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Abstract: The intricacy of the financial systems reflected in bilateral ties has piqued the interest of
many specialists. In this research, we introduce network-induced soft sets, a novel mathematical
model for studying the dynamics of a financial stock market with several orders of interaction.
To achieve its intelligent parameterization, this model relies on the bilateral connections between
economic actors, who are agents in a financial network, rather than relying on any other single feature
of the network itself. Our study also introduces recently developed statistical measures for network-
induced soft sets and provides an analysis of their application to the study of financial markets.
Findings validate the efficacy of this novel method in assessing the effects of various economic stress
periods registered in Borsa Istanbul.
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1. Introduction

Multiagent systems are characterized by the existence of several components and
the intensity of their interactions. The primary issue with multicomponent systems is
that the behavior of system components cannot be anticipated or manipulated. Economic
systems have several variables and components, which may function independently of one
another and trigger one another. The behavior of components may be unpredictable due
to the nonlinearity of their interactions. Therefore, forecasting and management become
challenging, particularly in economic systems.

Soft set theory is an excellent tool to apply in uncertain systems. Molodtsov [1] was
the first to suggest soft set theory, which differs from fuzzy sets, vogue sets, and rough sets
by arbitrary parameters. The independence of soft sets from membership degrees is their
most distinguishing and significant characteristic. From a mathematical standpoint, a soft
set consists of components with freely modifiable parameters.

It can be stated that a fuzzy set includes a neighborhood system, namely, a specific
instance of the fuzzy set [2]. The identity leading to at least one topological structure
and the content dependency identity are used to establish a neighborhood system for a
soft set. Thus, the soft set is relevant to a multitude of computing domains. Intelligent
calculations and analyses encountered in several disciplines are used extensively in soft
calculations for missing data estimations, which can severely impact the outcome depend-
ability [3–7]. Soft sets may also be utilized for intelligent computation and estimation of
incomplete data, which are often used in computer science, engineering, data analysis, and
biomedicine [8–12].

Alcantud and Santos-García [13] showed that soft sets are useful mathematical struc-
tures in the area of economics, where data analysis plays a crucial role in decision making.
Multiple researchers have showed that soft sets may be used not just in economics, but
also in other decision-making processes [14–16]. The settlement of conflict situations is an
essential idea in economics, and several pieces of research have been conducted on the
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topic. In conflict scenarios, Sutoyo et al. [17] revealed another use of soft sets. The authors
successfully represented collaboration or conflict scenarios between parties having a soft
connection in their research. The authors of [18] used a fuzzy soft set-based technique
in order to evaluate a wide range of assets by means of heterogeneous data. Their find-
ings clearly suggested the potential of avoiding the subjectivity of the appraiser and the
well-known drawbacks of other approaches such as linear multiple regression. Zhang and
Xu [19] addressed the issue of a watchmaker selecting a supplier from whom to acquire
strategic components in order to gain a market edge. In order to evaluate how well one
option met a criterion in a decision-making process, Xu and Xia [20] used hesitant fuzzy
components to provide a management case study. New applications of a soft set theory and
a fuzzy soft set theory for efficient stock-out management were presented by Taş et al. [21].
Kalaichelvi [22] and Özgür and Taş [23] used fuzzy soft sets to address the issue of making
sound financial investments. In [24], an adequate credit risk assessment approach based on
the soft set theory that deals with the mixed uncertainty problem was presented to solve
the issue of credit risk evaluation of microloan enterprises. Loan officers may be able to
make better-informed lending choices using soft set approaches with data available to them
at the current stage of microlensing operations if they integrate operational characteristics
with the credit risk assessment approach. In [25], soft set theory was utilized to offer a
novel parameter reduction strategy to be employed when choosing financial measures for
company failure prediction. The suggested strategy incorporated both statistical logistic
regression and the notion of soft sets in decision making. This approach combined the best
features of both methods.

Soft sets are also employed in the medical decision-making process. Recent re-
search [26,27] indicated that soft sets with interval values are useful in medical diagnostics.
In addition, Yuksel et al. [28] and Alcantud et al. [29] effectively used soft set theory in
the detection of prostate cancer and lung cancer, respectively. Soft set theory may also be
applied to multiple-interaction systems. In the work of Balcı and Akgüller [30], the authors
produced the soft set model of the metabolic system, and in another piece of research [31],
the same authors offered a new methodology for obtaining soft set models of financial
systems.

