ARAŞTIRMA YAZISI / RESEARCH ARTICLE

KONTRASTLA İNDÜKLENEN NEFROPATİNİN TAVŞAN MODELİNDE CURCUMİNİN KORUYUCU ETKİSİNİN ARAŞTIRILMASI

INVESTIGATION OF THE PROTECTIVE EFFECT OF CURCUMIN IN A RABBIT MODEL OF CONTRAST - INDUCED NEPHROPATHY

Zülfükar Kadir SARITAŞ¹, Hazen SARITAŞ², Musa KORKMAZ¹, H.Hüseyin DEMİREL¹, Aziz BÜLBÜL³, Tuba Berra SARITAŞ⁴, Fatma GÖRÜCÜ¹

¹Afyon Kocatepe Üniversitesi Veteriner Fakültesi, Cerrahi Ana Bilim Dalı ²Aksaray Üniversitesi Tıp Fakültesi İç Hastalıkları Ana Bilim Dalı, Nefroloji Bilim Dalı ³Muğla Sıtkı Koçman Üniversitesi Milas Veteriner Fakültesi, Fizyoloji Bölümü ⁴Afyonkarahisar Sağlık Bilimleri Üniversitesi Tıp Fakültesi, Anesteziyoloji ve Reanimasyon Ana Bilim Dalı

ÖZET

ABSTRACT

AMAÇ: Tavşanlarda curcuminin kontrast nefropatisi üzerine etkilerinin araştırılması.

GEREÇ VE YÖNTEM: Bu çalışmada 14 yetişkin, 2,5-3 kg beyaz erkek Yeni Zelanda tavşanı rastgele 3 gruba ayrıldı. Gruplar kontrol grubu (n=2), kontrastla indüklenen nefropati grubu (n=6) ve Curcumin grubundan (n=6) oluşturuldu. Curcumin grubunda kontrast madde verilmesinden bir gün önce ve kontrast maddenin verildiği gün 500 mg/kg Curcumin gastrik gavaj ile uygulandı. İopromid kontrast nefropatisini oluşturmak için 30 dakikalık süre boyunca Vena auricularis marginalise bir katater yerleştirilerek 8 g/kg dozda intravenöz olarak enjekte edildi.

BULGULAR: Kontrastla indüklenen nefropati grubunda Miyeloperoksidaz düzeyi 0. Saatte 4,899±0,424ng/ml bulunurken 48 saat sonra anlamlı bir artış (7,467±0.353 ng/ml) gözlendi (p=0,002). Kontrastla indüklenen nefropati grubunda glomerüllerin vakuolizasyonu, tübüler epitel hücrelerinin vakuoler dejenerasyonu, hiyalin silindirleri ve tübül lümeninde tübüler nekroz Curcumin grubuna göre istatistiksel anlamlı olarak yüksekti (P=0,000).

SONUÇ: Bu sonuçlara dayanarak, güçlü bir antioksidan olan Curcuminin 24 ve 48 saat sonra kontrastla indüklenen nefropatiye karşı önemli bir koruyucu etkiye sahip olduğu sonucuna varıldı. Bu nedenle kontrast maddelerin kullanılmasından önce Curcumin uygulanması, seçilmiş vakalarda kontrastla indüklenen nefropatiyi önlemek için yararlı olabilir.

ANAHTAR KELİMELER: Kontrast nefropatisi, Curcumin, lopramid, Tavşan. **OBJECTIVE:** To evaluate the effects of curcumin on contrast nephropathy in rabbits.

MATERIAL AND METHODS: In this study, 14 adult, 2.5-3 kg white male New Zealand rabbits were randomly divided into 3 groups. Goups consisted of the control group (n=2) consisted of the contrast-induced nephropathy group (n=6) and the Curcumin group (n=6). In the curcumin group, curcumin was administered via gastric gavage at a dose of 500 mg/kg one day before and on the day of contrast agent administration. Iopromide was injected intravenously at a dose of 8 g/kg via a catheter in the V. auricularis marginalis over a period of 30 minutes at a slow rate to induce contrast nephropathy.

RESULTS: Myeloperoxidase was 4,899 \pm 0,424 ng/ml at hour 0 in the contrast-induced nephropathy group and a significant increase was observed after 48 hours (7.467 \pm 0.353 ng/mL) (p=0.002). In the contrast-induced nephropathy group, vacuolization of the glomeruli, vacuolar degeneration of the tubular epithelial cells, hyaline casts, necrotic tubular epithelial cells in the tubules was statistically higher compared to the curcumin groups (P=0.000).

CONCLUSIONS: Based upon these results, it was concluded that curcumin, which is a strong antioxidant, had a significant protective effect against contrast-induced nephropathy after 24 and 48 hours. Therefore, the administration of curcumin before the contrast material administration may be beneficial to prevent nephropathy in selected cases.

KEYWORDS: Contrast induced nephropathy, Curcumin, lopromid, Rabbit.

Geliş Tarihi / Received: 19.01.2021 Kabul Tarihi / Accepted: 04.11.2021 Yazışma Adresi / Correspondence: Dr. Öğr. Üyesi Hazen SARITAŞ

Aksaray Üniversitesi Tıp Fakültesi İç Hastalıkları Ana Bilim Dalı, Nefroloji Bilim Dalı **E-mail:** hazensaritas@hotmail.com

Orcid No (Sırasıyla) : 0000-0002-7659-6635, 0000-0001-9929-0930, 0000-0002-7646-0009, 0000-0002-4795-2266, 0000-0003-0995-3986, 0000-0002-3206-6851, 0000-0001-7630-0788

Etik Kurul / Ethical Committee: Ethics Committee for Animal Experiments at Afyon Kocatepe University (24.10.2017/283-17).

INTRODUCTION

With the development of modern medicine, imaging methods have been widely used for diagnostic and therapeutic purposes. To enhance imaging quality, contrast materials are utilized. In addition to the positive properties of iodinated contrast materials, allergic hypersensitivity reactions and side effects related to cardiac (hypertension, tachycardia, arrhythmia), circulatory (platelet aggregation, vascular wall contraction, thrombosis) and renal issues have been reported in relation to their use. The contrast material is filtered freely from the kidney glomeruli without release or absorption by the tubules. Renal clearance of contrast material in humans is similar to creatinine clearance with a half-life of 30 to 60 minutes. Because of the increase in the number of elderly patients and patients with comorbidities in the last 30 years, contrast materials have rapidly increased to the top among toxic substances causing kidney damage. Contrast materials are reported to be responsible for 5 % to 30 % of acute kidney injury cases in hospitalized patients (1).

The morphologic changes in the kidney during contrast-induced nephropathy (CIN) have not been adequately investigated. While biopsy results showed that 20 % of patients had vacuoles in the cytoplasm of the proximal tubules, it has been reported that renal tissue does not show significant morphologic changes (2).

The mechanisms leading to CIN are not fully known. Studies have shown that renal medullary hypoxia and direct cellular toxicity are two important mechanisms that become prominent in the development of nephrotoxicity. Contrast material initially causes vasodilatation in the kidney; thereafter, vasoconstriction causes a decrease in renal blood flow and glomerular filtration. The levels of endothelin, angiotensin, and vasopressin, which are vasoconstrictor-effective hormones, were found to be high after contrast intake; and inhibition was found in the synthesis of the vasodilators prostaglandin and nitric oxide. It is known that as a result of contrast media intake, increased blood viscosity and osmotic load in the distal tubules, and an impaired tubuloglomerular "feedback" mechanism, contribute to the development of hypoxia (3, 4).

In recent years, antioxidant agents have become prominent in the prevention of CIN. Due to its antioxidant effect, N-acetylcysteine can prevent CIN by inhibiting renal hemodynamics and direct oxidative damage (5). This effect is considered to be generated through the prevention of renal vasoconstriction by increasing nitric oxide production (6). Ascorbic acid, an antioxidant agent, has been reported to have a protective effect against CIN (7, 8). Studies performed with theophylline and aminophylline, which belong to the adenosine antagonist group, also showed promising results (9, 10).

