and ci can be stated as
G(t) = P(ci ≤ s), respectively. The significance of the model depends on some specific
assumptions on the response, censoring and explanatory variables which are defined by
Stute [18] and explained as follows

Assumption 1: yi and ci are independent
Assumption 2: P(yi ≤ ci|yi, xi, ti) = P(yi ≤ ci|yi)

Note that these assumptions are commonly used in survival analysis applications.
Assumption 1 is an ordinary independence condition to support the accuracy of themodel
with censored data. If Assumption 1 is violated, then more information about the dataset
is required to obtain a proper model. Assumption 2 is needed to allow for a dependency
between (xi, ti) and ci. More explicitly, Assumption 2 says that given time of death, covari-
ates do not provide any further information whether the observation is censored or not.
See Stute [19], Heuchenne and Van Keilegom [20] and Zhou [21] for more details on these
assumptions of the survival data analysis.

As indicated in the introduction section of this paper, the response variable is observed
incompletely, but the remaining other variables are observed completely. In this case, ordi-
nary statistical methods cannot be applied directly to this type of observations, and data
transformation is required. Under censorship, instead of using responses yi alone, we con-
sider the pairs of observations {(zi, δi), i = 1, . . . , n}. For context, Koul et al. [22] denoted
that when G is continuous and known, it is possible to adjust observed lifetimes zi to yield
an unbiased modification

yiG = δizi
1 − G(zi)

, i = 1, 2, . . . , n (3)

where yiG has the same mean as yi. In this sense, the aforementioned assumptions are
also used to provide that E[yiG|xi, ti] = E[yi|xi, ti] = xiβ + f (ti). It should be noted that
{yiG = (y1G, . . . , ynG)′} = yG is the vector of transformed responses. In most practices,
however, distribution (i.e. G) of the censoring variable given in (3) is unknown. In order
to solve this problem, Koul et al. [22] proposed to replace G by its Kaplan–Meier [23]
estimator, given by

1 − Ĝ(s) =
n∏

i=1

(
n − i

n − i + 1

)I[z(i)≤s,δ(i)=0]
, s ≥ 0 (4)

where z(1) ≤, . . . ,≤ z(n) are the ordered values of observed response variable z and δ(i) is
the corresponding censoring indicator associated to z(i).

For a given smoothing parameter λ > 0 and a positive-definite (symmetric) smoother
matrix Sλ, the corresponding smoothing spline (ss) estimators for β, based on model (2)
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with censored data, can be defined as (see Aydin and Yilmaz [7] for a detailed discussion):

β̂ss = (X′(I − Sλ)X)−1X′(I − Sλ)yĜ (5)

whereX = (x1, . . . , xp) and yĜ = {(y1Ĝ, . . . , ynĜ) = yiĜ} = δizi/1 − Ĝ(zi), i = 1, 2, . . . , n.
We should also note that the response yĜ may also be called as synthetic response variable
since the values of this variable are synthesized from the data (zi, δi) to fit the semipara-
metric model E[yiĜ|xi, ti] = xiβ + f (ti). In a similar fashion to the linear model case, the
assumptions given above ensure that E[yiĜ|xi, ti] = E[yi|xi, ti] = xiβ + f (ti).

Note that the ideas expressed in the above paragraph are designed for estimating the
censored semiparametric model where p is assumed to be small relative to n. However,
our claim is to establish statistical inference for the high-dimensional parametric coeffi-
cients β in presence of a univariate smooth function f . If the number of parametric effect
p is larger than sample size n, ordinary statistical methods in general are not applicable
to the semiparametric model with a high-dimensional parametric component. Obviously,
when p > n, the estimator defined in (5) does not have a unique solution and its predic-
tive accuracy will be low due to over-fitting, as in the linear regression case. Such problems
need a form of complexity regularization to get the optimal solution. To overcome this
problem, we follow the suggestions in the study of Ni et al. [11] by modifying the DPLS
approach. It is understood that the resulting regularization problem can be solved by a
LASSO-type DPLS method. Before proving this matter, we will briefly offer some ideas to
solve a semiparametric regression problem.

2.1. Model specification andmotivation

A formal connection between semiparametric and linear models can be constructed
through a right-censored response variable y. When f (.) = 0 in the model (2) with high-
dimensional parametric coefficients, this model reduces to the following linear regression
model:

yi = xiβ + εi, 1 ≤ i ≤ n (6)

Note that model (6) contains the unknown high-dimensional parametric coefficients
that need to be estimated in practice. We approximate E[yiĜ|xi] = E[yi|xi] = xiβ by
LASSO, introduced by Tibshirani [13]. The LASSO estimates of the parametric coefficients
in the model (6) are obtained by minimizing the L1 -penalized objective function in

β̂(λ2) = argmin︸ ︷︷ ︸
β

(‖ yiĜ − xiβ ‖22 +λ2 ‖ β‖1) (7)

where λ2 ≥ 0 is a positive penalty parameter that controls the amount of shrinkage applied
to the estimates. As λ2 → ∞, penalty dominates in (7) and the resulting LASSO estimates
will be shrunk to zero. On the other hand, asλ2 → 0, penalty disappears and results in little
shrinkage. Of course, for λ2 = 0, there is no shrinkage at all. Also, Equation (7) suggests
that the LASSO achieves variable selection and shrinkage at the same time. However, this
result is limited in the parametric models.

