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Abstract: In statistical analyses, especially those using a multiresponse regression model approach,
a mathematical model that describes a functional relationship between more than one response
variables and one or more predictor variables is often involved. The relationship between these
variables is expressed by a regression function. In the multiresponse nonparametric regression (MNR)
model that is part of the multiresponse regression model, estimating the regression function becomes
the main problem, as there is a correlation between the responses such that it is necessary to include
a symmetric weight matrix into a penalized weighted least square (PWLS) optimization during the
estimation process. This is, of course, very complicated mathematically. In this study, to estimate
the regression function of the MNR model, we developed a PWLS optimization method for the
MNR model proposed by a previous researcher, and used a reproducing kernel Hilbert space (RKHS)
approach based on a smoothing spline to obtain the solution to the developed PWLS optimization.
Additionally, we determined the symmetric weight matrix and optimal smoothing parameter, and
investigated the consistency of the regression function estimator. We provide an illustration of the
effects of the smoothing parameters for the estimation results using simulation data. In the future, the
theory generated from this study can be developed within the scope of statistical inference, especially
for the purpose of testing hypotheses involving multiresponse nonparametric regression models and
multiresponse semiparametric regression models, and can be used to estimate the nonparametric
component of a multiresponse semiparametric regression model used to model Indonesian toddlers’
standard growth charts.

Keywords: smoothing spline regression function; MNR; RKHS; consistency; standard growth charts

1. Introduction

A reproducing kernel Hilbert space (RKHS) theory was first introduced by Aronszajn
in 1950 [1]. This theory was later developed by [1,2] to solve optimization problems in
regression, especially nonparametric spline original regression. The RKHS approach was
used by [3] for an M-type spline estimator. Next, Ref. [4] used the RKHS approach for a
relaxed spline estimator.

There are many cases in our daily life that we have to analyze, especially cases in-
volving the functional relationship between different variables. In statistics, to analyze the
functional relationship between several variables, namely, the influence of the independent
variable or predictor variable on the dependent variable or response variable, regression
analysis is used. In regression analysis, it is necessary to build a mathematical model,
which is commonly referred to as a regression model, and this functional relationship is
expressed by a regression function. In regression analysis, there are two kinds of basic
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regression model approaches, namely, parametric regression models and nonparametric
regression models. In general, the main problem in regression analysis whether using a
parametric regression model approach or a nonparametric regression model approach is
the problem of estimating the regression function. In the parametric regression model, the
problem of estimating the regression function is the same as the problem of estimating the
parameters of the parametric regression model where this is different from the nonpara-
metric regression model. In nonparametric regression models, estimating the regression
function is equivalent to estimating an unknown smooth function contained in a Sobolev
space using smoothing techniques.

There are several frequently used smoothing techniques for estimating nonparametric
regression functions, for example, local linear, local polynomial, kernel, and spline. The
research results of several previous researchers have shown that smoothing techniques
such as local linear, local polynomial, and kernel are highly recommended for estimating
nonparametric regression functions for prediction purposes. These researchers include [5,6],
who used local linear for predicting hypertension risk and predicting Mycobacterium tuber-
culosis numbers, respectively; Ref. [7] used local linear for determining boundary correction
of nonparametric regression function; Ref. [8] used local linear for determining the bias
reduction of a regression function estimate; Ref. [9] used local linear to design a standard
growth chart for assessing the nutritional status of toddlers; Refs. [10,11] used local poly-
nomial for estimating regression functions in cases of errors-in-variable and correlated
errors, respectively; Refs. [12,13] used local polynomial to estimate the regression function
for functional data and for finite population, respectively; Ref. [14] discussed smoothing
techniques using kernel; Refs. [15,16] discussed consistency kernel regression estimation
and estimating regression functions for cases of correlated errors using kernel, respectively;
and Refs. [17,18] discussed estimating covariance matrix and selecting bandwidth using
kernel, respectively. However, local linear, local polynomial, and kernel are highly depen-
dent on the bandwidth in the neighborhood of the target point. Thus, if we use these local
linear, local polynomial, or kernel approaches to estimate a model with fluctuating data,
then we require a small bandwidth, and this results in too rough an estimation of the curve.
This means that these local linear, local polynomial, and kernel approaches do not consider
smoothness, only the goodness of fit. Therefore, for estimation models with fluctuating data
in the sub-intervals, these local linear, local polynomial, and kernel methods are not good
to use, as the results of estimation result in a large value of the mean square error (MSE).
This is different from spline approaches, which consider goodness of fit and smoothness
factors, as discussed by [1,19], who used splines for modeling observational data and
estimating nonparametric regression functions. Furthermore, for prediction and interpre-
tation purposes, smoothing techniques such as smoothing spline and truncated spline
are better and more flexible for estimating the nonparametric regression functions [20].
Due to the flexible nature of these splines, many researchers have been interested in using
and developing them in several cases. For examples, M-type splines were used by [21]
to analyze variance for correlated data, and by [22] for estimating both nonparametric
and semiparametric regression functions; truncated splines have been discussed by [23]
to estimate mean arterial pressure for prediction purpose and by [24] to estimate blood
pressure for prediction and interpretation purposes. Additionally, Ref. [25] developed
truncated spline for estimating a semiparametric regression model and determining the
asymptotic properties of the estimator. Furthermore, Ref. [26] discussed the flexibility of
B-spline and penalties in estimating regression function; Ref. [27] discussed analyzing
current status data using penalized spline; Ref. [28] analyzed the association between
cortisol and ACTH hormones using bivariate spline; and Ref. [29] analyzed censored data
using spline regression. In addition, Ref. [30] used both kernel and spline for estimating
the regression function and selecting the optimal smoothing parameter of a uniresponse
nonparametric regression (UNR) model; Refs. [31,32] developed both kernel and spline for
estimating the regression function and for selecting the optimal smoothing parameter of a
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multiresponse nonparametric regression (MNR) model; and Ref. [33] discussed smoothing
techniques, namely, kernel and spline, to estimate the coefficient of a rates model.