Curcuma longa, a plant belonging to the Zingiberaceae family, is commonly found in India and China. CUR (diferuloyImethane), the active substance of turmeric obtained from the roots of this plant, is the main component of curry spice. In addition to the antioxidant properties of CUR, its anti-inflammatory, immunomodulatory, anti-tumoral, and anti-psoriatic efficacy has also been demonstrated (11). CUR exhibits antioxidant activity by inhibiting the conversion of xanthine dehydrogenase to xanthine oxidase, as well as lipid peroxidation, and aggregating the reactive oxygen species in the ischemic environment (12, 13). By increasing the activity of enzymes catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPX), CUR reduces peroxidation of lipids found in the cell membrane (14). Studies have shown that curcumin inhibits nitric oxide synthesis (12, 15). This study aimed to determine whether single dose curcumin had a positive effect in a rabbit model of CIN or not. For this purpose, biochemical, electrolyte, and antioxidant parameters were measured, and histopathologic examination of serum and tissue samples was performed.

MATERIAL AND METHODS

Animals

All animals were given human care in accordance with the criteria of the Guide for the Care and Use of Laboratory Animals, published by the US National Institutes of Health. In this study, 14 adult male white New Zealand rabbits weighing 2.5 kg to 3 kg were used. The rabbits were individually housed with standard rabbit feed and water ad libitum in standard climate conditions for the species. After 5 days of acclimatization to the laboratory environment, the rabbits were randomly divided into 3 groups, identified as the control (n=2), contrast-induced nephropathy (n=6), and the curcumin (n=6) groups.

Experimental Design

Control Group n=2: Rabbits in this group were not given curcumin and contrast material throughout the study.

CIN Group, n=6: On day 0, rabbits in this group were sedated by intramuscular injection of Xylazine HCI (Rompun, 23.32 mg/ml, Bayer, Germany) at a dose of 3 to 5 mg/kg. lopromide (Ultravist[®], Bayer, Berlin, Germany) was injected intravenously at a dose of 8 g/kg via a catheter in the V. auricularis marginalis over a period of 30 minutes at a slow rate. Rabbits were euthanized after 48 hours with a high dose of thiopental sodium.

CUR Group, n=6: The rabbits in this group were treated with curcumin (Sigma Life Science, Lot: SLBN7214V, MO, USA) (dissolved in ethanol by gastric gavage at a dose of 500 mg/kg which is covered with 2 ml physiological saline solution, once on the day before CIN (-1 day) and on day 0. lopromide also given to this group at day 0. After 48 hours, rabbits in all group were euthanized with a high dose of thiopental sodium.

Right and left kidneys were excised at necropsy for histopathologic examination.

Evaluation Of Renal Function

Serum urea and creatinine values were measured in venous blood samples as a marker of the glomerular functions at hour 0 (just before contrast material administration) and after 2, 12, 24 and 48 hours using an autoanalyzer (Human Humastar-180).

Ischemia Modified Albumin (IMA) levels in rabbits were measured by using an ELISA kit (Rabbit IMA ELISA Kit Cat No. YLA0164RB- Shanghai YL Biotech Co. Ltd., China).

Malondialdehyde (MDA) in blood samples, as well as the oxidative stress parameters Nitric Oxide (NO), Superoxide Dismutase (SOD), and Antioxidant Activity (AOA), were measured in tissue and blood samples. Antioxidant activity were measured by commercial Elisa kits with an MVGt Lambda Scan 200 (Bio-Tek Instrument, Winooski, VT, USA). Myeloperoxidase (MPO) activity, used as an indicator of neutrophil accumulation in the tissue, was measured using a Rabbit MPO Elisa Kit (Sunred Rabbit MPO ELISA Kit Cat. No. YLA0057RB-Shanghai YL Biotech Co. Ltd., China), (16, 17).

Biochemical Measurements

Serum MPO (Sunred Rabbit MPO ELISA Kit Cat. No. YLA0057RB-Shanghai YL Biotech Co. Ltd., China), AOA (Cayman chemical campany, ELISA Kit Cat. No. 709001), and MDA levels in the samples were measured by the Elisa method(18). SOD efficacy was determined according to the method reported by (19). For the measurement of nitric oxide in serum samples, the modified method reported by (20) was used where nitrite + nitrate level was used as an indicator of nitric oxide. Blood gases and potassium, calcium, sodium, chloride levels in venous blood samples taken from all groups at hours 0, 2, 12, 24, and 48 were measured on a blood gas analyzer (Radiometer, ABL 9, Copenhagen, Denmark). Hemogram measurement was performed on the blood samples from all groups using a Cell Counter (Huma Cell Count 80 TS).

Histopathologic Examination

The kidneys of the necropsied animals were fixed in 10% buffered neutral formalin solution. After 48 hours, the specimens were trimmed and placed into cassettes for follow-up tissue evaluation. Tissues were run through an alcohol and xylene series and then were blocked in paraffin. Blocks were cut at a thickness of 4-5 microns with a microtome and transferred to microscope slides. Sections stained with hematoxylin-eosin (HE) were examined under a light microscope.

Statistical Analysis

Data were presented as mean \pm standard deviation (SD). Non-parametric ANOVA was used to determine the alterations in biochemical, electrolyte and oxidative stress parameters. In addition, a Tukey test was used for significant data. The histopathological data evaluations were analyzed using one-way analysis of variance (ANOVA), followed by Duncan post-hoc tests. Data were analyzed using Statistical Package for Social Sciences software (SPSS, 18.0, USA). p<0.05 was considered significant.

Ethical Committee:

The study started with the approval given by the Local Ethics Committee for Animal Experiments at Afyon Kocatepe University (approved on 24/10/2017 and number of AKÜ HAD-YEK-283-17).

RESULTS

There was a no statistically significant increase in serum creatinine (sCr) levels at 24 and 48 hours in the CIN Group (p>0.05). However, a statistically insignificant increase in sCr levels was observed at 24 and 48 hours in the CUR group. There was no statistically significant change in serum urea value in both groups and at all times. **Table 1** shows the findings regarding serum urea and creatinine values.

Table 1: Serum Urea and creatinine values in the CIN and CUR groups

Parameter/Group		Hour O	Hour 2	Hour 12	Hour 24	Hour 48	р
Urea (mg/dl)	CIN	33.300±1.811	33.883±3.365	38.150±1.980	37.533±1.488	36.046±1.001	0.411
	CUR	40.333±9.732	43.766±9.261	46.800±9.426	39.617±11.771	36.233±6.984	0.947
Р		0.472	0.342	0.462	0.853	0.876	
Creatinine (mg/dl)	CIN	0.4135±0.171	1.216±0.145	0.860±0.206	1.218±0.166	1.075±0.127	0.460
	CUR	0.933±0.077	0.805±0.120	0.9150±0.061	0.9133±0.045	0.948±0.060	0.712
P 0.206 0.793 0.238 0.402 0.991S							
Values with p <0.05 were considered significant. Values having different letters (a, b, ab and c) (p<0.05) on the same row at in-group measurement times were considered to be significantly different.							

While there was a statistically significant decrease in serum ionized calcium level at 48th hour in the CIN group (p<0.05), no statistically significant change was observed in the CUR group at all measurement times. A statistically significant increase was observed in the serum Chlorine level in the CIN group at the 12th hour. A statistically significant decrease was observed at the 24th hour compared to the 12th hour. In the 48th hour, it decreased to the baseline level. Chlorine value in the CUR group remained within the reference range at all times. A statistically significant increase was observed in the sodium level in the CIN group at the 12th, 24th and 48th hours (p<0.001). Although a statistically significant increase was observed in the sodium level in the CUR group compared to the baseline value at all measurement times, the change in the measurement values was within the reference range. The findings regarding serum electrolyte values are shown in Table 2.