In this paper, we are mainly interested in estimating the parametric and nonparametric
components of a censored semiparametric model when the number of parametric vari-
ables p increases with the sample size n. Note that the estimation procedure for this type
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of a model is more challenging because it consists of several interrelated estimation and
selection problems, such as nonparametric estimation, penalty parameter selection, and
estimation for parametric linear variables. Müller and van de Geer [24] provide us with an
appropriate estimator by altering the methods used in Mammen and van de Geer [25] for
the low-dimensional case with the standard LASSO, to make them applicable uncensored
data.

As stated in the previous sections, when the response variable is censored by a random
variable c, the model (2) transforms to the following censored model

yiĜ = xiβn + f (ti) + εiĜ, 1 ≤ i ≤ n (8)

where xi = (xi1, . . . , xip) = Xn is an n × pmatrix, βn is the p × 1 vector of parametric coef-
ficients expressed before, and εiĜ

′s are identical, but not independent, random error terms
with unknown constant variance.

Remark 2.1: In this paper, we consider right-censored high-dimensional data; the num-
ber of parametric variables affecting the response variable is larger than the number of
response observations. In this case, model (8) is considered as a sparse model. The idea
behind this model is that p covariates are categorized into two groups: the important ones
whose corresponding coefficients are nonzero and the trivial regression coefficients that
actually are (nearly) zero and not present in the underlying model.

Note that the main purpose of this paper is to estimate the parametric effects and
the unknown smooth function f by controlling the sparsity of the vector βn in a
high-dimensional setting. To achieve this, we follow an estimation procedure based
on DPLS (proposed in Ni et al. [11]). It is emphasized that the estimators of βn and
(f (t1), . . . , f (tn))′ = f can be obtained by minimizing the penalized least squares objective
function

L(βn, f (.)) =
n∑

i=1
{yiĜ − xiβn − f (ti)}2 + nλ1

1
∫
0
{f ′′(t)}2dt + 2n

p∑
j=1

λ2|βj| (9)

In Equation (9), the first penalty term weighted by λ1 ≥ 0 denotes the roughness penalty
and it imposes a penalty on the roughness of nonparametric fit f (t). The second penalty
term multiplied by λ2 ≥ 0 indicates a shrinkage penalty and it applies shrinkage to the
slope coefficients of the regressionmodel, but not the intercept. Note that λ1 is a smoothing
parameter that plays a key role in controlling the trade-off between the smoothness of f (t)
with fidelity to data, whereas λ2 is a regularization parameter that controls the amount of
shrinkage used in determining the parametric effects. To provide effective estimation it is
necessary to select an optimum amount of these penalty parameters. These parameters are
discussed in section 3.

In practice, there have been several studies on various regularization approaches, such
as Elastic Net (discussed in [26]), Fused Lasso (studied in Tibshirani et al. [27], Adaptive
lasso (examined in [17]), spline-lasso (discussed in [28]) to handle minimization problem
(9) for p� n, and to avoid the over-fitting. In this paper, however, we use smoothing spline
method to solve minimization of the L1 penalty in (9). In this sense, the computation of
the (9) can be achieved by a quadratic programming and an optimally designed algorithm,
given in Section (4).
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3. Solution of DPLS problem based on smoothing spline

We now introduce the smoothing spline solutions for β and f in the model (2) with right-
censored high-dimensional data. Let v1 < v2 < . . . < vq be the distinct and ordered values
among t1, t2, . . . , tn. The connection between v’s and t’s is provided by nxq incidence
matrixN, with elements Nij = 1 if ti = vj and Nij = 0 if ti 
= vj. In the light of these ideas,
we also suppose that f = f (vj) = (a1, . . . , aq) is a vector. Then, in matrix and vector form,
penalized least squares function (9) for estimating βn and f can be rewritten as

L(βn, fn) =‖ yĜ − Xnβn − Nfn ‖22 +nλ1
1
∫
0
{f ′′(t)}2dt + 2n

p∑
j=1

λ2|βj| (10)

Given λ1 > 0, the smoothness of nonparametric component in (8) is regularized by a
roughness penalty term nλ1

∫
f ′′(t)2dt for λ1 > 0.

Remark 3.1: If t is an n × 1 dimensional vector (i.e. t ∈ R), the L2− norm of the sec-
ond derivative

∫
R

(f ′′(t))2dt in Equation (10) satisfies the quadratic form f′Kf (see [3] for
a detailed discussion). This case denotes that the roughness penalty term is equal to the
following notation: ∫

R

(f ′′(t))2dt = f ′Kf (11)

whereK a symmetric q × q positive definite penalty matrix and its elements are computed
by means of the knot points v1, . . . , vq, and defined by

K = Q′R−1Q (12)

where Q and R are the tri-diagonal matrices with dimensions (q − 2) × q and (q − 2) ×
(q − 2), respectively. Their entries are obtained by Qi,i = 1/hi, Qi,i+1 = −

(
1
hi + 1

hi+1

)
,

Qi,i+2 = 1/hi+1, and Ri−1,i = Ri,i−1 = hi/6, Ri,i = (hi + hi+1)/3 where hi = vi+1 −
vi, i = 1, . . . , q − 1.