In regression modeling, a common problem involves more than one response variable
observed at several values of predictor variables and between responses that are correlated
with each other. The multiresponse nonparametric regression (MNR) model approach
is appropriate for modeling the functions which represent the relationship between the
response variable and predictor variable with correlated responses. In this model there is a
correlation between the responses. Because of this correlation, it is necessary to construct
a matrix called a weight matrix. Constructing the weight matrix is one of the things that
distinguishes the MNR model approach from a classical model approach, that is, a para-
metric regression model or uniresponse nonparametric regression model approach. Thus,
in the estimation process the regression function requires a weight matrix in the form of a
symmetric matrix, especially a diagonal matrix. Furthermore, in the MNR model there are
several smoothing techniques which can be used to estimate the regression function. One
of these smoothing techniques is the smoothing spline approach. In recent years, studies on
smoothing splines have attracted a great deal of attention and the methodology has been
widely used in many areas of research, for example, for estimating regression functions
of nonparametric regression models, in [34,35] used smoothing spline, mixed smoothing
spline, and Fourier series; estimating regression functions were conducted by [36,37] for a
semiparametric nonlinear regression model and a semiparametric regression model; and
smoothing spline in an ANOVA model was discussed by [38]. Smoothing spline estimator,
with its powerful and flexible properties, is one of the most popular estimators used for
estimating regression function of the nonparametric regression model. Although the re-
searchers mentioned above have previously discussed splines for estimating regression
functions in many cases, none of them have used a reproducing kernel Hilbert space
(RKHS) approach to estimate the regression function of the MNR model. On the other hand,
even though there are studies, as mentioned above, that have used the RKHS approach for
estimating regression functions, those researchers used the RKHS for estimating regression
functions of single–response or uniresponse linear regression models only. This means
that RKHS approaches were not used for estimating the regression function of the MNR
model based on a smoothing spline estimator. In addition, although [34] used the RKHS
approach to estimate the regression function of the MNR model, and also discussed it in a
special case involving a simulation study; but Ref. [34] assumed that the three responses of
the MNR model have the same smoothing parameter values, which in real life situation
is a difficult assumption to fulfill. In addition, Ref. [34] did not discuss the consistency of
the smoothing spline regression function estimator. Therefore, in this study we provide a
theoretical discussion on estimating the smoothing spline regression function of the MNR
model in case of unequal values of the smoothing parameters using the RKHS approach.
In other words, in this study we discuss it for the more general case.

2. Materials and Methods

In this section, we briefly describe the materials and methods used according to the
needs of this study, following the steps in the order in which they were carried out.

2.1. Multiresponse Nonparametric Regression Model

Suppose, given a paired observation {yri, tri} which satisfies the following multire-
sponse nonparametric regression (MNR) model:

yri = fr(tri) + εri, i = 1, 2, . . . , nr, r = 1, 2, . . . , p (1)

where yri is the observation value of the response variable on the rth response and the ith

observation; fr(·) represents an unknown nonparametric regression function of rth response
which is assumed to be smooth in the sense that it is contained in a Sobolev space; tri is
the observation value of a predictor variable on the rth response and the ith observation;
and εri represents the value of the random error on the rth response and the ith observation,
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which is assumed to have zero mean and variance σ2
ri (heteroscedastic). In this study, we

assume that the correlation between responses is ρrs =

{
ρr f or r = s
0 f or r 6= s

.

In general, the main problem in MNR modelling is how we estimate the MNR model,
which in this case is equivalent to the problem of estimating the regression function of the
MNR model. There are many smoothing techniques that can be used to estimate the MNR
model presented in (1), for example, kernel, local linear, splines, and local polynomial. One
of these smoothing techniques is the spline approach, in which the smoothing spline is
the most flexible estimator for estimating fluctuating data on sub-intervals. The following
briefly presents the estimation method using the smoothing spline estimator. Further
details related to the smoothing spline estimator can be found in [20].

2.2. Smoothing Spline Estimator

In this study, we estimated the regression function, fr(tri) of the MNR model presented
in (1) based on the smoothing spline estimator using the reproducing kernel Hilbert space
approach, which is discussed in the following section. An estimate of the regression
function of the MNR model presented in (1) can be obtained by developing the penalized
weighted least squares (PWLS) optimization method proposed by [31], which is only used
for the two-response nonparametric regression model with the same variance of errors,
namely, the homoscedastic case. We then develop the PWLS optimization to estimate a
nonparametric regression model with more than two responses, namely, the MNR model,
in case of unequal variance of errors, which is called as heteroscedastic case. Hence, the
estimated smoothing spline of the MNR model presented in (1) can be obtained by carrying
out the following PWLS optimization:

min
f1,..., fp∈Wm

2 [ar ,br ]
{N−1(y1 − f1)

TW1(y1 − f1) + · · ·+
(

yp − fp

)T
Wp

(
yp − fp

)
+

λ1
∫ b1

a1

(
f (2)1 (t)

)2
dt + · · ·+ λp

∫ bp
ap

(
f (2)p (t)

)2
dt}

(2)

where N = ∑
p
r=1 nr; W1, . . . , Wp are symmetric weight matrices, λ1, . . . , λp are smooth-

ing parameters, and f1, f2, . . . , fp are unknown regression functions in a Sobolev space
Wm

2 [ar, br], where the Sobolev space Wm
2 [ar, br] is defined as follows:

Wm
2 [ar, br] =

{
f
∣∣∣ f (v), v = 0, 1, 2, . . . , m− 1 are absolutely continuous on [ar, br] and

f (m) ∈ L2[ar, br], where L2[ar, br] is the collection of square integrable function on

L2[ar, br], r = 1, 2, . . . , p}

Furthermore, to obtain the solution to the PWLS provided in (2), we used the repro-
ducing kernel Hilbert space (RKHS) approach. In the following section, we provide a brief
review of RKHS. Further details related to RKHS can be found in [39], a paper concerning
the theory of RKHS, and in [40], a textbook which discusses the use of RKHS in probability
and statistics.

2.3. Reproducing Kernel Hilbert Space

The need to reproducing kernel Hilbert space (RKHS) arises in various fields, in-
cluding statistics, theory of approximation, theory of machine learning, theory of group
representation, and complex analysis. In statistics, the RKHS method is often used as a
method for estimating a regression function based on the smoothing spline estimator for
prediction purposes. In machine learning, the RKHS method is arguably the most popular
approach for dealing with nonlinearity in data. Several researchers have discussed the
RKHS method; for example, Refs. [41,42] discussed the use of RKHS in Support Vector
Machines (SVM) and optimization problems, respectively, and Refs. [43,44] discussed the
use of RKHS in asymptotic distribution for regression and machine learning.
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A Hilbert spaceH is called an RKHS on a set X over field F if the following conditions
are met [1,39]:

(i) H is a vector subspace of F (X, F), where F (X, F) is a vector space over F;
(ii) H is endowed with an inner product 〈, 〉, making it into a Hilbert space;
(iii) the linear evaluation functional Ey : H → F , defined by Ey( f ) = f (y), is bounded,

for every y ∈ X.

Furthermore, ifH is an RKHS on X, then for every y ∈ X there exists a unique vector
ky ∈ H such that for every f ∈ H, f (y) =

〈
f , ky

〉
. This is because every bounded linear

functional is provided by the inner product with a unique vector inH. The function ky is
called a reproducing kernel (RK) for point y. The reproducing kernel (RK) forH is a two–
variable function defined by K(x, y) = ky(x). Hence, we have K(x, y) = ky(x) =

〈
ky, kx

〉
and ‖Ey‖2 = ‖ky‖2 =

〈
ky, ky

〉
= K(y, y).

In this study, we provide a simulation study to evaluate the performance of the
proposed MNR model estimation method.

2.4. Simulation

The simulation in this study consists of a simulation to determine the optimal smooth-
ing spline based on a generalized cross-validation (GCV) criterion to obtain the best esti-
mated MNR model and a simulation to describe the effect of the smoothing parameters
on the estimation results of the regression function of the MNR model based on minimal
GCV value. We generate samples sized n = 100 from the MNR model and provide an
illustration of the effects of the smoothing parameters in order to estimate the results of the
MNR model by comparing three kinds of different smoothing parameter values, namely,
small, optimal, and large smoothing parameters values.