 Table 2: Serum electrolyte levels in groups

	Р	0.632	0.326	0.531		0.435	
K+ (mmol/L)	CIN CUR	4.933±0.547 4.692±0.143	4.080±0.110 4.143±0.064	4.195±0.198 4.378±0.227	4.615±0.257 4.413±0.132	3.921±0.130 4.510±0.297	0.128 0.472
	Р	0.582	0.651	0.495	0.477	0.034	
Na+ (mmol/L)	CIN CUR	135.166±0.600b 135.333±3.565b	135.500±0.763b 141.666±1.38a2	138.500±0.500ba 143.000±1.125a	136.333±0.494b 143.666±1.145a	139.000±1.032 a 141.333±1.054 a	0.001 0.038
	Р	0.966	0.003	0.008	0.006	0.122	
Ca** (mmol/L)	CIN CUR	1.465±.0628a 1.637±0.030	1.548±.0164a 1.603±0.053	1.576±.0226a 1.555±0.102	1.485±.0256a 1.533±0.056	1.230±0.089b 1.415±0.068	0.001 0.269
	Р	0.083	0.396	0.859	0.395	0.160	
Cl [.] (mmol/L)	CIN CUR	97.500±1.335b 107.000±1.632	99.000±1.483b 108.833±1.558	103.166±0.703a 109.666±1.498	100.833±1.492ab 109.000±1.143	97.000±0.856b 107.166±1.222	0.009 0.677
	Р	0.000	0.003	0.009		0.000	
Values with p <0.05 were considered significant. Values having different letters (a, b, ab and c) (p<0.05) on the same row at in-group measurement times were considered to be significantly different							

A statistically significant increase in White blood cell (WBC) value was observed in the CIN group 24 hours after contrast agent administration (p<0.05). Although there was a slight increase in the CUR group, it was not statistically significant. Similarly, there was a statistically significant decrease in Hemoglobin (Hb) after 24 hours in the CIN group (P<0.05), while the decrease in the CUR group was not statistically significant (P>0.05). Whole blood results from the study are shown in **Table 3**.

Table 3: Blood gas analysis results from the CIN and CUR groups

Parameter/Group	Hour 0	Hour 2	Hour 12	Hour 24	Hour 48	р
pH [-log10H*] CIN CUF	7.461±0.026 7.223±0.089b	7.450±0.017 7.426±0.015a	7.436±0.013 7.398±0.040a	7.470±0.022 7.406±0.021a	7.448±0.030 7.403±0.015a	0.865 0.026
р	0.019	0.407	0.491	0.046	0.349	
PCO2 (mmHg) CIN CUE	30.850±2.497b 32.950±3.243a	31.966±0.863b 26.283±1.242b	29.266±1.139b 27.683±1.494ab	28.716±1.425b 28.366±0.605ab	44.556±3.018a 34.150±2.769a	0.000 0.056
р	0.508	0.012	0.538	0.837	0.078	
PO ₂ (mmHg) CIM CUF	80.833±4.742 96.666±11.259	70.666±1.605 69.833±5.850	80.666±6.765 77.666±6.146	80.333±12.459 79.666±4.572	63.500±7.776 56.166±4.430	0.392 0.007
р	0.171	0.912	0.805	0.962	0.472	
Hct CIN CUE	34.333±1.429a 39.333±3.179	34.500±1.821a 40.000±1.632	32.333±1.563ab 39.666±1.837	27.833±1.740bc 37.166±2.773	24.500±2.446c 37.666±1.909	0.002 0.880
р	0.267	0.009	0.002	0.003	0.016	
HCO3 (mmol/L) CIN CUE	21.783±1.383b 13.883±1.865b	22.266±0.946b 17.333±1.125ab	19.666±0.661b 17.166±1.251ab	20.966±1.386b 17.966±1.045ab	30.666±1.072a 21.300±1.490a	0.000 0.018
р	0.001	0.025	0.213	0.141	0.001	
AGAP (mmol/L) CIN	15.933±1.533 14.500±2.315	14.250±0.625 15.766±1.003	15.316±0.555 16.266±1.115	14.633±0.760 19.300±0.000	11.466±1.697 12.816±1.342	0.090 0.388
CUE						

Values with p <0.05 were considered significant. Values having different letters (a, b, ab and c) (p<0.05) on the same row at in-group and same column at inter-groups measurement times were considered to be significantly different.

In our study, no statistically significant difference was observed in the venous blood gas parameters in both groups at the 24th and 48th hours (P>0.05). The results regarding the venous blood gas parameters are shown in **Table 4.** In this study, while the MDA level in the kidney tissue in the CIN group showed a statistically significant (p<0.05) increase at the 24th and 48th hours, no change was observed in the MDA level in the CUR group at all measurement times compared to the baseline value. The decrease in NO level at the second hour in the CUR group was statistically significant compared to the CUR group was statistically significant compared to the CUR group was statistically significant compared to the CUR group was statistically significant compared to the CUR group was statistically significant compared to the CUR group was statistically significant compared to the CUR group (P<0.032). An increase in SOD en-

zyme levels was observed in both CIN and CUR groups. However, the increase in SOD enzyme activity in the CUR group at 24 and 48 hours was statistically significant (p<0.05). In our study, a statistically insignificant mathematical increase in IMA level was recorded in the CUR group at the 48th hour measurement (P=0.052). MPO at 0 hour was 4.899 ± 0.424 in the CIN group; A significant increase was observed after 48 hours (7.467 ± 0.353) (p=0.002). Antioxidant activity (AOA) was found to be significantly higher in the CUR group after 48 hours compared to the CIN group $(4.700 \pm 0.446, 6.611 \pm 0.391, \text{ res-}$ pectively) (p=0682), **Table 5** shows the oxidant/ antioxidant parameters measured from serum samples of the CIN and CUR groups.