From these facts, it is easily seen that the DPLS criterion can be rewritten as

L(βn, fn) =‖ yĜ − Xnβn − Nfn ‖22 +nλ1f′nKfn + 2n
p∑

j=1
λ2|βj| (13)

By taking simple algebraic operations, one can see that given λ1 and vector βn, the DPLS
solution of nonparametric component (fn = f (t1), . . . , f (tn))′ based on the smoothing
spline can be obtained as

f̂n(βn) = (N′N + nλ1K)−1N′(yĜ − Xnβn) = Sλ1(yĜ − Xnβn) (14)

where Sλ1 = (N′N + nλ1K)−1N′ is a positive-definite linear smoother matrix which
depends on λ1. It should be noted that when ti are distinct and ordered already,N = I and
Sλ1 transforms to the following smoothingmatrix: Sλ1 = (I + nλ1K)−1 where I is an n × n
identity matrix. More specifically, it must be emphasized that the matrix Sλ1 is obtained
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frommodel (8) with βn = 0, and it transforms the vector of response observations into the
fitted values ŷĜ = Sλ1yĜ = {f̂λ1(t1), . . . , f̂λ1(tn)} = f̂n(λ1).

When we substitute the f̂n(βn) into the criterion (13), we obtain the L1 -penalized least
squares function for only vector βn :

L(βn) =‖ ỹĜ − X̃nβn − Nfn ‖22 +2n
p∑

j=1
λ2|βj| (15)

where X̃n = (I − Sλ1)Xn and ỹĜ = (I − Sλ1)yĜ. Or, equivalently, the for an appropriate
parameter λ, Equation (15) can be rewritten as

L(βn) =‖ ỹĜ − X̃nβn − Nfn ‖22 subject to 2n
p∑

j=1
|βj| ≤ λ (16)

As can be seen from Equations (15) and (16), the DPLS problem reduces to the standard
LASSO-type regression problem. Note that the parameter λ in (16) controls the num-
ber of non-zero coefficients βj, and the DPLS estimator results in fewer than p non-zero
coefficients. In this case, the parameter λ is related to the sparse solutions of parametric
coefficients vector βn.

The LASSO regression provides solutions to the penalized least squares function given
in Equations (15) and (16). However, we expect that many of the LASSO estimates should
be zero, and hence, seek a set of sparse solutions. Let β̂olsj be the full ordinary least squares

estimates and let λ0 =
p∑

j=1
|β̂ols

j |. For example, if λ0 =
p∑

j=1
|β̂ols

j | or equivalently λ = 0, we

obtain no shrinkage, and therefore obtain the least squares solutions. Additionally, the con-

straint
p∑

j=1
|βj| ≤ λ in (5) denotes thatwe have a ‘path’ of solutions indexed byλ. Thismeans

that the values λ < λ0 will cause shrinkage of the solutions leading to zero, and some coef-
ficients may be exactly equal to zero. It should be noted that the path of LASSO solutions
is indexed by a component of shrinkage penalty λ0. For example, if = λ0/2, the effect will
be roughly similar to finding the best subset of size p/2, as indicated in Tibshirani [13]. For
these reasons, it is very important to determine the estimation of parameter λ. We explain
this case in more detail in Section 4.

As can be seen from Equations (15) and (16), the DPLS problem reduces to the stan-
dard LASSO-type problem. It should be noted that unlike the study of Ni et al. [11], we use
ridge penalty instead of a SCAD penalty to determine the shrinkage penalties in Equations
(15) and (16). In this paper, however, we have constantly emphasized that the number p of
parameters is much larger than n. For this reason, we only seek to find a technique to elim-
inate most of the parameters, and reduce to a case with a low-dimensional structure that is
useful for our estimation problem. That is to say, we want to explain a regression problem
with large and complex structures, in which most of the parameters are unimportant, and
focus instead on the subset of important regression parameters. Recent developments pro-
vide efficient variable selection algorithms, such as LASSO and LARS. Inspired by LASSO,
we adopt a newly computational algorithm to obtain a solution ofDPLS criterion described
in (15).
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Remark 3.2: In this paper, we consider the estimator β̂n, which minimizes the least
square objective function in Equations (15) or (16). Without loss of generality, we suppose
that the true important coefficient index set V = {1, 2, . . . , q}, where q is an integer and 1 ≤
q ≤ p. Therefore, based on the partition of the data matrix X̃n = (X̃1n, X̃2n) , we have true
parametric coefficients vector βn = (β′

1n, β
′
2n)

′, where β′
1n related to the X̃1n contains the

first q nonzero important coefficients, and β′
2n associated with X̃2n contains the remaining

unimportant parametric coefficients.