In the following section, we provide the results and discussion of this study covering
estimation of the regression function of the MNR model using the RKHS approach by
estimating the symmetric weight matrix and optimal smoothing parameters, a simulation
study, and investigating the consistency of the smoothing spline regression function estimator.

3. Results and Discussions

The results and discussion presented in this section include estimating the regression
function of the MNR model using RKHS, estimating the weight matrix, estimating the
optimal smoothing parameter, investigating the consistency of the regression function
estimator, a simulation study, and an application example using real data.

3.1. Estimating the Regression Function of the MNR Model Using the RKHS Approach

The MNR model presented in (1) can be expressed in matrix notation as follows:

y = f + ε (3)

where y =
(

y1, y2, . . . , yp

)T
, f =

(
f1, f2, . . . , fp

)T, t =
(
t1, t2, . . . , tp

)T, ε =
(
ε1, ε2, . . . , εp

)T,

yr = (yr1, yr2, . . . , yrnr )
T, fr = ( fr(tr1), fr(tr2), . . . , fr(trnr ))

T, tr = (tr1, tr2, . . . , trnr )
T , and

εr = (εr1, εr2, . . . , εrnr )
T.

We assume that ε is a zero mean random error with covariance W−1. In this case, the
covariance matrix W−1 is a symmetrical matrix, that is, it is a diagonal matrix which can be
expressed as follows:

W−1 = diag
(

W−1
1 , W−1

2 , . . . , W−1
p

)
(4)

where W−1
r is an rth-response covariance matrix of εr for r = 1, 2, . . . , p.
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To determine the regression function of the MNR model (1) using the RKHS approach,
we first express the MNR model in a general smoothing spline regression model [20].
Therefore, we can express the MNR model (1) as follows:

yri = Ltr fr + εri ; i = 1, 2, . . . , nr; r = 1, 2, . . . , p (5)

where fr ∈ Hr is an unknown smooth function, Ltr ∈ Hr is a bounded linear functional,
andHr is a Hilbert space.

Next, the Hilbert space Hr is decomposed into a direct sum of the Hilbert sub-
space Gr and Hilbert sub space Kr, where Gr has basis {αr1, αr2, . . . , αrmr}, Kr has basis
{βr1, βr2, . . . , βrnr}, and Gr ⊥ Kr is as follows:

Fr = Gr ⊕ Kr. (6)

This implies that for gr ∈ Gr, zr ∈ Kr, and r = 1, 2, . . . , p we can express every function
fr ∈ Fr as follows:

fr = gr + zr. (7)

Because {αr1, αr2, . . . , αrmr} is the basis of the Hilbert subspace Gr and {βr1, βr2, . . . , βrnr}
is the basis of the Hilbert subspace Kr, the function fr in (7) can be expressed as follows:

fr = ∑mr
i=1 briαri + ∑nr

j=1 crjβrj = α
T
r br +β

T
r cr (8)

where r = 1, 2, . . . , p; bri, crj ∈ R; αr = (αr1, αr2, . . . , αrmr )
T ; br = (br1, br2, . . . , brmr )

T ;
βr = (βr1, βr2, . . . , βrnr )

T ; and cr = (cr1, cr2, . . . , crnr )
T .

Hence, for r = 1, 2, . . . , p and i = 1, 2, . . . , nr, we have

Ltri fr = Ltri (gr + zr) = Ltri (gr) + Ltri (zr)
= gr(tri) + zr(tri)
= fr(tri).

Because Ltr ∈ Fr is a bounded linear functional in the Hilbert space Fr, according
to [20] there exists a Riesz representer δri ∈ Fr such that

Ltri fr = 〈δri, fr〉 = fr(tri) (9)

where fr ∈ Fr and 〈·, ·〉 denote an inner product. Next, by considering Equations (8) and (9)
and applying the properties of the inner product, the function fr(tri) can be written as follows:

fr(tri) =
〈

δri,αT
r br +β

T
r cr

〉
=
〈
δri,αT

r br
〉
+
〈

δri,βT
r cr

〉 (10)

Then, based on Equation (10), we can obtain the regression functions fr(tri) for
r = 1, 2, . . . , p, which are the regresion functions for the first response, the second re-
sponse, . . . , and the pth response, as follows:

For r = 1, we have : f1(t1i) =
〈
δ1i,αT

1 b1
〉
+
〈

δ1i,βT
1 c1

〉
, i = 1, 2, . . . , n1

For r = 2, we have : f2(t2i) =
〈
δ2i,αT

2 b2
〉
+
〈

δ2i,βT
2 c2

〉
, i = 1, 2, . . . , n2

...
For r = p, we have : fp

(
tpi
)
=
〈

δpi,αT
p bp

〉
+
〈

δpi,βT
p cp

〉
, i = 1, 2, . . . , np


(11)

Hence, following Equation (11), we obtain the regression function for i = 1 as follows:

f1(t1) =
(

f1(t11), f1(t12), . . . , f1
(
t1n1

))T
= A1b1 + C1d1 (12)
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where b1 =
(
b11, b12, . . . , b1m1

)T ; d1 =
(
d11, d12, . . . , d1n1

)T ;
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 𝐀𝟏 = ⎝⎜
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⎛ 〈𝛿 , 𝛽 〉 〈𝛿 , 𝛽 〉 ⋯ 〈𝛿 , 𝛽 〉〈𝛿 , 𝛽 〉 〈𝛿 , 𝛽 〉 ⋯ 〈𝛿 , 𝛽 〉⋮〈𝛿 , 𝛽 〉 ⋮〈𝛿 , 𝛽 〉 ⋱⋯ ⋮〈𝛿 , 𝛽 〉⎠⎟

⎞
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⎪⎫
 (13)

Hence, based on Equations (12) and (13), we obtain the regression function 𝐟(t) of 
the MNR model as follows:  𝐟(𝑡) = 𝐟𝟏(𝑡 ), 𝐟𝟐(𝑡𝟐), … , 𝐟𝒑(𝑡 ) 𝑻 = 𝐀𝟏𝐛𝟏, 𝐀𝟐𝐛𝟐, … , 𝐀𝒑𝐛𝒑 𝑻 + 𝐂𝟏𝐝𝟏, 𝐂𝟐𝐝𝟐, … , 𝐂𝒑𝐝𝒑 𝑻 = 𝑑𝑖𝑎𝑔 𝐀𝟏, 𝐀𝟐, … , 𝐀𝒑 𝐛𝟏, 𝐛𝟐, … , 𝐛𝒑 + 𝑑𝑖𝑎𝑔 𝐂𝟏, 𝐂𝟐, … , 𝐂𝒑 𝐝𝟏, 𝐝𝟐, … , 𝐝𝒑 = 𝐀𝐛 + 𝐂𝐝 

(14) 
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with a constraint 𝑓( )(𝑡 ) 𝑑𝑡 < 𝛾 , where 𝛾 ≥ 0 and 𝑟 = 1,2, … , 𝑝. 