Soft sets have topological structures that are determined by the interactions of their
parts as expressed by the parameters that make up the system. Soft sets are convenient for
structural study of uncertain systems due to their interaction across parameters. Since more
light needs to be shed on the impact of soft sets on the structural analysis of parameters,
we aimed to apply a quantitative approach to the interactions in multicomponent systems
modeled using soft sets. The quantity of elements in the other parameter components
of the parameter volumes may be traded for knowledge about the interchange between
the elements of the parameterized universe. Intuitively, a robust system is encoded by a
collection of soft values. For this reason, soft sets may be seen as manifolds.

Due to their complexity, bilaterally represented financial systems [32–38] have attracted
the attention of numerous specialists. Financial participants in the underlying system
are represented as nodes and edges in a graph. Graphs, which are generated from the
correlation of closing prices corresponding to the time series of financial actors, provide a
mathematical framework for describing bilateral interactions. Even if a network is good
at reproducing bilateral connections, its topological nature forces it to disregard higher-
order interactions occurring inside the system. Optimal financial performance requires
investigating the high-level interactions of the market because investors must have a firm
grasp of market dynamics throughout the pricing process.

In this paper, we employed soft sets to model high-order financial market relationships.
We used a directed tree-based parameterization generation approach to build the so-called
“network-induced soft sets” as models of the financial market. The term “parameterization”
refers to the procedure of taking one actor and then adding a soft link at the second degree
and a joint universal element at the third degree to other actors. A new set of statistical
metrics to be employed for this innovative mathematical framework was also defined. We
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proposed soft cluster models and analyzed statistical data for all companies listed on the
Borsa Istanbul 100 (BIST100) stock exchange. The BIST100 index was evaluated in two
stages utilizing the 2018 economic stress and COVID-19 pandemic. We used both static
and dynamic techniques for their ability to characterize changes in data.

2. Methodology

Parameterization choices in any study using soft set theory should be made following
the recommendations of a specialist in the relevant area of application. In this research, we
examined soft sets starting from financial networks in order to make a well-informed choice
of parameters. This section provides the background knowledge required to construct
financial correlation networks and acquire the resulting soft sets.

2.1. Directed Correlation Networks

Graph theory is an area of discrete mathematics whose popularity has increased in re-
cent years, not only regarding theoretical developments, but also regarding its applications
for numerous aspects [39–45]. Graph theory can be easily used in solving daily life prob-
lems, and it has been employed quite frequently in more theoretical studies, data analyses,
and artificial intelligence applications. A graph is a set of elements comprising vertices, in
addition to vertices combined with an edge according to the relationship between them.

Graphs with the general representation G = (V, E) can be considered as a pair of sets,
with V as the vertex set and E as the edge set. Graphs can be divided into different classes
according to their properties. One of these classifications can be made according to whether
edges are directional or nondirectional.

Let us assume that graphs are generally divided into directed and undirected. While
undirected graphs represent symmetrical relations, directed graphs (“digraphs”) mostly
model unidirectional relations. Both graph classes have many applications. Since undi-
rected graphs can somehow represent digraphs, digraphs also have important application
areas. Digraphs are determined by sets of vertices and edges. While these two classes do
not differentiate in terms of the vertex set, they do variate with respect to the edge set. In a
digraph, the concept of an “arc” is used instead of an edge. For an arc (u, v) in a digraph,
u is called the tail and v is called the head. In a digraph, the head and tail of an arc are
the end vertices of that edge, which are called adjacent. Since networks can be modeled
with graphs, depending on whether the graph representing the network is directional or
undirected, the network can be directional or undirected. For more on digraphs, we refer the
readers to [46–48].

The economic relationships of financial institutes can form a network, and analyzing
such networks can facilitate the understanding of certain economic contexts as shown in
several studies [49–57]. The use of network theory in the context of financial systems can,
thus, ease one’s understanding of complex systems.