Computational Algorithm

Input: Data matrix ∈ R
n×p, data vector t ∈ R

n×1, and response vector y ∈ R
n×1

Step 1. Solve Equation (3) to obtain the synthetic response vector yĜ
Step 2. Select an appropriate roughness penalty λ1 using the GCV criterion, and com-
pute the smoother matrix Sλ1 , as defined in (14): Sλ1 = (N′N + nλ1K)−1N′, and define
the matrix and vectors based on residuals X̃n = (I − Sλ1)Xn and ỹĜ = (I − Sλ1)yĜ.
Step 3. Determine the penalty tuning parameter λ by GCV criterion given in (21)
Step 4. To eliminate unimportant variables in the L1 -penalty constraint (16), follow the
SAFE rule proposed by El Ghaoui et al. [29]:

(i) Discard the inactive predictor variables by using the condition

|x̃′
jỹĜ| < λ− ‖ X̃n‖2 ‖ ỹĜ‖2

(
λmax − λ

λmax

)

where x̃j ∈ R
n, j = 1, 2, . . . , p, the j -th column of X̃n and λmax = max |x̃′

jỹĜ| =‖ x̃′
jỹĜ‖∞,

which implies that all parametric coefficients estimates are zero (complete shrinkage to
0). Tibshirani et al. [30] modified this SAFE rule by replacing X̃n‖2 ‖ ỹĜ‖2/λmax with 1,
making the equation read

|x̃′
jỹĜ| < 2λ − λmax

This rule discards more predictor variables than the SAFE rule; this rule is used because
in this study, the number of parameters p is considerable. Note that this rule provides
substantial computational time savings for the estimation process.

(ii) After the ith case of step 4, partition the remaining variables in form X̃n = (X̃1n, X̃2n),
as defined in Remark 3.2

(iii) Find the LASSO estimates of β′
1n associated with the X̃1n contains the first q nonzero

important coefficients.

Step 5. Estimate the nonparametric part of the censored semiparametric model:

f̂n(β̂1n) = (N′N + nλ1K)−1N′(yĜ − X1nβ̂1n) = Sλ1(yĜ − X1nβ̂1n)

Output: β̂n = {β̂′
1n, β̂

′
2n} ∈ R

p×1 and f̂n(β̂n) = {f̂n(β̂′
1n), f̂n(β̂

′
2n)} ∈ R

n×1.
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3.1. Asymptotical properties of DPLS estimator

In this section, we introduce a framework for establishing the asymptotic efficiency of the
DPLS estimator in a high-dimensional setting. Asymptotic efficiency is first considered by
van de Geer et al. [31], using linear models. In addition, Van Der Vaart [32], illustrates
the efficiency bounds for a semiparametric model for fixed p (independent from n). Ni
et al. [11], Jankova and van de Geer [33], study asymptotic properties of high-dimensional
partially linear models based on L1 -penalty.

A key feature of the estimation problem expressed in this paper is that the optimal
rate can be achieved with respect to the sparsity parameter. Jankova and van de Geer
[33], denoted that the minimax rates for the estimation (or DPLS estimator) of regression
coefficients are shown to satisfy

inf
β̂

sup
β

E|β̂i − βi| ≥ C
(

1√
n

+ sn
log(p)
n

)
, i = 1, . . . , p (17)

where C > 0 is a constant, β̂i is the estimator of the single regression coefficient βi and sn
is the sparsity parameter that denotes the number of non-zero elements in the regression
coefficients vector. Normally, Equation (17) implies that the DPLS method with a suitable
selection of the smoothing parameter (λ2) provides an optimal parametric rate of conver-
gence sn

log(p)
n over the set of sn -sparse regression coefficient vectors with sn ≤ C n

log(p) . This
means that the estimator β̂ estimates the sparsity parameter sn atminimax rate. Conversely,
if there is deficient sparsity regime, the minimax lower bounds diverge, in particular when
sparsity satisfies sn � n/log(p). This expression can be seen as the oracle inequalities for
a such estimator under the condition sn = o(n/log(p)), which is actually necessary for
asymptotically normal estimation. It is also noted that the optimal parametric rate cannot
be provided in the moderate sparse region

√
n

log(p) ≤ sn < n/log(p). Furthermore, the upper
bound parametric rate l√

n can be obtained for estimation of single elements. As a conse-
quence, the infimum in Equation (17) revealed that when sparsity of regression coefficients
is of small order

√
n

log(p) , parametric rate of order l√
n is optimal.

In order to investigate the asymptotic behaviour of the DPLS estimator, we begin by
introducing some notions. Let β = (β1, . . . ,βp)

′ = (β′
1n, β

′
2n) be the true regression coef-

ficients for the parametric component of the model where β′
1n is a q-dimensional nonzero

coefficients vector and β′
2n = 0 is a r= (p-q)-dimensional zero coefficients vector. Further-

more, we assume thatXn = (x1, . . . , xp) are independently and identically distributedwith
mean zero and positive definite covariance matrix

M = (X̃′
nX̃n)

−1 =
(

M−1
11 M−1

12
M−1

21 M−1
22

)
(18)

Wenowprovide the asymptotic theory for theDPLS estimator in terms of the estimation
procedure. The study of Ni et al. [11] shows that if it is chosen the proper sequence of λ1
and λ2, then the DPLS estimator (i.e. β̂n) is

√
n -consistent. In other words, as n → ∞,

if λ1 → 0 and λ2 → 0, then there is a local minimizer estimator β̂n of L(βn) such that
‖ β̂n − βn ‖= Op

(√
n
)
. They also illustrate the fact that as n → ∞, if λ1 → 0, and λ2 → 0

then with probability tending to one, the local minimizer β̂n = (β̂1n, β̂2n)T must satisfy: (i)
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Sparsity: β̂2n = 0. (ii) Asymptotic normality: n
1
2 (β̂1n − β1n)

d→N(0, σ 2M−1
11 ), where σ 2 is

the variance of error terms andM−1
11 is a (q × q) sub-matrix of M, as defined in (18).