Similarly, we obtain the regression functions for i = 2, . . . , n1, which are f2(t2),
f3(t3), . . . , fp

(
tp
)
, as follows:

f2(t2) =
(

f2(t11), f2(t12), . . . , f2
(
t1n2

))T
= A2b2 + C2d2

f3(t3) =
(

f3(t11), f3(t12), . . . , f3
(
t1n3

))T
= A3b3 + C3d3

...

fp
(
tp
)
=
(

fp(t11), fp(t12), . . . , fp

(
t1np

))T
= Apbp + Cpdp


(13)

Hence, based on Equations (12) and (13), we obtain the regression function f(t) of the
MNR model as follows:

f(t) =
(
f1(t1), f2(t2), . . . , fp

(
tp
))T

=
(
A1b1, A2b2, . . . , Apbp

)T
+
(
C1d1, C2d2, . . . , Cpdp

)T

= diag
((

A1, A2, . . . , Ap
)(

b1, b2, . . . , bp
)T
)
+

diag
((

C1, C2, . . . , Cp
)(

d1, d2, . . . , dp
)T
)
= Ab + Cd

(14)

Thus, we can express the MNR model presented in (1) in matrix notation as follows:

y = Ab + Cd + ε (15)

where A = diag
(
A1, A2, . . . , Ap

)
is an (N ×M) diagonal matrix with N =

p
∑

r=1
nr,

M = ∑
p
r=1 mr; b =

(
bT

1 , bT
2 , . . . , bT

p

)T
is an (M× 1) vector of parameters;

C = diag
(
C1, C2, . . . , Cp

)
is an (N × N) diagonal matrix; and d =

(
dT

1 , dT
2 , . . . , dT

p

)T
is

an (N × 1) vector of parameters.
Now, we can determine an estimated smoothing spline regression function of the

MNR model presented in (1) using the RKHS approach by taking the solution of the
following optimization:

Min
fr ∈ Fr

r = 1, 2, . . . , p

{‖W
1
2 ε ‖ 2} = Min

fr ∈ Fr
r = 1, 2, . . . , p

{‖W
1
2 (y− f) ‖ 2} (16)

with a constraint
∫ br

ar

(
f (m)
r (tr)

)2
dtr < γr, where γr ≥ 0 and r = 1, 2, . . . , p.

Note that determining the solution to Equation (16) is equivalent to determining the
solution to the following PWLS optimization:

Min
fr ∈Wm

2 [ar, br]
r = 1, 2, . . . , p

{
N−1(y− f)TW(y− f) + ∑p

r=1 λr

∫ br

ar

(
f (m)
r (tr)

)2
dtr

}
(17)

where N = ∑
p
r=1 nr; N−1(y− f)TW(y− f) is a weighted least square that represents the

goodness of fit, ∑
p
r=1 λr

∫ br
ar

(
f (m)
r (tr)

)2
dtr represents a penalty that measures smoothness,

and λr, r = 1, 2, . . . , p represents a smoothing parameter which controls the trade-off
between the goodness of fit and the penalty.
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Next, we decompose the penalty presented in (17) as follows:

∑p
r=1 λr

∫ br

ar

(
f (m)
r (tr)

)2
dtr = λ1

∫ b1

a1

(
f (m)
1 (t1)

)2
dt1 + · · ·+ λp

∫ bp

ap

(
f (m)
p
(
tp
))2

dtp (18)

Because we have


∫ b1

a1

(
f (m)
1 (t1)

)2
dt1 = 〈βT

1 d1,βT
1 d1〉 = dT

1 〈β1,βT
1 〉d1 = dT

1 C1d1∫ b2
a2

(
f (m)
2 (t2)

)2
dt2 = 〈βT

2 d2,βT
2 d2〉 = dT

2 〈β2,βT
2 〉d2 = dT

2 C2d2∫ bp
ap

(
f (m)
p
(
tp
))2

dtp = 〈βT
p dp,βT

p dp〉 = dT
p 〈βp,βT

p 〉dp = dT
pCpdp

we are able to obtain the penalty presented in (17) or (18) as follows:

∑p
r=1 λr

∫ br

ar

(
f (m)
r (tr)

)2
dtr = dTΛΛΛCd (19)

where ΛΛΛ = diag
(

λ1In1 , λ2In2 , . . . , λpInp

)
. Furthermore, we can write the goodness of fit

component in (17) as follows:

N−1(y− f)TW(y− f) = N−1(y−Ab−Cd)TW(y−Ab−Cd) (20)

Based on Equations (19) and (20), we can express the PWLS optimization presented in
(17) as follows:

Min
b∈Rpn,d∈Rpm

{Q(b, d)} = Min
b∈Rpn,d∈Rpm

{N−1(y−Ab−Cd)T×

W(y−Ab−Cd) + dTΛCd}
(21)

The solution to (21) can be obtained by taking the partial diferentiation Q(b, d) with
respect to b and d. In this step, we obtain the estimations of b and d as follows:

^
b =

(
ATD−1WA

)−1
ATD−1Wy, and

^
d = D−1W

[
I−A

(
ATD−1WA

)−1
ATD−1W

]
y

where D = WC + NΛI.
From this step, we obtain the estimation of the smoothing spline regression function

of the MNR model presented in (1) or (15) as follows:

f̂ = A
^
b + C

^
d = Hy (22)

where H = A
(

ATD−1WA
)−1

ATD−1W + CD−1W
(

I−A
(

ATD−1WA
)−1

ATD−1W
)

,

D = WC + NΛI, ΛΛΛ = diag
(

λ1In1 , λ2In2 , . . . , λpInp

)
, I is an identity matrix with dimension

N, and N = ∑
p
r=1 nr.

3.2. Estimating the Symmetric Weight Matrix

Based on MNR model presented in (3), the W−1 from Equation (4) is a covariance

matrix of the random error ε. To obtain the estimated weight matrix
^

W, where the weight
matrix W is the inverse of the covariance matrix, we first we consider a paired observation
{yri, tri}, r = 1, 2, . . . , p; i = 1, 2, . . . , nr which follows the MNR model presented in (3).

Second, supposing that y =
(

y1, y2, . . . , yp

)T
is a multivariate (i.e., N-variates where
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N = ∑
p
r=1 nr) normally distributed random sample with mean f and covariance W−1, we

have the following likelihood function:

L( f, W|y) = ∏n
j=1


1

(2π)
N
2
(

W−1
) 1

2
exp

(
−1

2

(
yj − fj

)T
W
(

yj − fj

)) (23)

Because N = ∑
p
r=1 nr and W = diag

(
W1, W2, . . . , Wp

)
, the likelihood function pre-

sented in (23) can be written as follows:

L( f, W|y) = 1

(2π)
nn1

2 (W−1
1 )

n
2

exp
(
− 1

2 ∑n
j=1

(
y1j − f1j

)T
W1

(
y1j − f1j

))
×

1

(2π)
nn2

2 (W−1
2 )

n
2

exp
(
− 1

2 ∑n
j=1

(
y2j − f2j

)T
W2

(
y2j − f2j

))
× . . .×

1

(2π)
nnp

2 (W−1
p )

n
2

exp
(
− 1

2 ∑n
j=1

(
ypj − fpj

)T
Wp

(
ypj − fpj

)) (24)

Next, based on (24), the estimated weight matrix can be obtained by carrying out the
following optimization:

L( f, W|y) = Max
W1

{
1

(2π)
nn1

2 (W−1
1 )

n
2

exp
(
− 1

2 ∑n
j=1

(
y1j − f1j

)T
W1, . . .