Table 4: Complete blood analysis results from the CIN and CUR groups

VBC 10 ³ /µ CIN 7.00±0.500 10.433±0.972 7.5167±0.611b 1.066±2.056 10.333±1.196 ab 1.500±1.074 13.3667±2.30 ab 1.3500±1.074 0.014 0.3266±1.027 p 0.094 0.007 0.186 0.033 0.771 0.3266±1.027 0.3266±1.027 P 0.094 0.007 0.186 4.366±0.337 7.800±2.323 0.00±2.758 533:1.340 0.125 P 0.683 0.420 0.049 0.078 0.575 0.029 0.0166 0.0329 0.0166±0.212 0.0160 0.0160 0.0160 0.0160 0.0160 0.0160±0.212 0.0160±0.212 0.029 0.0166±0.212 0.029 0.0166±0.212 0.029 0.0166±0.212 0.016 0.0352 0.333±0.136 0.066 0.036±0.029 0.136±0.212 0.029 0.016±0.212 0.029 0.016±0.212 0.029 0.016±0.212 0.029 0.0352 0.333±0.013 0.016±0.212 0.029 0.036±0.212 0.029 0.036±0.212 0.029 0.036±0.212 0.029 0.036±0.212 0.036±0.212 0.021 0.036±0.212 0.036±	WBC 10 ³ / µl	CIN	0					
LYM CURCIR 5433±1.16604.783±0.397 1.16±0.876ab3.750±0.323 2.416±0.436a4.366±0.437 6.400±0.72557.800±2.328 5.33±1.3340.125 0.047P0.6630.4200.0490.0780.575 0.3350±1340.029 0.108Mon CIR0.81510.2010.33700.4190.676±0.125 0.3330±1040.029 0.108p0.8510.2010.3370.4190.670Gran CUR2.483±0.340 4.633±1.3542.933±0.470 8.733±1.7483.416±0.637 8.166±1.9084.883±1.132 6.566±1.3414.809±0.575 6.416±1.2560.066 0.383p0.2280.0140.0740.3520.3330.156 6.416±1.2560.367 0.333p0.5660.0090.0200.8520.573 4.335±1.6033.118±530 4.335±0.70074.333±1.673 4.335±7.0074.333±1.673 4.335±7.0074.333±1.673 4.335±7.0074.333±1.673 4.335±1.0330.156 6.001±1.1373.516±0.211 	р	CUR	7.700±0.666b 10.433±0.972 0.094	7.9500±0.717b 13.283±1.438 0.007	7.5167±0.611b 11.066±2.056 0.186	10.1333±1.196 ab 13.500±1.074 0.053	13.3667±2.30 0a 13.266±1.102 0.971	0.014 0.385
P6636420604960786.751MonCIN CIN Science6400-0138 Science3.316-0.07b A3330.0803.580-0.37b Science5.533-0.17b Science7.660-0.25 Science7.660-0.25 Science7.660-0.25 Science7.660-0.25 Science7.660-0.25 Science7.660-0.25 Science7.660-0.25 Science7.660-0.25 Science7.660-0.25 Science7.660-0.25 Science7.660-0.25 Science7.660-0.25 Science7.660-0.25 Science7.660-0.25 Science7.660-0.25 Science7.660-0.25 Science7.660-0.25 Science7.660-0.25 Science7.660-0.25 Science7.600-0.25 	LYM	CIN CUR	4.816±0.514 5.433±1.166b	4.783±0.397 4.116±0.876ab	3.750±0.323 2.416±0.436a	4.366±0.437 6.400±0.725b	7.8000±2.328 5.933±1.334b	0.125 0.047
MonClN CUR0.400±0.103b 0.356±0.07b 0.433±0.080b0.350±0.13b 0.433±0.094b0.833±0.245b 0.533±0.104 0.533±0.1040.766±0.125b 0.916±0.2120.916±0.212b 0.916±0.212p0.8510.2010.3370.4190.670GranCIN CUR2.43±0.3400.0740.3520.393p0.2280.0140.0740.3520.393p0.280.016±5.223 3.50±1.1755.18±5.396 3.6050±20947.016±8.370 2.5117±5.2547.016±8.370 4.935±0.70041.33±7.171 4.933±0.8730.370 4.933±0.873p0.5660.0090.0200.8520.573±1 4.33±1.5010.295 6.00±1.1470.335 4.33±1.5010.50±1.499 4.33±1.5010.295 6.01±1.14p0.1870.3360.8800.2610.8660.295 9.30±657.5720.285 0.1515p0.1870.3350.351±1.331 5.541±0.20ab5.541±0.20ab 6.06±0.3313.573±2.420 5.76±0.6270.336±67.572 0.0220.285 0.021p0.070.0400.070.070.020.021p0.030.0400.7570.020.0020.014p0.030.030.7070.0170.0020.002p0.030.030.7070.0170.0020.002p0.030.030.7070.0170.0020.002p0.030.030.8470.033±1.8323.540±1.833 5.541±0.20ab3.543±3.230±1.873 	Р		0.683	0.420	0.049	0.078	0.575	
p0.8510.2010.3370.4190.670GranCIN2433:0.3022433:0.4703416:0.6378.831:1.32360:0.5750.366p2280.0140.740.3220.3133413234132.17134132.17134132.171pCIN350:014.17536.00:01.552335.1175.52547.305.681.30334133.217134154.47034133.217134154.47034133.217134154.47134154.47134154.47134154.47134154.47134154.47134154.47134154.47134154.47134154.47134154.47134154.47134154.47134154.47134164.471 <th>Mon</th> <th>CIN CUR</th> <th>0.400±0.103b 0.366±0.098</th> <th>0.316±0.047b 0.433±0.088</th> <th>0.350±0.131b 0.483±0.094</th> <th>0.883±0.245a 0.533±0.196</th> <th>0.766±0.125a b 0.916±0.212</th> <th>0.029 0.108</th>	Mon	CIN CUR	0.400±0.103b 0.366±0.098	0.316±0.047b 0.433±0.088	0.350±0.131b 0.483±0.094	0.883±0.245a 0.533±0.196	0.766±0.125a b 0.916±0.212	0.029 0.108
GranCIN CUN 4.633:1.3542.933:0.470 8.733:1.7483.416:0.637 8.166:1.9004.893:1.132 6.565:1.3614.800:0.575 6.416:1.2500.066 0.330p2.280.10140.0740.3220.3330.716Len% OUNCUN 5.300:1.17153.400:0.5152 3.300:1.7155.1183:5.300 5.1175:5254.303:0.270 4.303:0.82794.3133:1.710 4.313:1.7173.316P0.5660.0090.0200.8520.5732.017Mom% CIN Gram CUN5.566:1.228 3.500:1.5133.516:0.531 3.516:0.5314.316:440 7.161:0563.336:1.639 4.313:1.5036.500:1.419 7.000:1.5120.295 0.205P0.170.3360.8800.2610.8660.216Gram CUN CUN CUN3.531:1.5335.531:2.0313 2.531:1.5335.541:0.2208 2.6433:81104.5150:6.605 2.616:6.57573.366:5.727 3.366:5.7270.202RE10%/ JI LON CUN0.570.0140.0170.8970.515RE10%/ JI LON 	р		0.851	0.201	0.337	0.419	0.670	
p2280.0140.0740.3220.393LenQIN\$2,0004,215\$0,0164,323\$1,183,25396\$4,336,270.\$4,333,270.\$4,333,270.\$4,333,270.\$4,333,270.\$4,333,270.\$4,333,270.\$4,333,270.\$4,334,270.\$4,334,270.\$4,334,270.\$4,334,270.\$4,334,270.\$4,334,270.\$4,334,270.\$4,334,270.\$4,334,270.\$4,334,270.\$4,314,270. <t< th=""><th>Gran</th><th>CIN CUR</th><th>2.483±0.340 4.633±1.354</th><th>2.933±0.470 8.733±1.748</th><th>3.416±0.637 8.166±1.908</th><th>4.883±1.132 6.566±1.361</th><th>4.800±0.575 6.416±1.256</th><th>0.066 0.382</th></t<>	Gran	CIN CUR	2.483±0.340 4.633±1.354	2.933±0.470 8.733±1.748	3.416±0.637 8.166±1.908	4.883±1.132 6.566±1.361	4.800±0.575 6.416±1.256	0.066 0.382
Len%CIN CIN62.4004.415 53.0011.11560.01645.273 54.05028.20051.183.5396 52.117.520247.01648.370 43.93.507.00041.313.1717 43.93.207.0063.70 43.93.207.00P0.5660.0090.0200.8520.57347.01648.373 43.351.016.5001.114 4.133.11036.5001.1212 7.0001.1210.295 0.171Mom%CIN CIN 3.3504.05371.8376.05316.7601.114 4.134.105310.2610.8680.2610.8670.202 0.001.1210.295 0.171P1.870.3360.8800.2610.8667.572 4.3154.1070.285 0.1665.5730.36665.757 0.28250.285 0.2825P0.1870.0110.070.8970.515RBC 10%/µCIN 6.7550.40785.511.0171ab 5.7650.02315.5410.220ab 5.7660.6276.0600.303 0.0205.7310.2020 0.0120.002P0.070.0400.7570.0260.0020.016Hb g/dlCIN 6.5512.0173ab 5.5161.0173ab3.1664.0531ab 3.1664.0531ab1.4350.0633b 	р		0.228	0.014	0.074	0.352	0.393	
P5.660.0090.0200.8220.573MomCIN5.5661.2233.200.0305.001.1147.331.1635.001.153	Len%	CIN CUR	62.600±4.215 53.500±11.715	60.016±3.523 34.050±8.290	51.183±5.396 25.117±5.925	47.016±8.370 49.350±7.060	54.133±7.171 44.933±8.973	0.370 0.156