In this paragraph, we discuss the asymptotic properties of the DPLS estimator in a high-
dimensional case where the number of parametric covariates, p, goes to ∞ as n → ∞.
For any square matrix A, indicate its minimum and maximum eigenvalues respectively
by Λmin(A) and Λmax(A). In addition to the ideas expressed in the above paragraph, the
following regularity conditions are introduced to show the asymptotic properties of the
DPLS estimator (see [34] and [11], for more detailed discussions).

A1. The elements of β1n,j’s of the vector β1n have to be satisfied

min{|β1n,j|, 1 ≤ j ≤ qn}/λ2 → ∞
A2. Let w1 and w2 be constants such that

0 < w1 < Λmin(M) ≤ Λmax(M) < w2 < ∞.

Note thatA1 implies the ability of the DPLS estimator on the discrimination the regression
coefficients from zero. A2 confirms that M is positive definite and eigenvalues of M are
uniformly limited. It should be emphasized that under the assumptions A1 and A2, as
n → ∞ , if λ1 → 0, λ2 → 0 and p → ∞ , DPLS estimator β̂n is a

√
n/p -consistent (see

[11]).

4. Choice of penalty tuning parameters

In practice, penalty parameters in Equations (15) and (16) can be chosen by any selec-
tion criterion, such as cross-validation (CV), generalized cross-validation (GCV), Bayesian
information criterion (BIC), and so on. In this paper, we use GCV criterion to determine
optimum penalty parameter λ2, or equivalently, to select the parametric coefficient λ in

the L1 penalty constraint (16),
p∑

j=1
|βj| ≤ λ. The key idea here is to determine the number

of effective parameters in constrained estimates of β.
A closed-form estimate for the parametric coefficients can be obtained by using the

penalty
p∑

j=1
|βj| as

p∑
j=1

(β2
j /|βj|). Thus, the constrained estimate vector of β in the Equation

(16) can approximate the solution by a ridge regression of the form

β̂n = (X̃′
nX̃n + λW−)−1X̃′′

n ỹĜ (19)

where W is a diagonal matrix with diagonal entries |βnj|, and W− denotes generalized
inverse of the matrixW. Consequently, the number of effective parameters (i.e. the coeffi-
cients vector β′

1n) in the constrained Equation (16) fitted β̂n can be defined by the trace of
the hat matrix

p(λ) = tr{X̃n(X̃
′
nX̃n + λW−)

−1
X̃n} = tr(Hλ) (20)

Using Equation (20), we get the GCV function

GCV(λ) = 1
n
{RSS(λ) = (ỹĜ − X̃nβ̂n)

′
(ỹĜ − X̃nβ̂n)}/

1
n
tr(I − H(λ)) (21)
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where RSS(λ) denotes the residual sum of squares for the constrained fit with constraint
λ. It should also be noted that the parameter λ which minimizes Equation (20) is selected
as an optimum penalty tuning parameter. Accordingly, fitted values for the censored
semiparametric model are obtained as

ŷĜ = X̃nβ̂n = H(λ)ỹĜ = X̃n(X̃
′
nX̃n + λW−)−1X̃nỹĜ (22)

5. Simulation experiment

In this section, we conduct Monte Carlo Simulation experiments to analyse the finite sam-
ple performance of the introduced DPLS method. For different values of sample size (n)
and the number of variables (p), the response observations are generated from a partially
linear model

yi = xiβn + f (ti) + εi, i = 1, . . . , n, εi ∼ N(0, σ 2 = 0.5) (23)

In this model, the covariates xi = (xi1, . . . , xip) are constructed from a uniform distribu-
tion. We set the true regression coefficients βn = (β1n = {1, 2,−3, 0.5,−2, 1.5, 0.3,−1, 4,
0.4}′, β2n = {0, . . . , 0}′) with the variance–covariance matrix �, and the nonparametric
component f (.) is determined by the function

f (ti) = ti(sin(t2i ) with ti = 4.3(i − 0.5)/n

To introduce right censoring, we generate the censoring variable ci from the normal
distribution with proportions at 10% and 40%. Finally, from the model (23), we define ith
indicator as δi = I(yi ≤ ci) and then the observed response as

zi = min(yi, ci)

Because of the censoring, ordinary methods cannot be applied directly here to esti-
mate the parameters of this model. For this reason, we consider transformed response
observations (i.e., yiĜ

′s), as described in (5), to estimate the components of the model (23).
It should be noted that we conducted simulations with n = 50,100, 200, p = 5, 300,

Table 1. Finite sample performances of the proposed estimator for the parametric part of the semipara-
metric model with CR = 10%, 40% and 12 different (n, p) combinations, respectively.