(
y1j − f1j

))}
×

Max
W2

{
1

(2π)
nn2

2 (W−1
2 )

n
2

exp
(
− 1

2 ∑n
j=1

(
y2j − f2j

)T
W2, . . .

(
y2j − f2j

))}
× · · · ×

Max
Wp

{
1

(2π)
nnp

2 (W−1
p )

n
2

exp
(
− 1

2 ∑n
j=1

(
ypj − fpj

)T
Wp

(
ypj − fpj

))}
(25)

According to [45], the maximum value of each component of the likelihood function
in Equation (25) can be determined using the following equations:

^
W1 =

^
ε1

^
ε

T

1

N
=

(
y1 − f̂1

)(
y1 − f̂1

)T

N
,

^
W2 =

^
ε2

^
ε

T

2

N
=

(
y2 − f̂2

)(
y2 − f̂2

)T

N
, . . . ,

^
Wp =

^
εp

^
ε

T

p

N
=

(
yp − f̂p

)(
yp − f̂p

)T

N
.

We may express the estimated smoothing spline regression function presented in (22)
as follows:

f̂
(

λ,σ2
)
= H

(
λ,σ2

)
y (26)

where λ =
(
λ1, λ2, . . . , λp

)T , and σ2 =
(

σ2
1 , σ2

2 , . . . , σ2
p

)T
.

Hence, the maximum likelihood estimator for the weight matrix W is provided by:

^
W = diag

(
^

W1,
^

W2, . . . ,
^

Wp

)
= diag

(
(y1−f̂1)(y1−f̂1)

T

N , (
y2−f̂2)(y2−f̂2)

T

N , . . . ,
(yp−f̂p)(yp−f̂p)

T

N

)
= diag

(
(In1−H(λ1,σ2

1))y1yT
1 (In1−H(λ1,σ2

1))
T

N , (In1−H(λ1,σ2
1))y1yT

1 (In1−H(λ1,σ2
1))

T

N , . . . ,
(Inp−H(λp,σ2

p))ypyT
p(Inp−H(λp,σ2

p))
T

N

)
.

This shows that the estimated weight matrix obtained above is a symmetric matrix,
specifically, a diagonal matrix the main diagonal components of which are the estimated
weight matrices of the first response, second response, etc., up to the p-th response.

3.3. Estimating Optimal Smoothing Parameters

In MNR modeling, selection of the optimal smoothing parameter value λ cannot be
omitted, and is crucial to obtaining a good regression function fit of the MNR model based
on the smoothing spline estimator. According to [46], there are several criteria that can be
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used to select λ, including minimizing cross-validation (CV), generalized cross-validation
(GCV), Mallows’ Cp, and Akaike’s information criterion (AIC). However, according to [47],
for good regression function fitting based on the spline estimator Mallows’ Cp and GCV
are the most satisfactory.

In this section, we determine the optimal smoothing parameter value for good regres-
sion function fitting of the MNR model (1). Taking into account Equation (26), we may
express the estimated smoothing spline regression function presented in (22) as follows:

f̂
(
λ,σ2

)
= H

(
λ,σ2

)
y

where λ =
(
λ1, λ2, . . . , λp

)T , σ2 =
(

σ2
1 , σ2

2 , . . . , σ2
p

)T
. The mean squared error (MSE) of the

estimated smoothing spline regression function presented in (26) is provided by

MSE =
(y−f̂(λ,σ2))

T
W(y−f̂(λ,σ2))

∑
p
r=1 nr

=
(y−f̂(λ,σ2))

T
W(y−f̂(λ,σ2))
N

=
((I−H(λ,σ2))y)

T
W(I−H(λ,σ2))y

N

=
‖W

1
2 (I−H(λ,σ2))y‖

2

N

Hereinafter, we define this function as follows:

G(λ) =
N−1‖W 1

2
(
I−H

(
λ,σ2))y‖2(

1
N trace(IN −H(λ,σ2))

)2 (27)

Therefore, based on (27), we can obtain the optimal smoothing parameter value,
λopt =

(
λ1;opt, λ2;opt, . . . , λp;opt

)T , by taking the solution of the following optimization:

Gopt
(
λopt

)
= Min

λ1,...,λp∈R+
{G(λ)}

= Min
λ1,...,λp∈R+

{
N−1‖W

1
2 (I−H(λ,σ2))y‖

2

( 1
N trace(IN−H(λ,σ2)))

2

}
(28)

where R+ represents a positive real number set and N = ∑
p
r=1 nr.

Thus, the optimal smoothing parameter value λopt =
(
λ1;opt, λ2;opt, . . . , λp;opt

)T is
obtained from the minimizing process of the function G(λ) in (27). The function G(λ) in
(27) is called the generalized cross-validation function [1].

3.4. Simulation Study

In this section, we provide a simulation study for estimating the smoothing spline
regression function of the MNR model, where the performance of the proposed MNR
model estimation method depends on the selection of an optimal smoothing parameter
value. For example, we generate samples with size n = 100 from an MNR model, namely,
a three-response nonparametric regression model, as follows:

y1i = 5 + 3 sin
(
2πt2

1i
)
+ ε1i, for i = 1, 2, . . . , n

y2i = 3 + 3 sin
(
2πt2

1i
)
+ ε2i , for i = 1, 2, . . . , n

y3i = 1 + 3 sin
(
2πt2

1i
)
+ ε2i , for i = 1, 2, . . . , n

 (29)

where n = 100 and with correlations ρ12 = 0.6, ρ13 = 0.7, ρ23 = 0.8 and variances σ2
1 = 2,

σ2
2 = 3, σ2

3 = 4. Based on the results of this simulation, we obtain a minimum generalized
cross-validation (GCV) value of 2.526286 and three optimal smoothing parameter values,
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which are λ1(opt) = 2.146156× 10−7 (for the first response), λ2(opt) = 1.084013× 10−7 (for
the second response), and λ3(opt) = 5.930101× 10−8 (for the third response).

Next, we present an illustration of the effects of the smoothing parameters on the estima-
tion results of the MNR Model by comparing three kinds of different smoothing parameter val-
ues, namely, λ1(small) = 10−10, λ2(small) = 2× 10−10, and λ3(small) = 3× 10−10, which repre-
sent small smoothing parameter values; λ1(opt) = 2.146156× 10−7, λ2(opt) = 1.084013× 10−7,
and λ3(opt) = 5.930101× 10−8, which represent optimal smoothing parameter values; and
λ1(large) = 10−5, λ2(large) = 2 × 10−5, and λ3(large) = 3 × 10−5, which represent large
smoothing parameter values. In the following table and figures, we provide the results of this
simulation study.