In this study, the financial network of a stock market was modelled using a simple
digraph G = (V, E). In this diagraph, V was the set of financial institutions and E was the
set of edges specified by the Pearson correlation and the network centrality score among
the financial institutions in a stock market.

Let Cli denote the daily closure price of the i-th company in a stock market. Then, the
daily logarithmic return Ri can be calculated as follows:

Ri = log
(

Cli+1

Cli

)
= logCli+1 − logCli (1)

In order to obtain a relation between companies that represent the network edges, the
correlation distance between companies can be used:

DC
(
vi, vj

)
=
√

2
(
1− ρij

)
, (2)



Mathematics 2022, 10, 3964 4 of 24

where vi, vj ∈ V and

ρij =
< RiRj >−< Ri >< Rj >√(

< R2
i >− < Ri >2

)(
< R2

j >− < Rj >2
) (3)

is the Pearson correlation coefficient. Using DC
(
vi, vj

)
, this means that G = (V, E, DC) emerges

as a weighted network model of the stock market. However, since DC
(
vi, vj

)
= DC

(
vj, vi

)
,

the emerging weighted network is undirected and complete.
It can be stated that an edge appears between each financial actor in this network

elicited by the Pearson correlation. As edge weights change in response to the correlation
distance, the network maintains a high level of topological complexity. In this study,
we used a subgraph representation of the network to encode both its local and global
characteristics, rather than the whole network itself. The minimum spanning tree (MST)
has been widely utilized by studies focused on financial networks [58–66] due to its efficacy
in modeling and evaluating network structure. According to the definition, the MST is
a network subgraph with all nodes and the lowest number of feasible edges connecting
them. In other words, edges have minimum total weights. Due to the low weight measure
in the context of edges weighted via correlation distances, one can easily identify which
actors are more influenced by others using MST filtering of the network. In order to keep
the hierarchical structure that has strong clustering coefficients, we used the MST subgraph
of the weighted network and denoted it by S = (V, ES, DC).

Eigenvector centrality is a measure indicating vertex importance that takes into account
its neighbors’ relevance. Such a measure is used to assess the influence of the network
vertex. It is determined by using the adjacency matrix to perform a matrix calculation and
determine the principal eigenvector. The key premise is that linkages from important vertices
are worth more than linkages from unimportant vertices as defined by degree centrality. At
first, all nodes are equal, but as the calculation advances, vertices with more edges become
more important. Their significance spreads to the vertices to which they are connected
with an edge. The values stabilize after numerous recalculations, resulting in the final
eigenvector centrality values. For more mathematical details on eigenvector centrality of a
network vertex, we refer readers to Bonacich [67].

In a financial system where agents interact through pairwise relations, eigenvector
centrality plays an important role in determining which agent has more importance in the
relation. Let G = (V, E, DC) model a stock market as a complete graph. Since every vertex
is connected to each other, the eigenvector centrality of each vertex can be calculated. Let
us use Cv to denote the eigenvector centrality of the vertex v. In order to keep hierarchical
clustering behavior, and assign a direction to the edges of S = (V, ES, DC), the following
filtration rule can be considered:(

vi, vj
)
∈ ES ⇔

(
vi, vj

)
∈ ES and Cvi ≥ Cvj (4)

Therefore, S = (V, ES, DC) emerges as a directed graph. It should be noted that S may
have isolated vertices.

2.2. Network-Induced Soft Sets

Because of uncertainty, traditional analysis techniques may not be as powerful as
soft computing principles when dealing with real-world data. Soft set theory, initially
developed by Molodtsov [1], is a strong technique when dealing with uncertainty. By
specifying the parameters, this theory varies from similar theories dealing with rough sets,
vague sets, and fuzzy sets.

Definition 1. Let A be a subset of U. A pair (F, A) is called a soft set over U where
F : A→ P(U) is a set-valued function.
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A soft set over U can be thought of as a parameterized family of subsets of the universe
U. A soft set is often commonly thought of as the approximate description of an object.
There are several set operations defined on soft sets. In this study, we used some basic soft
set operations and presented useful definitions. For more on algebraic operations regarding
soft sets, we refer the readers to Aktaş and Çağman [2].