CR = 10% CR = 40%

(n, p) MSEy TΣ11 q MSEy Σ11 q

(50,5) 0.029264 0.021871 5 0.40511 0.33346 5
(50, 300) 0.00669 0.00368 26 0.06350 0.00368 28
(50, 1000) 0.00697 0.00385 25 0.09200 0.00385 27
(50, 3000) 0.00803 0.00418 27 0.20783 0.00418 17
(100,5) 0.01051 0.01334 5 0.37619 0.30893 5
(100, 300) 0.00556 0.00217 41 0.05730 0.04491 47
(100, 1000) 0.00651 0.00226 54 0.08660 0.05589 43
(100, 3000) 0.00682 0.00403 52 0.13536 0.10503 45
(200,5) 0.00939 0.01077 5 0.33280 0.27154 5
(200, 300) 0.00370 0.00161 54 0.01020 0.05381 53
(200, 1000) 0.00519 0.00205 55 0.01999 0.05231 65
(200, 3000) 0.00442 0.00305 66 0.07500 0.05530 77
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1000, 3000, and censoring rates (C.R.) =10%, 40%, resulting in a total of 24 simulation
scenarios for p � n. For each scenario, the reported experimental results are based on
1000 simulated data set. To get an idea of how well the fitted model describes the data, we
consider the variance–covariance matrix of the regression coefficients βn given by

Σ(β̂n) = σ̂ 2
ε M = σ̂ 2

ε [(X̃
′
nX̃n)]−1 =

(
Σ11 Σ12
Σ21 Σ22

)
,

where Σ11 is a q × q submatrix of the variance–covariance matrix � and σ̂ 2
ε is the esti-

mated variance of the errors with σ̂ 2
ε =

n∑
i=1

(ŷiĜ − xiβ̂1n − f̂ (ti))2/n − β1n1. Note also that

we consider themean square error (MSE) to evaluate the goodness of fit for nonparametric
estimations and fitted values from the model. For each simulated data set, the MSE val-
ues, which measure how close to predicted values are to real observations, are computed
respectively by

MSEf = 1
1000

1000∑
j=1

n∑
i=1

(f̂ (tij) − f (ti))2

and

MSEy = 1
1000

1000∑
j=1

n∑
i=1

(ŷijĜ − yiĜ)2,

where f̂ (tij) shows the estimated value at the ith point of the function f in jth iterations and
ŷijĜ denotes the estimated fitted value at the ith point of the synthetic response variable yĜ
in jth replications.

5.1. Evaluating the empirical results

Outcomes obtained from the simulation experiments are summarized in the following
tables and figures. It should be noted that, in Tables 1 and 2, results of (p = 5) are given
for comparing the introduced estimator with classical semiparametric estimation proce-
dure which can be thought of as a benchmark case. In this sense, Table 1 gives the results
obtained from the parametric component and fitted values of the model (23). In Table 2, T
Σ11 denotes themean of the trace (Σ11), and q indicates the number of nonzero regression
coefficients. As can be seen from the data in Table 1, as the number of parameter in the
model increases, the quality of the estimates decreases. Similarly, when the censoring rates
increase, we get poor estimates. As expected, for larger sample sizes, we obtained good

Table 2. The MSE values for the nonparametric component of the semiparametric model with
CR = 10%, 40% and 12 various (n, p) scenarios, respectively.

CR = 10% CR = 40%

Sample size (n) p = 5 p = 300 p = 1000 p = 3000 p = 5 p = 300 p = 1000 p = 3000

50 0.2198 0.1980 0.1928 0.1816 0.4144 0.3841 0.3917 0.3968
100 0.1837 0.1295 0.1495 0.1445 0.3759 0.3140 0.3483 0.3602
200 0.1079 0.0940 0.1141 0.1175 0.3427 0.2706 0.2717 0.2743
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results, which can be interpreted as a proof of asymptotical consistency. Asymptotic prop-
erties of DPLS are inspected by Ni et al. [11], in detail. Here, because of the smoothing
spline method is used for estimating themodel, findings for the high censoring level (40%)
very different than from the low censoring level (10%). This case can be explained with a
sensitivity of the smoothing splines to censoring. (See Aydın and Yılmaz [7], for a more
detailed discussion.)

We also analyse the number of selected important explanatory variables are here.
Stodden [35], states that in small sparsity levels – which means much selected explana-
tory variables – an increment in the error of the estimation can be seen; in addition, the
model cannot be estimated correctly for less sparse cases. In this context, when Table 1
is inspected carefully, it should be emphasized that the models that contain more predic-
tors have higher variances. The number of selected q-explanatory variables tends to change
depending on the magnitude of both the number of parameters p and sample size n.