Table 1 shows that the smoothing parameter values of 2.146156× 10−7, 1.084013× 10−7,
and 5.930101× 10−8 are the optimal smoothing parameter values, as these smoothing pa-
rameters have the lowest GCV value (2.526286) among all the others. Thus, according to
(28), these smoothing parameter values are the optimal smoothing parameters. We can write
them as λ1(opt) = 2.146156× 10−7, λ2(opt) = 1.084013× 10−7, and λ3(opt) = 5.930101× 10−8.
The optimal smoothing parameters provide the best estimation results for the MNR model
presented in (29).

Table 1. Comparison estimation results of MNR Model in (29) for three kinds of smoothing parame-
ter values.

n = 100; ρ12 = 0.6; ρ13 = 0.7; ρ23 = 0.8; σ2
1 = 2; σ2

2 = 3; σ2
3 = 4

Smoothing Parameters Minimum Values of GCV Results of Estimation

λ1(small) = 10−10

λ2(small) = 2× 10−10

λ3(small) = 3× 10−10

(Small Values) 4.763234 The estimation results are too rough.

λ1(opt) = 2.146156× 10−7

λ2(opt) = 1.084013× 10−7

λ3(opt) = 5.930101× 10−8

(Optimal Values) 2.526286 The estimation results are the best.

λ1(large) = 10−5

λ2(large) = 2× 10−5

λ3(large) = 3× 10−5

 (Large Values) 4.617504 The estimation results are too smooth.

The plots of the estimated regression function of the MNR model presented in (29) for
the three different smoothing parameters are shown in Figures 1–3.

Figure 1 shows that for all responses the small smoothing parameter values provide
estimates of the regression functions of the MNR model presented in (29) that are too
rough, namely, (y1) for the first response, (y2) for the second response, and (y3) for the
third response.

Figure 2 shows that the optimal smoothing parameter values provide the best estimates
of the regression functions of the MNR model presented in (29) for all responses, namely,
(y1) for the first response, (y2) for the second response, and (y3) for the third response.

Figure 3 shows that for all responses the large smoothing parameter values provide
estimates of the regression functions of the MNR model presented in (29) that are too
smooth, namely, (y1) for the first response, (y2) for the second response, and (y3) for the
third response.
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Figure 1. Plots of estimated MNR Models in (29) for small smoothing parameters.
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3.5. Investigating the Consistency of the Smoothing Spline Regression Function Estimator

We first investigate the asymptotic properties of the smoothing spline regression
function estimator f̂ based on the integrated mean square error (IMSE) criterion. We develop
the IMSE proposed by [14] from the uniresponse case to the multiresponse case. Suppose
that we decompose the IMSE into two components, bias2(λ) and Var(λ), as follows:

IMSE(λ) = E
∫ b

a

[(
f(t)− f̂(t)

)T
W
(

f(t)− f̂(t)
)]

dt = bias2(λ) + Var(λ) (30)

where bias2(λ) =
∫ b

a E[
(

f(t)− Ef̂(t)
)T

W
(

f(t)− Ef̂(t)
)
]dt, and

Var(λ) =
∫ b

a E
[(

Ef̂(t)− f̂(t)
)T

W
(

Ef̂(t)− f̂(t)
)]

dt. Furthermore, in order to investigate

the asymptotic property of bias2(λ), we assign the solution to PWLS optimization in the
following theorem.

Theorem 1. If f̂(t) is the solution that minimizes the following penalized weighted least
square (PWLS):

N−1(y− g(t))TW(y− g(t)) + ∑p
r=1 λr

∫ br

ar

(
g(m)

r (tr)
)2

dtr (31)

then the solution that minimizes the following penalized weighted least square (PWLS):

N−1(f(t)− g(t))TW(f(t)− g(t)) + ∑p
r=1 λr

∫ br

ar

(
g(m)

r (tr)
)2

dtr (32)

is ĝ∗(t) = Ef̂(t).

Proof of Theorem 1. In Section 3.1, we obtained the solution to the PWLS in (31), that

is, f̂ = A
^
b + C

^
d = Hy, where as provided in (22), H = A

(
ATD−1WA

)−1
ATD−1W +

CD−1W
(

I−A
(

ATD−1WA
)−1

ATD−1W
)

, D = WC+NΛΛΛ, ΛΛΛ = diag
(

λ1In1 , λ2In2 , . . . , λpInp

)
,
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N = ∑
p
r=1 nr, and I is an identity matrix. Next, if we substitute y = f(t) into Equation (31), we

find that the value that minimizes PWLS (32) is

ĝ∗(t) = A
(

ATD−1WA
)−1

ATD−1W + CD−1W
(

I−A
(

ATD−1WA
)−1

ATD−1W
)

y = Ef̂(t)

Thus, Theorem 1 is proved.

Furthermore, we investigate the asymptotic property of bias2(λ). For this purpose, we
first provide the following assumptions.

Assumptions (A):

(A1) For every r = 1, 2, . . . , p, nr = n and λr = λ.
(A2) For every i = 1, 2, . . . , n, ti =

2i−1
2n .

(A3) For any continuous function g and 0 < Wi = W < ∞, i = 1, 2, . . . , n, the following
statements are satisfied [48,49]:

(a) n−1 ∑n
i=1 g(ti)→

∫ b
a g(t)dt , as n→ ∞ .

(b) n−1 ∑n
i=1 Wig(ti)→

∫ b
a Wg(t)dt, as n→ ∞ .

(c) n−1 ∑n
i=1 λi

∫ bi
ai

(
g(m)

i (ti)
)2

dti → λ
∫ b

a g(m)(t)dt , as n→ ∞ .

Next, given Assumptions (A), the asymptotic property of bias2(λ) is provided in the
Theorem 2.

Theorem 2. If the Assumptions in (A) hold, then Bias2(λ) ≤ O(λ), as n→ ∞ .

Proof of Theorem 2. Suppose ĝ(t) is the value which minimizes the following penalized
weighted least square (PWLS):

∫ b

a
(f(t)− g(t))TW(f(t)− g(t))dt + ∑p

r=1 λr

∫ br

ar

(
g(m)

r (tr)
)2

dtr

then, considering the Assumptions (A), we have

n−1(f(t)− g(t))TW(f(t)− g(t)) ≈
∫ b

a
(f(t)− g(t))TW(f(t)− g(t))dt , as n→ ∞.

Hence, we obtain ĝ∗(t) = Ef̂(t) ≈ ĝ(t). Thus, for every g ∈Wm
2 [a, b] we have

Bias2(λ) =
∫ b

a E[
(

f(t)− Ef̂(t)
)T

W
(

f(t)− Ef̂(t)
)
]dt

≤
∫ b

a E[
(

f(t)− Ef̂(t)
)T

W
(

f(t)− Ef̂(t)
)
]dt + ∑

p
r=1 λr

∫ b
a ĝ(m)

r (tr)dtr

Because Ef̂(t) ≈ ĝ(t), we obtain

Bias2(λ) ≤
∫ b

a
E[(f(t)− ĝ(t))TW(f(t)− ĝ(t))]dt + ∑p

r=1 λr

∫ b

a
ĝ(m)

r (tr)dtr

Thus, we have the following relationship:

Bias2(λ) ≤
∫ b

a
E[(f(t)− g(t))TW(f(t)− g(t))]dt + ∑p

r=1 λr

∫ b

a
g(m)

r (tr)dtr (33)

for every g ∈Wm
2 [a, b].