Mon%CIN CURS55641.228 3330.053742002.0808 515640.53155001.114 4.1321.150578331.633 4.1321.150365001.139 70001.1510.295 0.171P0.1870.3360.8800.2610.8680.2610.868Gram%CUR8.1351.1373 3.1501.153762.4332.811043164.407 70.1664585345.1506.635 46.5164.57536.3665.727 4.5056.0270.123P0.4540.0110.0170.8970.515RE010 ⁴ /µCIN CUR55.311.071ab 6.2955.03155.410.220ab 5.7660.6274.710±.0425b 6.0600.3338.733.0249c 5.1010.2800.000 0.111Hbg/dlCIN CUR4.3530.0478a 15.5164.07452.531.500.078a 15.0000.5693.1364:0531ab 3.1364:0531ab 1.3164:0531ab1.4660.0938b 1.4560.03388.800e.0427c 2.3164:05210.002Ht g/dlCIN CUR4.3331.587a 4.3321.587a3.7360.1439a 3.91661.803ab b)3.34331.332 	Р		0.566	0.009	0.020	0.852	0.573	
P 0.187 0.336 0.880 0.261 0.868 Gram CIN 31.833±3177 5.783±3.00 4.316±4.407 5.151±6.605 8.366±7.77 8.285 P 0.02 8.431±0:11.57 5.783±3.00 7.016±5355 4.515±6.675 8.366±7.72 8.285 P 0.454 0.011 0.017 0.897 0.515 BE010*/IP CIN 5.75±0.2633 5.531±0.171ab 5.541±0.220ab 4.710±0.4255 3.73±0.249 0.002 P 0.07 0.002 0.002 0.002 0.002 0.002 Hb g/dI CIN 5.351±0.171ab 5.541±0.220ab 3.13±0±0.33 3.21±0±0.23 8.00±0.427 0.002 0.002 Hb g/dI CIN 5.351±0.501 3.145±0.503 3.43±0±0.33 2.31±0±0.23 0.002 0.002 HC W 0.033 0.707 0.012 0.024 0.002 HC W 0.026 0.03 0.847 0.33±3±1.25 0.33±3±1.25 0.026 HC W	Mon%	CIN CUR	5.566±1.228 3.350±0.537	4.200±0.808 3.516±0.531	6.500±1.114 4.716±1.056	7.833±1.693 4.133±1.503	6.500±1.499 7.000±1.512	0.295 0.171
Gram% CIN 31.833±3.177 35.783±3.300 44.316±4.407 51.51±6.6055 39.36±5.727 0.285 P 0.454 0.011 0.017 0.897 0.515 RBC 10%/µl CIN 5.705±0.283a 5.531±0.171ab 5.541±0.220ab 4.710±0.425b 5.73±0.242e 0.001 P 0.07 0.000 0.077 0.002 0.002 P 0.79 0.404 7.77 0.023 3.00±0.47c 0.006 P 0.03 0.37 0.011 0.017 0.002 0.002 Hb g/dl CIN 3.550±0.478a 12.733±0.560ab 13.166±0.531ab 11.466±0.998b 8.00±0.47c 0.006 CIN 8.350±0.478a 12.733±0.560ab 3.785±1.580 0.115±0.420ab 3.343±1.581 3.435±0.433 3.216±0.521 0.002 HC % 0.03 0.707 0.107 0.022 0.002 0.002 P 0.266 0.03 0.847 0.116±0.422a 3.343±1.587 3.556±1.406 0.335	Р		0.187	0.336	0.880	0.261	0.868	
P 0.454 0.011 0.017 0.807 0.515 RBC 10*/ µl CIN 5.750±0.233 5.531±0.171ab 5.541±0.20ab 6.060±0.335 5.731±0.123b 6.000 5.711±0.223b 6.000±0.335 5.711±0.235 6.000±0.335 5.711±0.235 6.000±0.335 5.711±0.235 6.000±0.335 5.711±0.235 6.000±0.335 5.711±0.235 6.000±0.335 5.711±0.235 6.000±0.335 5.711±0.235 6.000±0.335 5.711±0.235 6.000±0.235 6.00±0.235 6.000±0.235 6.000±0.235 6.000±0.235 6.000±0.235 6.000±0.235 6.000±0.235 6.000±0.235 6.000±0.235 6.000±0.235 6.000±0.235 6.000±0.235 6.000±0.235 6.000±0.235 6.000±0.235 6.000±0.235 6.000±0.235 6.000±0.235	Gran%	CIN CUR	31.833±3.177 43.150±11.537	35.783±3.300 62.433±8.110	44.316±4.407 70.166±5.853	45.150±6.805 46.516±6.756	39.366±5.727 48.066±7.532	0.285 0.123
RBC 10 ⁺ / µl CIN 5.7552.0283a 6.57551.021 5.531±0.171ab 5.7665.027 5.541±0.220ab 6.060±0.323 5.73±0.249c 5.101±0.280 0.000 5.101±0.280 P 0.079 0.040 0.757 0.002 0.002 Hb g/dl CIN 1.3550±0.478a 15.000±0.569 13.166±0.531a 13.783±1.388 11.466±0.998b 14.350±0.633 8.800±0.427c 12.316±0.521 0.002 P 0.023 0.03 0.707 0.017 0.002 HCT % CIN 4.335±1.572 4.355±1.552 3.16±0.513a 3.16±0.5142 3.434±3.152 5.40±0.11±0.11±0.14 3.434±1.552 5.60±0.102 5.40±0.002 P 0.026 0.030 0.847 0.015 b 0.002 0.001 b P 0.026 0.030 0.847 0.016±0.422 b 2.540±1.402 b 0.021 b 0.002 P 0.026 0.030 0.847 0.016±0.422 b 1.33±0.914 b 0.027 b 0.002 P 0.026 0.0315±0.912 7.013±0.142 b 7.013±0.128 7.013±0.128 7.013±0.128 7.013±0.128 0.018 7.013±0.128 0.027 7.013±0.128 0.017 7.013±0.128 0.018 7.013±0.12	Р		0.454	0.011	0.017	0.897	0.515	
P 0.79 0.404 0.757 0.02 0.021 Hb g/l CN 3.550:0.478 3.1350:0.500 3.136:0.533 3.1456:0.508 3.235:0.500 3.1350:0.500 3	RBC 106/ µl	CIN CUR	5.705±0.283a 6.675±0.407	5.531±0.171ab 6.295±0.331	5.541±0.220ab 5.766±0.627	4.710±0.425b 6.060±0.330	3.573±0.249c 5.101±0.280	0.000 0.118
Hb g/dl CIN 13.550±0.478a 12.733±0.550a 13.166±0.531a 14.46±0.098b 8.80±0.427c 0.000 P 0.023 0.03 0.707 0.017 0.027 HCT % CIN 4.033±1.587a 37.85±1.535a 0.166±1.030a 33.43±3±.020 52.40±1.681c 0.037 P 0.026 0.003 0.847 0.018 0.002 0.037 P 0.026 0.003 0.847 0.16±1.032a 33.43±3±.02b 52.40±1.681c 0.037 P 0.026 0.003 0.847 0.108 0.002 0.007 MCY fl CIN 71.06±0.823 70.683±0.925 70.73±0.912 71.03±0.494 71.83±0.974 0.977 MCY fl CIN 71.06±0.823 70.683±0.925 70.73±0.912 71.03±0.494 71.83±0.974 0.977 MCY fl CIN 70.66±0.823 70.68±0.925 70.73±0.912 70.31±0.124 70.31±0.124 70.31±0.124 70.31±0.124 70.31±0.124 70.31±0.124 70.21±0.133 70.31±0.124	Р		0.079	0.040	0.757	0.002	0.002	
P 0.023 0.03 0.707 0.017 0.002 HCT % CIN 43.033±1587a 37.850±1.639aa 39.166±1.800a 37.850±1.639aa 32.650±1.800a 35.666±1.400a 35.666±1.400a 0.007 P 0.026 0.03 0.847 0.108 0.002 MCY fl CIN 71.066±0.823 30.683±0.255 70.733±0.128 70.313±0.428 70.313±0.428 70.977 MCY fl CIN 71.066±0.823 30.683±0.255 70.733±0.128 70.313±0.428 70.313±0.428 70.313±0.428 70.977	Hb g/dl	CIN CUR	13.550±0.478a 15.816±0.745	12.733±0.560ab 15.000±0.569	13.166±0.531ab 13.783±1.388	11.466±0.998b 14.350±0.633	8.800±0.427c 12.316±0.521	0.000 0.068
HCT % CIN 40.383±1587a 37.850±1.639ab 93.166±1.803ab 33.433±3.102b 25.400±1.681c 0.000 P 0.026 0.003 0.16±4.042ab 42.350±1.877a 35.666±1.4006 0.037 P 0.026 0.003 0.847 0.108 0.002 MCV fl CIN 71.06±0.823 70.683±0.925 70.733±0.912 71.033±0.494 71.333±0.974 0.977 R 0.677 0.6916±1.264 6.916±1.298 70.21±1.337 70.30±1.294 71.032±0.474 71.032±0.494 </th <th>Р</th> <th></th> <th>0.023</th> <th>0.03</th> <th>0.707</th> <th>0.017</th> <th>0.002</th> <th></th>	Р		0.023	0.03	0.707	0.017	0.002	
P 0.026 0.003 0.847 0.018 0.002 MCV fl CIN 7.10.66±0.823 7.0.68±0.925 7.0.73±0.912 7.0.33±0.914 7.9.73 9.97 MCV fl CIN 7.0.31±0.1284 6.9.91±0.1284 7.0.21±0.1337 7.0.30±1.263 0.997 N 0.9.7 0.9.75 0.9.75 0.9.15±0.1284 0.9.15±0.1337 7.0.30±1.263 0.997	HCT %	CIN CUR	40.383±1.587a 46.650±2.007a	37.850±1.639ab 43.783±1.555a	39.166±1.803ab 40.116±4.042ab	33.433±3.102b 42.350±1.873a b	25.400±1.681c 35.666±1.406 b	0.000 0.037
MCV fl CIN 71.066±0.23 70.683±0.925 70.733±0.912 71.033±0.444 71.333±0.914 0.977 CUR 70.316±1.284 69.916±1.264 69.916±1.298 70.216±1.337 70.300±1.263 0.999	Р		0.026	0.003	0.847	0.018	0.002	
P 0.67E 0.69E 0.640 0.621 0.544	MCV fl	CIN CUR	71.066±0.823 70.316±1.284	70.683±0.925 69.916±1.364	70.733±0.912 69.916±1.298	71.033±0.494 70.216±1.337	71.383±0.974 70.300±1.263	0.977 0.999
r 0.07.5 0.005 0.049 0.051 0.544	Р		0.675	0.685	0.649	0.631	0.544	
PLT 10 ² /µl CIN 616.00±46.81 668.83±94.29 618.00±75.58 494.16±52.09 434.66±56.93 0.111 CUR 552.000±83.50 664.833±56.047 689.83±130.00 518.666±13.23 650.000±44.1 0.444 3 3 2 92 92	РLТ 10 ³ / µl	CIN CUR	616.00±46.81 552.000±83.50 3	668.83±94.29 664.833±56.047	618.00±75.58 689.833±130.30 3	494.16±52.09 518.666±13.23 2	434.66±56.93 650.000±44.1 92	0.111 0.444
	Р		0.602	0.978	0.689	0.705	0.058	