To better understand the performance of the estimation procedure from the paramet-
ric component, we use real observations of the response variable and their fitted values
obtained frommodel (23) with different p covariates. To illustrate this point, Figure 1 offers
four plot diagrams. To save space, only four combinations are presented in this figure,
because there are many different situations and it would be both difficult and inefficient
to present all of them. In each panel, three levels for the number of parameters are illus-
trated with three separate locations on the y-axis. The aim of Figure 1 is to see teh effects

Figure 1. Real observations and fitted values, which were obtained from the parametric component of

model (24), based on different simulation scenarios. The red line denotes the fitted values (i.e., X̃
′1n

β̂1n)

for p = 300, where X̃1n represents the vector of the selected explanatory variables associated with the
vector β̂1n of nonzero coefficients. Similarly, the blue line denotes the fits for p = 1000, and the green
lines represents the fits for p = 3000. L denotes the ordered values range from 1 to sample size n.
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of the censoring levels, sample sizes and the number of parameters on the estimation
performance.

The upper two panels in Figure 1 show the real observations and their fitted values for
n = 50, two different censoring rates and three different dimensions (p). The bottom-left
panel of Figure 1 displays the fits obtained from the parametric component of the model
(23) for sample of size n = 100, C.R. = 10% and three different dimensions, while the
bottom-right panel of the same figure indicates the fits, but for n = 200 and C.R. = 40%.
As expected, censoring level affected the performance of the estimator in a negative way
for all sample sizes. It should also be noted that as the number of covariates p get large, the
quality of the estimates declines. This case can be seen explicitly in the bottom-right panel
of Figure 2.

Figure 2. Boxplots of the variances of the estimated nonzero regression coefficients for different values
of the shrinkage parameterλ. In each panel ‘lambda = 0.000001and lambda = 2’ denote the small and
high values of shrinkage, respectively. All other values of lambda represent the shrinkage parameters
selectedbyGCV. Theupperpanel shows theboxplots of the variances from thedatawithC.R. = 10%and
(n, p) = (50,300) and (50, 1000), respectively. The bottom panel presents the boxplots of the variances
from the observations with C.R. = 40% and (n, p) = (100, 3000) and (200, 3000), respectively.

C.R.=10% 
(0 
C 

n =50, p=300 n =50, p = 1000 q 
C 

"' C 
C 
0 

tO ~ Q) q 

EJ 
~ C -0 .., 
Q) 

0 

9 
q 

u 0 
C: 
al N ·c:: 8 tO C > 

0 
i 0 

_l._ __ 
0 

C __ J _____ 0 -----·---0 
0 

lambda=0.000001 lambda=0.0034 lambda=2 lambda=0,000001 lambda=0.00011 lambda=2 

C .R.=40% 
0 0 <') 
0 
0 n = 100, p = 3000 8 n = 200, p = 3000 

"' I N 
0 

0 0 
0 

~ 
0 
N 
q 

Q) 0 
~ - "' 0 q 0 

Q) 0 0 

u -"---
C: C I 

b 
tO q "i 0 

> "' 0 

_L q __ t_ 
0 

I 0 
0 ---.J---q 
0 

lambda =0.000001 lambda=0.0012 lambd•=2 lambda=0.000001 lambda =0.002 lambd•=2 



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 999

Note that one of the most important issues in lasso-type estimation procedures is the
over-fitting problem, resulting in noisy estimates. A careful inspection of the outcomes
from the parametric component illustrated in Table 1 and Figures 1–2 indicates that the
DPLSmethodproduces estimateswith satisfactory accuracy. The boxplots in Figure 2 show
the averaged variance estimates of nonzero regression coefficients for different shrinkage
parameters under various simulated data sets with censoring rates 10% and 40%. To save
space, only four simulation combinations are illustrated in Figure 2. It is clear that the
GCV method selects the optimum shrinkage parameter λ. It should be emphasized that
the variances of nonzero regression coefficients based on parameter λ selected by GCV are
optimal compared to the other shrinkage parameters (see Figure 2). This means that GCV
provides a balance between the magnitude of error and degree of freedom.

The impact of the censoring rate and the number of parameters can be detected more
easily in the results of the nonparametric component of the model. In order to depict this
impact, Table 2 includes the MSE values from the nonparametric component of the model
(23). Firstly, it should be noted that the results are comparatively good, considering the
very problematic data from which they arise. Apart from these, the outcomes from the
nonparametric part of the model are similar to the parametric component in terms of the
magnitude of the censoring levels and the number of variables p. There is a remarkable
point that needs to be explained in this study; normally, the smoothing spline method is a
sensitive method for estimating censored data by using synthetic data, since all data points
are used as node points. In this study, however, smoothing splinemethod appears to be less
affected by censorship because it is used in conjunction with DPLS. As shown in Table 2,

Figure 3. Real observations and their estimated curves for f (.) for different sample sizes, censoring
levels and number of parameters.
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the MSE value is 0.1980 for the low censoring rate (10%) and p = 300, whereas the MSE
is 0.3841 for the high censoring level (40%).

Figure 3 is designed for the nonparametric component; it is similar to Figure 1 and
proves the outcomes given in Table 2. Here, the effect of the censoring rate can easily be
seen in the top-right panel of this figure. Moreover, in each of the panels, estimated curves
of the p = 3000 seem worse than the others. By looking at Figure 3, one can easily notice
the improvement of the estimation when the sample size is getting larger.