Because every g ∈Wm
2 [a, b] satisfies the relationship in (33), by taking g(t) = f(t), we

have

Bias2(λ) ≤∑p
r=1 λr

∫ b

a
g(m)

r (tr)dtr = O(λ) as n→ ∞ (34)
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where O(·) represents “big oh”. Details about “big oh” can be found in [14,50].
Thus, Theorem 2 is proved.

Furthermore, the asymptotic property of Var(λ) is provided in Theorem 3.

Theorem 3. If Assumptions (A) hold and r = 1, 2, . . . , p, then Var(λr) ≤ O

(
1

n λ
1

2m
r

)
.

Proof of Theorem 3. To investigate the asymptotic property of Var(λ), we first define the
following function:

ω
(

f̂, h, α
)
= R

(
f̂ + αh

)
+ ∑p

r=1 λr Jr

(
f̂ + αh

)
where R(g) = n−1(y− g(t))TW(y− g(t)); Jr(g) =

∫ b
a

[
g(m)

r (tr)
]2

dtr; h ∈ Wm
2 [a, b] and

α ∈ R.

Hence, for any f, g ∈Wm
2 [a, b] we have

ω
(

f̂, h, α
)
= n−1(y− f(t)−αg(t))TW(y− f(t)−αg(t))+

∑
p
r=1 λr

∫ br
ar

(
f (m)
r (tr) + αg(m)

r (tr)
)2

dtr

Next, by taking the solution to
∂ω(f̂,h,α)

∂α = 0, for α = 0 we have

n−1(y− f(t))TWg(t) = ∑p
r=1 λr

∫ br

ar

(
f (m)
r (tr)g(m)

r (tr)
)2

dtr

Furthermore, if γ1, γ2, . . . , γn are the bases for the natural spline and
fr(tr) = ∑n

k=1 βrkγrk(tr), r = 1, 2, . . . , p, then according to [51] this implies that

∑n
j=1
(
yrj −∑n

k=1 βrkγrk
(
trj
))

Wrjgrj
(
trj
)

= nλr(−1)m(2m− 1)! ∑n
i=1 gr(tri)∑n

k=1 βrkdrik
(35)

where drik is the rth response diagonal element of matrix H in (26).
Now, because Equation (35) holds for every gr ∈Wm

2 [ar, br], r = 1, 2, . . . , p, it follows
that determining the solution to Equation (35) is equivalent to determining the value of βrk
that satisfies the following equation:

yri = ∑n
k=1

(
nλr(−1)m(2m− 1)!W−1

ri drik + γrk(tri)
)

βrk , i = 1, 2, . . . , n (36)

We can express Equation (36) in matrix notation as follows:

y =
(

nλr(−1)m(2m− 1)!W−1K +γγγ
)

βββ (37)

where = {drik}, γγγ = {γrk(tri)}, r = 1, 2, . . . , p, and i, k = 1, 2, . . . , n.
Hence, we obtain the estimator for β in Equation (37) as follows:

β̂ = diag
(

1
1 + n λr θ1

, . . . ,
1

1 + n λr θn

)
γTyγTyγTy

where {θ1, . . . , θn} ∈ H (here,H is an RKHS) and is perpendicular to γγγ.
Thus, the estimator for the regression function f(t) can be expressed as follows:

f̂(t) = γγγ(t)β̂̂β̂β = ∑n
j=1

1
1 + nλθj

γγγT
j y γγγj(t) (38)
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Hence, for r = 1, 2, . . . , p Equation (38) results in

f̂r(tr) = ∑n
j=1

1
1+nλrθrj

γγγT
rjy γγγrj(tr)

= ∑n
j=1

1
1+nλrθrj

∑n
k=1 γrj(trk)yrkγrj(trk)

Thus, for r = 1, 2, . . . , p we have

Var
(

f̂r(tr)
)

= σ2
r ∑n

j=1
γ2

rj(tr)

(1+n λr θrj)
2 ∑n

k=1 γrj(trk) γrj(trk)W−1
rk

≤
(

max
1≤i≤n

{
W−1

ri

})
σ2

r ∑n
j=1

γ2
rj(tr)

(1+n λr θrj)
2

From this step, for r = 1, 2, . . . , p we have

Var(λr) =
∫ br

ar
E
[(

E f̂r(tr)− f̂r(tr)
)T

Wr

(
E f̂r(tr)− f̂r(tr)

)]
dtr

≤
(

max
1≤i≤n

{
W−1

ri

})
σ2

r ∑n
j=1

γ2
rj(tr)

(1+n λr θrj)
2

∫ br
ar

γ2
rj(tr)Wrdtr

In the next step, Refs. [51,52] provide an approximation for n→ ∞ as follows:

n−1 = n−1 ∑n
j=1 Wrjγ

2
rj
(
trj
)
≈
∫ br

ar
γ2

r (tr)Wrdtr, and

Var(λr) ≤
(

max
1≤i≤n

{
W−1

ri

})
σ2

r n−1 ∑n
j=1

1
(1+λr γj)

2 .

Furthermore, Ref. [51] leads to the following result:

Var(λr) ≤
(

max
1≤i≤n

{
W−1

ri

})
σ2

r n−1 ∑n
j=1

1(
1 + λr (π j)2m

)2

Next, using integral approximation [51], for r = 1, 2, . . . , p we have

Var(λr) ≤
(

max
1≤i≤n

{
W−1

ri

}) σ2
r

n π λ
1

2m
r

∫ ∞

0

dx

(1 + x2m)
2 =

1

n λ
1

2m
r

K(m, σ) = O

(
1

n λ
1

2m
r

)

where (m, σ) = σ2
r

π

(
max

1≤i≤n

{
W−1

ri

}) ∫ ∞
0

dx
(1+x2m)

2 . Thus, Theorem 3 is proved.

Here, based on Theorems 2 and 3, we obtain the asymptotic property of the smoothing
spline regression function estimator of the MNR model presented in (1) based on the
integrated mean square error (IMSE) criterion, as follows:

IMSE(λ) = Bias2(λ) + Var(λ) ≤ O(λ) + O(z) as n→ ∞ (39)

where =
(
λ1,λ2, . . . ,λp

)T and z =

(
1

n λ
1

2m
1

1

n λ
1

2m
2

· · · 1

n λ
1

2m
p

)T

.

The consistency of the smoothing spline regression function estimator of the MNR
model presented in (1) is provided by the following theorem.

Theorem 4. If f̂(t) is a smoothing spline estimator for regression function f(t) of the MNR model
presented in (1), then f̂(t) is a consistent estimator for f(t) based on the integrated mean square
error (IMSE) criterion.

Proof of Theorem 4. Based on Equation (39), we have the following relationship:
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IMSE(λ) = Bias2(λ) + Var(λ) ≤ O(λ) + O(z) ≤ O(nλ) as n→ ∞.