Values with p < 0.05 were considered significant. Values having different letters (a, b, ab and c) (p < 0.05) on the same row at in-group measurement times were considered to be significantly different.

 Table 5: Blood oxidant/antioxidant results of the CIN and CUR groups

Parameter/	Group	Hour 0	Hour 2	Hour 12	Hour 24	Hour 48	р
MPO ng/	ml CIN	4.899±0.424b	5.133±0.365b	5.645±0.434b	5.898±0.542b	7.467±0.353a	0.002
	CUR	5.441±0.324	5.938±0.879	8.047±0.691	6.722±1.079	8.009±1.040	0.134
р		0.116	0.516	0.188	0.602	0.701	
IMA ng/ml	CIN CUR	1.669±0.156 1.429±0.115	1.624±0.161 1.768±0.154	1.443±0.170 1.531±0.186	1.507±0.157 1.408±0.115	1.907±0.137 1.748±0.145	0.314 0.266
P		0.200	0.575	0.007	0.020	0.021	
NO mcmol/	L CIN CUR	3.982±0.446 2.428±0.273	3.561±0.417 1.979±0.229	3.248±0.929 2.180±0.338	2.769±0.308 2.816±0.177	2.157±0.329 2.806±0.203	0.072 0.098
p		0.067	0.033	0.434	0.833	0.180	
MDA nmol,	'L CIN CUR	1.860±0.116c 1.901±0.079	2.056±0.064bc 1.925±0.085	2.195±0.146bc 2.081±0.081	2.386±0.151a b	2.721±0.115a 2.306±0.146	0.000 0.124
p		0.574	0.298	0.751	0.190	0.019	
SOD U/ml	CIN CUR	1.060±0.078b 1.011±0.02b6	1.086±0.041b 1.165±0.105b	1.067±0.093b 1.223±0.077b	1.135±0.035b 1.690±0.098a	1.578±0.113a 1.741±0.148a	0.000 0.000
r		0.030	0.396	0.560	0.007	0.329	
AOA mmol/	L CIN CUR	6.793±0.346a 6.676±0.130	6.556±0.218a 6.655±0.273	6.972±0.577a 7.133±0.219	5.760±0.373a b 6.660±0.229	4.700±0.446b 6.611±0.391	0.002 0.682
p		0.757	0.713	0.963	0.015	0.000	

MPO: Myeloperoxidase, IMA: Ischemic modified albumin, NO: Nitric oxide, MDA: Malondialdehyde, SOD: Superoxide dismutase, AOA: Antioxidant activity: Values with P-0.05 were considered significant. Values having different letters (a, b, ab and c) (p<0.05) on the same row a tin-group measurement times were considered to be significant lifterent. In the histopathological evaluation, vacuolization in glomeruli, vacuolar degeneration in tubular epithelial cells, hyaline cylinder formation and tubular necrosis were statistically higher in the CIN group than in the CUR group (P=0.000). Histopathological results are detailed in **Tables 6a and 6b.** Finally, **Figures 1, 2, 3, 4, 5, 6** also show representative histopathological results of tissue samples.