Definition 2. Let (F, A) and (G, B) be two soft sets defined on the same universe. (F, A) is
a soft subset of (G, B) denoted by (F, A)⊆̂(G, B); if A ⊆ B and ∀ε ∈ A, F(ε) and G(ε) are
identical approximations.

Definition 3. Let (F, A) and (G, B) be two soft sets defined on the same universe. For
C = A ∪ B and ∀e ∈ C, a soft set (H, C) defined by

H(e) =


F(e), e ∈ A\B
G(e), e ∈ B\A

F(e) ∪ G(e), e ∈ A ∩ B
, (5)

is called the soft union of (F, A) and (G, B) and is denoted by (H, C) = (F, A)∪̂(G, B).
In order to obtain a soft set from a digraph, the reparameterization rule for soft sets

needs to be introduced first.

Definition 4. Let (F, A) be a soft set. The reparameterization rule denoted by RF is a
mapping between two soft subsets (F1, A1) and (F2, A2), that is RF : (F1, A1)→ (F2, A2) ,
in which a soft subset matching pattern in (F1, A1) is replaced by a distinct matching pattern
in (F2, A2).

An illustrative example for RF can be given as follows:

Example 1. Consider a soft set given by

(F, A) = {(e1, {a, b}), (e2, {b, c}), (e3, {c, d}), (e4, {b, d})} (6)

for U = {a, b, c, d}. Then, for (F1, A1) = {(e1, {a, b}), (e2, {b, c})}, a reparameterization
rule can be defined with RF : (F1, A1)→ (F, A) . Even in this simplified scenario, the initial
choice of the soft set to which the initial transformation is performed is still unknown, and
such difference in choice almost always results in non-isomorphic soft set sequences in
expansion. Hence, by considering the initial soft set as a directed graph, where universe
elements are connected with directed binary relations, a soft set is able to be formed by
applying an RF-form reparameterization.

Definition 5. A network-induced soft set is denoted by (FN , V), in which every vertex cor-
responds to the universe element and the input for the universe element xi uses parameters
produced by the universe element xj as the output.

An illustrative example on the formation of (FN , V) from a simple directed network
can be given as follows:

Example 2. Let us consider a directed network having V = {v1, v2, . . . , v10} given below in
Figure 1:



Mathematics 2022, 10, 3964 6 of 24
Mathematics 2022, 10, x FOR PEER REVIEW 6 of 22 
 

 

 
Figure 1. Directed network. Note: The vertex set is 𝑉 = {𝑣 , 𝑣 , … , 𝑣 }.  

Then, (𝐹 , 𝑉) can be obtained by using the parameter: (𝐹 , 𝑉) = (𝑒 , {𝑣 , 𝑣 , 𝑣 , 𝑣 }), (𝑒 , {𝑣 , 𝑣 , 𝑣 , 𝑣 }), (𝑒 , {𝑣 , 𝑣 , 𝑣 , 𝑣 })(𝑒 , {𝑣 , 𝑣 , 𝑣 , 𝑣 }), (𝑒 , {𝑣 , 𝑣 , 𝑣 , 𝑣 }), (𝑒 , {𝑣 , 𝑣 , 𝑣 , 𝑣 }) . (7) 

Our research provided a network-induced soft set, and the causality parameters of 
interactions within a financial network were similar to the values in this soft set. There-
fore, input–output effects were investigated rather than evaluating players in bilateral 
connections. For studying different types of social networks, this technique was able to 
provide meaningful findings. In the context of soft sets, where soft computing methods 
could be used, our study employed a variety of metrics to characterize financial systems. 
When a soft set is defined in universes comprising few items, it becomes possible to probe 
a wide range of topological and geometric properties. Similar characteristics may be spec-
ified for universes with more elements. Contrarywise, statistical measurements can be in-
valuable for elucidating the broad outline of soft sets. In our study, we provided statistical 
evaluations of soft sets. 

Definition 6. ( Let 𝐹 , 𝑉) be a network-induced soft set. For 𝑣 ∈ 𝑉, the number of pa-
rameter mappings which include 𝑣  is called the soft degree of 𝑣  and is denoted by 𝛿(𝑣 ). Similarly, the cardinality 𝐹 𝑒  is called the soft degree of 𝑒  and is denoted by 𝛿 𝑒 . 