Hence, according to [48], for any small positive number δ > 0 we have

Lim
n→∞

P
(∣∣∣∣ IMSE(λ)

nλ

∣∣∣∣ > δ

)
≤ Lim

n→∞
P(|IMSE(λ)| > δ) = 0. (40)

Because P(|IMSE(λ)| > δ) = 1 − P(|IMSE(λ)| ≤ δ), based on Equation (40) and
applying the probability properties we have

Lim
n→∞

(1− P(|IMSE(λ)| ≤ δ)) = 0 ⇔ 1− Lim
n→∞

P(|IMSE(λ)| ≤ δ) = 0

⇔ Lim
n→∞

P(|IMSE(λ)| ≤ δ) = 1.
(41)

Equation (41) means that the smoothing spline regression function estimator of the
multiresponse nonparametric regression (MNR) model is a consistent estimator based on
the integrated mean square error (IMSE) criterion. Thus, Theorem 4 is proved.

3.6. Illustration of Theorems

Suppose a paired observation (yri, tri) follows the multiresponse nonparametric re-
gression (MNR) model:

yri = fr(tri) + εri, tri ∈ [0, 1], r = 1, 2, . . . , p, i = 1, 2, . . . , nr. (42)

Next, for every r = 1, 2, . . . , p, we assume f1 = f2 = . . . = fp = f and ε1 = ε2 = . . . =
εp = ε such that y1 = y2 = . . . = yp = y. Hence, we have a nonparametric regression
model as follows:

yi = f (ti) + εi, ti ∈ [0, 1], i = 1, 2, . . . , n. (43)

Based on the model presented in (43), we present an illustration related to the four
theorems in Section 3.5 through a simulation study with sample size of n = 200. Based on
this model, let f(t) = sin3(2πt3), where t is generated from a uniform (0,1) distribution
and ε is generated from a standard normal distribution. The first step is to create plots of
the observation values (t, y) and f(t), as shown in Figure 4.
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Figure 4. Plots of observation values (𝒕, 𝒚) and 𝒇(𝒕). Figure 4. Plots of observation values (t, y) and f(t).

It can be seen from Figure 4 that there is a tendency towards y variance inequality. For
larger values of t, the y variance tends to be larger. Next, the data model is approximated
by a weighted spline with a weight of wi = 1/t2

i , i = 1, 2, . . . , 200. The next step is to
determine the order, number, and location of the knot points. Here, we use a weighted
cubic spline model with two knot points, namely, 0.5 and 0.785. This weighted cubic spline
model can be written as follows:

E(y) = β0 + β1t + β2t2 + β3t3 + β4(t− 0.5)3
+ + β5(t− 0.785)3

+ (44)
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The plot of this weighted cubic spline with two knot points is shown in Figure 5. The
plots of the residuals and the estimated weighted cubic spline are shown in Figure 6.
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Figure 6 shows that with weight wi = 1/t2
i , the variance of the response variable

y tends to be the same. Meanwhile, Figure 7 provides a residual normality plot for the
weighted cubic spline model. The plot in Figure 7 shows no indication towards deviation
from the normal distribution.
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Next, as a comparison, we investigate a weighted cubic polynomial model with weight
wi = 1/t2

i , i = 1, 2, . . . , 200 for fitting the model (43). The fitting of the weighted cubic
polynomial model is shown in Figure 8. From the visualization in Figure 8, it can be seen
that this weighted cubic polynomial approach tends to approach the function f (t) very
globally. This is in contrast to the weighted cubic spline with two knot points in (44), which
approaches the function f (t) more locally. Thus, the weighted cubic spline model with two
knot points is adequate as an approximation model for the model presented in (43).
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Based on the illustration above and Figures 4–8, if f̂ (t) is an estimator for model (43),
that is, if f̂ (t) is the Penalized Weighted Least Squares (PWLS) solution, then ĝ∗(t) = E(y),
from Equation (44) is an estimator for model (43) as well, such that ĝ∗(t) = E

[
f̂ (t)

]
, as

provided by Theorem 1.
The plots of the asymptotic curves of IMSE(λ), Bias2(λ), and Var(λ),

where IMSE(λ) = Bias2(λ) + Var(λ), are shown in Figure 9 [53].
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Figure 9 shows that the Integrated Mean Square Error (IMSE(λ)) curve represented by
curve (a) is the sum of the quadratic bias (Bias2(λ)) curve represented by curve (b) and
the variance curve (Var(λ)) represented by curve (c). It can be seen from Figure 9b that

Bias2(λ) ≤ O(λ), as n→ ∞ , that is, Lim Sup
n→∞

∣∣∣ Bias2(λ)
λ

∣∣∣ < ∞ [14,50,54]. This means that∣∣∣ Bias2(λ)
λ

∣∣∣ remains bounded, as n→ ∞ , which is provided by Theorem 2. Furthermore,

Figure 9c shows that Var(λ) ≤ O
(

1

nλ
1

2m

)
(that is, Lim Sup

n→∞

∣∣∣∣(nλ
1

2m

)−1
/λ
∣∣∣∣ < ∞ [14,50,54].

This means that
∣∣∣∣(nλ

1
2m

)−1
/λ
∣∣∣∣ remains bounded, as n→ ∞ , which is provided by The-
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orem 3. Furthermore, Figure 9 shows that IMSE(λ) = Bias2(λ)+Var(λ) ≤ O(nλ). Accord-
ing to [14,50,54], this means that Lim Sup

n→∞

∣∣∣ IMSE(λ)
nλ

∣∣∣ < ∞. In other words, IMSE(λ) ≤ O(nλ)

if
∣∣∣ IMSE(λ)

nλ

∣∣∣ remains bounded, as n→ ∞ . According to [14,50,54], for any small positive

number δ > 0 we have Lim
n→∞

P
(∣∣∣ IMSE(λ)

nλ

∣∣∣ > δ
)
≤ Lim

n→∞
P(|IMSE(λ)| > δ) = 0; hence,

Lim
n→∞

P(|IMSE(λ)| ≤ δ) = 1 is consistent.

4. Conclusions

The smoothing spline estimator with the RKHS approach has good ability to estimate
the MNR model, which is a nonparametric regression model where the responses are
correlated with each other, because the goodness of fit and smoothness of the estimation
curve is controlled by the smoothing parameter, making the estimator very suitable for
prediction purposes. Therefore, selection of the optimal smoothing parameter value cannot
be omitted, and is crucial to good regression function fitting of the MNR model based on
smoothing spline estimator using the RKHS approach. The estimator of the smoothing
spline regression function of the MNR model that we obtained is linear with respect to the
observations in Equation (22), and is a consistent estimator based on the integrated mean
square error (IMSE) criterion. The main influence of this study is lies in the easier estimation
of a multiresponse nonparametric regression model where there is a correlation between
responses using the RKHS approach based on a smoothing spline estimator. This approach
is easier, and faster, and more optimal, as estimation is carried out simultaneously instead
of response by response for each observation. In addition, the theory generated in this study
can be used to estimate the nonparametric component of the multiresponse semiparametric
regression model used to model Indonesian toddlers’ standard growth charts. In the future,
the results of this study can be further developed within the scope of statistical inference,
especially for the purpose of testing hypotheses involving multiresponse nonparametric
regression models and multiresponse semiparametric regression models.
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