Table 6a: Histopathologic result in groups

Гissue	Histopathologic findings	CONTROL		POSITIVE CONTROL		CURCUMIN	
Kidney	Vacuolization in glomeruli	Left Kidney -(6/6)	Right Kidney -(6/6)	Left Kidney +(2/6) ++(3/6) +++(1/6)	Right Kidney +(1/6) +++(5/6)	Left Kidney -(4/6) +(2/6)	Right Kidney -(5/6) +(1/6)
	Vacuolar degeneration areas in tubular epithelial cells	-(6/6)	-(6/6)	+(5/6) ++(1/6)	+(2/6) ++(4/6)	-(5/6) +(1/6)	-(4/6) +(2/6)
	Formations of hyaline cylinders in tubular lumens	-(6/6)	-(6/6)	+(3/6) ++(3/6)	-(3/6) +(3/6)	-(5/6) +(1/6)	-(5/6) ++(1/6)
	Tubular Necrosis	-(6/6)	-(6/6)	+(3/6) ++(3/6)	++(3/6) +++(3/6)	-(4/6) ++(2/6)	-(5/6) +(1/6)

-:absent, + light ,++:moderate, +++:severe

Table 6b: Histopathologic results in groups

	Vacuolization in glomeruli	Vacuolar degeneration areas in tubular	Formations of hyaline cylinders in tubular	Tubular Necrosis
GROUPS CONTROL	0,00±0,00 ^b	epithelial cells 0,00±0,00 ^b	lumens 0,00±0,00 ^b	0,00±0,00 ^b
LEFT KIDNEY				
POZİTİF KONTROL LEFT KIDNEY	1,83±0,75ª	1,17±0,41ª	0,67±0,52ª	1,51±0,55ª
CURCUMIN LEFT KIDNEY	$0,00\pm0,00^{\rm b}$	0,00±0,00b	0,17±0,41b	0,67±1,03b
LEFT KIDNEY "P" Value	0,000	0,000	0,022	0,006
CONTROL RIGHT KIDNEY	$0,00\pm0,00^{\rm b}$	$0,00\pm0,00^{\rm b}$	$0,00\pm0,00^{\rm b}$	0,00±0,00b
POZİTİF KONTROL RIGHT KIDNEY	2,67±0,82ª	1,17±0,52ª	1,51±0,55ª	2,51±0,55ª
CURCUMIN	0,17±0,41 ^b	0,33±0,52b	0,33±0,52b	0,17±0,41 ^b
RIGHT KIDNEY				
RIGHT KIDNEY "P" Value	0,000	0,000	0,001	0,000

Values with p <0.05 were considered significant. Values having different letters (a, b) (p <0.05) on the same row at in-group

Figure 1: Left Kidney in Control Group

Figure 2: Right Kidney in Control Group

Figure 3: Left Kidney in CIN Group

THICK ARROW: Vacuolization formations in the glomerulus ball of capillaries

THIN ARROW: Vacuolar degeneration areas in tubular epithelial cells ARROWHEAD: Formations of hyaline cylinders in tubular lumens

Figure 4: Right Kidney in CIN Group THICK ARROW: Vacuolization formations in the glomerulus ball of capillaries

THIN ARROW: Vacuolar degeneration areas in tubular epithelial cells CURVED ARROW: Tubular necrosis

Figure 5: Left Kidney in CUR Group

THICK ARROW: Vacuolization formations in the glomerulus ball of capillaries

THIN ARROW: Vacuolar degeneration areas in tubular epithelial cells

Figure 6: Right Kidney in CUR Group THICK ARROW: Vacuolization formations in the glomerulus ball of capillaries THIN ARROW: Vacuolar degeneration areas in tubular epithelial cells

DISCUSSION

The increased use of iodinated contrast agents in imaging and interventional procedures for diagnosis and treatment, and the increasing number of elderly and comorbid patients undergoing these procedures increase the incidence of CIN (21, 22). The increasing number of cases has resulted in many studies aiming to prevent CIN (23 - 26).

The pathophysiology of CIN is still unclear. However, some studies have shown that the administration of iodinated contrast materials increases the production of oxygen free radicals and causes toxic effects directly on renal tubular and glomerular cells (21, 27, 28). Substances with antioxidant properties may provide treatment options to prevent damage to kidney cells by these oxygen free radicals.

Curcumin is an herbal agent with anti-inflammatory, anticancer, and antioxidant properties. It has been shown to be protective against nephrotoxicity resulting from cisplatin (29), cyclosporin-A (30) and contrast materials (26).

Acute Kidney Network consensus group criteria (absolute serum creatinine (sCr) increase ≥ 0.3 mg/dL and a 50 % increase in sCr or 1.5 times the basal level within 48 hours after exposure to the contrast agent) were used for the diagnosis of acute kidney injury, which is an important indicator of CIN in clinical practice. There was a significant increase in sCr levels in the CIN Group at hours 24 and 48 (p=0.460). An increase was observed in the sCr levels of the CUR group at hours 24 and 48, but this increase was insignificant. These results were similar to those obtained in previous studies (22, 24 - 26, 31).

On the other hand, there was a statistically insignificant increase in serum urea levels of both groups after 12 hours, and all measurements were in the reference range.

Serum ionized calcium levels of the CIN group significantly decreased after 48 hours (p=0.001), but no significant change was observed in any measurements for the CUR group.

No significant difference was observed in the groups' venous blood gas parameters at hours 24 and 48. A significant increase was observed in the CIN group's serum chlorine level at hour

12; however, it significantly decreased at hour 24 compared to the values at hour 12 and declined to the initial level at hour 48. In the CUR group, no significant change was observed at any time. The chloride value was within the reference range. There was a significant increase in the CIN group's sodium level at hours 12, 24, and 48 (p=0.001). In the CUR group, a significant increase in sodium levels was observed at all hours compared to the initial level, but the changes in measurement values were within the reference range.

An elevated MDA level in renal tissue is an indicator of an increase in lipid peroxidation due to nephrotoxicity. Similar to previous studies (24, 25, 32), in the present study, the MDA level of kidney tissue significantly increased in the CIN group (p=0.000) at hours 24 and 48, validating CIN, whereas there was no change in MDA at any time compared to the initial value in the CUR group.

The stable MDA levels in the CUR group suggest that curcumin protects the kidney against CIN due to its antioxidant properties.

Chronic inflammation and cytokines induce nitric oxide synthesis leading to DNA damage and cancer-causing peroxynitrite and nitrite formation. Curcumin has been shown to inhibit nitric oxide synthesis (33). In the present study, the comparison of the nitric oxide levels in the CIN and CUR groups at hour 2 indicated a significant decrease in the CUR group, corroborating previous study results.

Curcumin decreases the peroxidation of lipids in the cell membrane by increasing SOD enzyme activity (14). In the present study, SOD enzyme levels increased in both the CIN and the CUR groups. However, the increase in SOD enzyme activity in the CUR group was significant at hours 24 and 48 (p=0.000). This result supports the idea that CUR has a protective effect against CIN.

Curcumin has been reported to reduce oxidative stress and tissue destruction in the heart and brain as well as ischemia/reperfusion damage in the liver thanks to its antioxidant properties (13). It acts as an antioxidant by inhibiting the conversion of xanthine dehydrogenase to xanthine oxidase, lipid peroxidation, and reactive

oxygen species in the ischemic environment. In addition, it reduces lipid peroxidation by increasing the activity of enzymes such as CAT, SOD, and GPX (14, 16, 17).

The decrease in the CIN group's AOA levels was significant at hours 24 and 48 (p=0.002); however, the CUR group's AOA levels were found to be significantly higher than those of the CIN group at hours 24 and 48 (p=0.682). These results are also considered evidence that curcumin has a positive effect in preventing CIN.

The activity of IMA, which is a marker of inflammatory diseases, increases due to oxidative stress and in most inflammatory diseases (34). The IMA level rises within minutes after ischemia, remains high for 6 to 12 hours, and declines to normal values within 24 hours (35). In the present study, despite being insignificant, an increase was recorded in the CUR group's IMA level at hour 48. Measurement of IMA levels is an important marker of renal ischemia-reperfusion injury (16, 17), but it may not be significant as a CIN marker.

In the present study, serum levels of MPO, which is an indicator of tissue neutrophil activity, increased in the CIN group and decreased in the CUR group. This finding may be an indication of the protective properties of curcumin against CIN.

A statistically significant increase was observed in the CIN group's WBC numbers 24 hours after contrast material administration (p=0.014). There was a slight but insignificant increase in the CUR group. Similarly, there was a significant decrease in the CIN group's Hb values after 24 hours, whereas the decrease in the CUR group was insignificant. These changes in the WBC and Hb values may be associated with the increased antioxidant capacity.