Definition 7. The soft degree distribution is the number of soft degree repeats in a net-
work-induced soft set (𝐹 , 𝑉) divided by the total number of elements. In other words, if |𝑉| = 𝑛 and |𝐹 (𝑉)| = 𝑚 for (𝐹 , 𝑉), the soft 𝑘-degree distribution of the elements is 𝑃 (𝑘) = ( ) and the soft 𝑘-degree distribution of parameters is 𝑃 (𝑘) = ( ). 
Definition 8. Let (𝐹 , 𝑉)  be a network-induced soft set. The sequence defined with 𝑣 , 𝐹(𝑒 ), 𝑣 , 𝐹(𝑒 ), … , 𝑣 , 𝐹(𝑒 ), 𝑣  is called a soft connection between 𝑣  and 𝑣 . 
Moreover, if the choice of 𝐹(𝑒 ) in a soft connection is random, then the sequence is called 
a random soft connection and is denoted by 𝜎 . 

In order to measure the similarity of two soft sets, a kernel function must be defined. 
The Jensen–Shannon kernel is a mutual information kernel that is not spatial. It is based 
on structured data and probability distributions [68]. Entropy measures the disorganiza-
tion of a system. A kernel function was determined in our study by comparing the entro-
pies of two network-induced soft sets. The Jensen–Shannon divergence for the ℙ  and ℙ  distributions of the 𝑝 and 𝑞 structures, respectively, is defined by 𝐽𝑆𝐷 ℙ , ℙ = 𝐻 ℙ + ℙ2 − 12 𝐻 ℙ + 𝐻 ℙ  (8) 

Figure 1. Directed network. Note: The vertex set is V = {v1, v2, . . . , v10}.

Then, (FN , V) can be obtained by using the parameter:

(FN , V) =

{
(e1, {v1, v5, v6, v9}), (e2, {v1, v5, v8, v9}), (e3, {v1, v3, v6, v9})
(e4, {v1, v3, v8, v10}), (e5, {v1, v8, v9, v10}), (e6, {v3, v6, v8, v9})

}
. (7)

Our research provided a network-induced soft set, and the causality parameters of
interactions within a financial network were similar to the values in this soft set. Therefore,
input–output effects were investigated rather than evaluating players in bilateral connec-
tions. For studying different types of social networks, this technique was able to provide
meaningful findings. In the context of soft sets, where soft computing methods could be
used, our study employed a variety of metrics to characterize financial systems. When a
soft set is defined in universes comprising few items, it becomes possible to probe a wide
range of topological and geometric properties. Similar characteristics may be specified
for universes with more elements. Contrarywise, statistical measurements can be invalu-
able for elucidating the broad outline of soft sets. In our study, we provided statistical
evaluations of soft sets.

Definition 6. Let (FN , V) be a network-induced soft set. For vi ∈ V, the number of
parameter mappings which include vi is called the soft degree of vi and is denoted by δ(vi).
Similarly, the cardinality

∣∣FN
(
ej
)∣∣ is called the soft degree of ej and is denoted by δ

(
ej
)
.

Definition 7. The soft degree distribution is the number of soft degree repeats in a network-
induced soft set (FN , V) divided by the total number of elements. In other words, if |V| = n
and |FN(V)| = m for (FN , V), the soft k-degree distribution of the elements is Pv(k) =

δ(v)
n

and the soft k-degree distribution of parameters is Pe(k) =
δ(e)
m .

Definition 8. Let (FN , V) be a network-induced soft set. The sequence defined with
v1, F(e1), v2, F(e2), . . . , vk−1, F(ek), vk is called a soft connection between v1 and vk. More-
over, if the choice of F

(
ej
)

in a soft connection is random, then the sequence is called a
random soft connection and is denoted by σ1k.