It is worthwhile to note that some of the disruptions that can be seen in the esti-
mated curves are heavily censored. One of the most important causes of this is syn-
thetic data transformation, because synthetic data transformation increases themagnitude
of the uncensored observations and replaces censored points with zero to provide the
E[yiĜ|xi, ti] = E[yi|xi, ti].

6. Real data example

In this section, we used Norway/Stanford Breast Cancer (NSBC) data set to estimate the
censored semiparametric regression model with high-dimensional. This data set is pro-
vided by Sorlie et al. [36], who studied the analysis of the patterns of the gene expressions
to distinguish the subtypes of the breast tumours. This data set is also used by Li et al. [37],
to obtain a parametric regression model for high-dimensional survival data.

ThementionedNSBCdata set includes gene expressionmeasurements of 115malignant
tumours obtained fromwomen. Of the 115 patients, 33% (38) experienced an event during
the study. In other words, censoring rate is 33%. It is also noted that the nonparametric part
of the semiparametric model is composed of a univariate variable t, while the parametric
part is constructed using 548 explanatory variables to estimate the survival times of the
patients. For this example, a right-censored semiparametric model with high-dimensional
data is specified by

y(survival time)iĜ = xiβn + f (ti) + εiĜ, i = 1, . . . , 115 (24)

where xi = {(xi1, . . . , xip)′, i = 1, 2, . . . , n where n = 115 and p = 548} denotes the
vector-valued variables, βn is p x 1 vector of regression coefficients, ti is one point of the
gene expression measurement data, and f (.) is a nonlinear function of data points ti. The
results, which are graphically displayed in Figure 4, demonstrate that there is a nonlinear
relationship between nonparametric and response variables.

Note also that the smoothing and penalty tuning (or shrinkage) parameters selected by
GCV are λ1 =0.00005 and λ2 = 0.00012 , respectively. Using these parameters, some of
the outcomes obtained from the censored semiparametric regression analysed are sum-
marized in Table 3 for the NSBC data set. As you can see, these results reveal that the
semiparametric model (24) with a nonparametric component is reasonable for this data
set.

When dealing with the high-dimensional problem, a key issue is to have a good insight
into the variance of the estimator. The estimated averaged-variance of the regression coeffi-
cients is 0.14259 for this data set, as shown in Table 3. This value reveals that DPLS leads to
a consistent variance estimation of parametric coefficients in the censored semiparametric
model. In Figure 5, we present the nonparametric component of the model (12), through
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Figure 4. Nonlinear relationship between ti and response variable yi .

Table 3. The results from the estimated regressionmodel

MSEy MSEf TΣ11 q

NSBCD set 3.00214 8.17324 0.14259 56

Figure 5. Real response observations and fitted curve, which are considered nonparametric compo-
nents of the right-censored high-dimensional semiparametric model using DPLS.

which one can clearly see that theDPLSmethod also works well for the nonparametric part
of the model in spite of the aforementioned censoring and high-dimensional problems.

7. Concluding remarks

In this paper, to estimate the semiparametric regression model with high-dimensional
and right-censored data, we used the double-penalized least squares (DPLS) method, as
indicated before. To better understand themethod, simulation experiments and a real data
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example are carried out.We present the results obtained from the simulation study and the
real data example in Figures 1–5 and Tables 1–3; the results that the DPLS method is both
useful and feasible in the estimation procedure of the semiparametric regression model
under censored high-dimensional data.

The empirical results of our study confirmed that theDPLSmethod generally performed
well under high-dimensional censored data. Although the censoring level in the simula-
tion is increased by up to 40%, the method has not lost its stability and accuracy. However,
as the level of censorship increases, the quality of estimates decreases, as expected. In sum-
mary, based on the numerical simulation experiments and real data results, the following
suggestions and conclusions should be considered:

• The DPLS method gives reasonable results for all censoring levels, sample sizes and
the number of parameters. More specifically, one can see in Tables 1 and 2, that the
performance of the method is affected by the number of parameters and the censoring
rate. Under the condition of p � n, in general, as the number of model parameters
increases, the performance of the model is decreased.

• Interestingly, the DPLS method is resistant to the censoring rate. When this ratio is set
to 40%, we expected that the results would be much worse. However, when the results
are compared with the classical (p = 5) results in Tables 1 and 2, it is clear that the DPLS
estimator works reasonably well under the level of heavy censorship. This case proves
that the SAFE rule stated in step 4 of the computational algorithm recovers the correct
model and has an oracle property.

• In the real data example, we used the NSBC data set and obtained satisfactory results;
these are presented in Table 3 and Figure 5. Outcomes of real data are in harmony with
simulation study when n = 100 and p = 1000.

• For both studies, the estimated curves of the nonparametric component are shown in
Figures 3 and 5. These outcomes denote that when the censorship ratio and the number
of parameters increase, the curves begin to deteriorate, as in the results obtained from
the parametric component of the model.

In conclusion, the overall results of two numerical studies demonstrated that the
introduced DPLS method provides reasonable estimation procedure for semiparametric
regression model with right-censored and high-dimensional data.
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