In the Vacuolization of the glomeruli, vacuolar degeneration of the tubular epithelial cells, hyaline cylinders, and tubular necrosis in the lumen of the tubules were examined during the pathologic evaluation of the kidney tissue. In the CIN group, vacuolization of the glomeruli, vacuolar degeneration of the tubular epithelial cells, hyaline cylinders, and tubular necrosis in the lumen of the tubules were statistically higher compared to the control and curcumin groups. The statistical significance in favor of the CIN group compared to the control group is an expected result. These results showed that contrast material caused nephropathy in the CIN and the CUR Group. Histopathologic degeneration was statistically lower in the CUR group than in the CIN group especially in left kidney. Biochemical results also support the histopathological results.

In the present study, the lower creatinine value in the CUR group compared to the CIN group, the oxidant/antioxidant measurement results, and the pathologic findings of significantly higher tubular necrosis, tubular hyaline cylinder, and glomerular vacuolization formations in the CIN group compared to the CUR group support the study hypothesis.

In conclusion, in light of these findings, it was observed that the administration of curcumin before the iodinated contrast material significantly reduced the histopathologic renal findings related to CIN. This result can be attributed to the antioxidant properties of curcumin, which is therefore recommended in addition to the classical medication used to prevent CIN.

ACKNOWLEDGMENTS

Would like to thank the Afyon Kocatepe University Scientific Research Projects Coordination Committee (This study was supported by AKU BAPK 17.Kariyer.238 numbered Project).

REFERENCES

1. Solomon R. Contrast-medium-induced acute renal failure. Kidney Int. 1998;53(1):230–42.

2. Tublin ME, Murphy ME, Tessler FN. Current concepts in contrast media-induced nephropathy. Am J Roentgenol. 1998;171 (4):933-39.

3. Thomsen HS, Morcos SK. Contrast media and the kidney: European Society of Urogenital Radiology (ESUR) guidelines. Br J Radiol. 2003;76(908):513-18.

4. Persson PB, Hansell P, Liss P. Pathophysiology of contrast medium-induced nephropathy. Kidney Int. 2005;68(1):14-22.

5. Merten GJ, Burgess WP, Gray L, et al. Prevention of contrast-induced nephropathy with sodium bicarbonate: A randomized controlled trial. J Am Med Assoc. 2004;291(19):2328-34.

6. Efrati S, Dishy V, Averbukh M, et al. The effect of N-acetylcysteine on renal function, nitric oxide, and oxidative stress after angiography. Kidney Int. 2003;64(6):2182–87.

7. Erley CM, Duda SH, Schlepckow S, et al. Adenosine antagonist theophylline prevents the reduction of glomerular filtration rate after contrast media application. Kidney Int. 1994;45(5):1425–31.

8. Spargias K, Alexopoulos E, Kyrzopoulos S, et al. Ascorbic acid prevents contrast-mediated nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention. Circulation. 2004;110(18):2837-42.

9. Kolonko A, Wiecek A, Kokot F. The nonselective adenosine antagonist theophylline does prevent renal dysfunction induced by radiographic contrast agents. J Nephrol. 1998;11(3):151-56.

10. Wang A, Holcslaw T, Bashore TM, et al. Exacerbation of radiocontrast nephrotoxicity by endothelin receptor antagonism. Kidney Int. 2000;57(4):1675-80.

11. Pandya U, Saini MK, Jin GF, et al. Dietary curcumin prevents ocular toxicity of naphthalene in rats. Toxicol Lett. 2000;115(3):195-204.

12. Wright JS. Predicting the antioxidant activity of curcumin and curcuminoids. J Mol Struct Theochem. 2002;591(1-3):207-17.

13. Thiyagarajan M, Sharma SS. Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci. 2004;74(8):969-85.

14. Miquel J, Bernd A, Sempere JM, et al. The curcuma antioxidants: Pharmacological effects and prospects for future clinical use. A review. Arch Gerontol Geriatr. 2002;34(1):37-46.

15. Antunes LMG, Darin JDAC, Bianchi MDLP. Effects of the antioxidants curcumin or selenium on cisplatin-induced nephrotoxicity and lipid peroxidation in rats. Pharmacol Res. 2001;43(2):145–50.

16. Saritas Z, Saritas H, Korkmaz M, et al. (2018) Ratlarda Renal İskemi/Reperfüzyon Hasarında Curcumin'in Etkileri. Kocatepe Veterinary Journal. 2018;11(3):215–22.

17. Saritas TB, Saritas H, Korkmaz M, et al. Investigation of the effects of boron on a renal ischemia / reperfusion injury in rats. Int J Clin Exp Med. 2019;12(1):899–906.

18. Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods. Enzymol.1990;186(1990):421–31.

19. Sun Y, Oberley LW, Li YA. Simple method for clinical assay of superoxide dismutase. Clin Chem. 1988;34(3):497-500.

20. Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide-Biol Ch. 2001;5(1):62-71.

21. Goldenberg I, Matetzky S. Nephropathy induced by contrast media: Pathogenesis, risk factors and preventive strategies. CMAJ. 2005;172(11):1461-71.

22. Mamoulakis C, Tsarouhas K, Fragkiadoulaki I, et al. Contrast-induced nephropathy: Basic concepts, pathophysiological implications and prevention strategies. Pharmacol Ther. 2017;180(2017):99-112.

23. Alessandri N, Lanzi L, Garante CM, et al. Prevention of acute renal failure post-contrast imaging in cardiology: a randomized study. Eur Rev Med Pharmacol Sci. 2013;17(1):13–21.

24. Kongkham S, Sriwong S, Tasanarong A. Protective effect of alpha tocopherol on contrast-induced nephropathy in rats. Nefrologia. 2013;33(1):116-23.

25. Boyacioglu M, Turgut H, Akgullu C, et al. The effect of L-carnitine on oxidative stress responses of experimental contrast- induced nephropathy in rats. J Vet Med Sci. 2014;76(1):1-8.

26. Buyuklu M, Kandemir FM, Ozkaraca M, et al. Protective effect of curcumin against contrast induced nephropathy in rat kidney: What is happening to oxidative stress, inflammation, autophagy and apoptosis? Eur Rev Med Pharmacol Sci. 2014;18(4):461–70.

27. Tervahartiala P, Kivisaari L, Kivisaari R, et al. Structural changes in the renal proximal tubular cells induced by lodinated contrast media. Nephron. 1997;76(1):96-102.

28. Hizoh I, Haller C. Radiocontrast-induced renal tubular cell apoptosis: Hypertonic versus oxidative stress. Invest Radiol. 2002;37(8):428–34.

29. Waseem M, Parvezi S. Mitochondrial dysfunction mediated cisplatin induced toxicity: Modulatory role of curcumin. Food Chem Toxicol. 2013;53(1):334-42.

30. Sagiroglu T, Kanter M, Yagci MA, et al. Protective effect of curcumin on cyclosporin A-induced endothelial dysfunction, antioxidant capacity, and oxidative damage. Toxicol Ind Health. 2014;30(4):316-27.

31. Gazi S, Altun A, Erdogan O. Contrast-induced nephropathy: Preventive and protective effects of melatonin. J Pineal Res. 2006;41(1):53–7.

32. Toprak O, Cirit M, Tanrisev M, et al. Preventive effect of nebivolol on contrast-induced nephropathy in rats. Nephrol Dial Transplant. 2008;23(3):853-59.

33. Greggi Antunes LM, Darin JDAC, Bianchi MDLP. Effects of the antioxidants curcumin or selenium on cisplatin-induced nephrotoxicity and lipid peroxidation in rats. Pharmacol Res. 2001; 43(2):145–50.

34. Ellidag HY, Eren E, Yilmaz N, et al. Ischemia modified albumin levels and increased oxidative stress in patients with multiple myeloma. J Med Biochem. 2013;33(2):175–80.

35. Roy D, Quiles J, Gaze DC, et al. Role of reactive oxygen species on the formation of the novel diagnostic marker ischaemia modified albumin. Heart. 2006;92(1):113-14.