In order to measure the similarity of two soft sets, a kernel function must be defined.
The Jensen–Shannon kernel is a mutual information kernel that is not spatial. It is based on
structured data and probability distributions [68]. Entropy measures the disorganization of
a system. A kernel function was determined in our study by comparing the entropies of two
network-induced soft sets. The Jensen–Shannon divergence for the Pp and Pq distributions
of the p and q structures, respectively, is defined by

JSD
(
Pp,Pq

)
= HS

(Pp + Pq

2

)
− 1

2
(

HS
(
Pp
)
+ HS

(
Pq
))

(8)
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where HS(P∗) is the Shannon entropy [69]. Moreover, p and q structures are positive and
defined with:

κJSK(p, q) = log2− JSD
(
Pp,Pq

)
(9)

which is called the Jensen–Shannon kernel.
In order to calculate the Shannon entropy on (FN , V), the steady-state random soft

connection σxy on (FN , V) is used. For a network-induced soft set (FN , V), the probability
of a steady-state soft random connection containing the universal element vi ∈ V is
determined by:

P{(FN , V)}(ei) =
δ(ei)

∑e∈F(V) δ(e)
. (10)

Let (FN , V′) and (GN , V ′′ ) be two network-induced soft sets, v′ ∈ V′, v′′ ∈ V ′′ ,
and (HN , V) = (FN , V′)∪̂(GN , V ′′ ). The probabilities for the stationary soft random con-
nection on (HN , V) starting from elements v′ and v′′ are αv′ = |V′|/(|V′|+ |V ′′ |) and
α′′v = |V ′′ |/(|V′|+ |V ′′ |), respectively. Therefore, for the stationary soft random connection
containing the elements v′ and v′′ on (HN , V), the probabilities are αv′P{(FN , V′)}

(
v′i
)

and

αv′′ P{(GN , V ′′ )}
(

v′′j
)

, respectively. Thus, the distribution of the soft random connection
on (HN , V) is

P{(H, V)}(vk) = αv′P
{(

FN , V′
)}(

v′i
)
+ αv′′ P{(FN , V ′′ )}

(
v′′j
)

. (11)

The following definition can be given by considering the equation above:

Definition 9. Let (FN , V′) and (GN , V ′′ ) be two network-induced soft sets, v′ ∈ V′, v′′ ∈ V ′′ ,
and (HN , V) = (FN , V′)∪̂(GN , V ′′ ). The Shannon entropy of (H, C) is

HS((HN , V)) = HC

(
αv′P{(FN , V′)}

(
v′i
)
+ αv′′ P{(FN , V ′′ )}

(
v′′j
))

= −
|V′ |−1

∑
i=0

αv′P{(FN , V′)}
(
v′i
)
log2αv′P{(FN , V′)}(v′ i)

−
|V′′ |−1

∑
j=0

αv′′ P{(GN , V ′′ )}
(

v′′j
)

log2αv′′ P{(GN , V ′′ )}
(

v′′j
)

.

(12)

Using the Jensen–Shannon divergence given in Equation (12), it is possible to define a
kernel function between two network-induced soft sets (FN , V′) and (GN , V ′′ ).

Definition 10. Let (FN , V′) and (GN , V ′′ ) be two network-induced soft sets, v′ ∈ V′, and
v′′ ∈ V ′′ . The k JSKS{(FN , V′), (GN , V ′′ )} kernel function is defined by:

k JSKS{(FN , V′), (GN , V ′′ )}
= log2−

(
αv′ − 1

2

)
HS(P{(FN , V′)})−

(
αv′′ − 1

2

)
HS(P{(GN , V ′′ )})

= log2− 2|V′ |−(|V′ |+|V′′ |)
2(|V′ |+|V′′ |) HS(P{(FN , V′)})

− 2|V′′ |−(|V′ |+|V′′ |)
2(|V′ |+|V′′ |) HS(P{(GN , V ′′ )})

= log2− |V′ |−|V′′ |
2(|V′ |+|V′′ |) HS(P{(FN , V′)})

− |V′′ |−|V′ |
2(|V′ |+|V′′ |) HS(P{(GN , V ′′ )}).

(13)

3. Results
3.1. Data Set

Borsa Istanbul (BIST) began operations in early 1986 and belongs to multiple interna-
tional federations and associations, including the World Federation of Stock Exchanges, the
Eurasian Stock Exchanges Federation, and the European Federation of Stock Exchanges. It
has been in charge of trading corporation stocks in many industries since inception. We
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selected Borsa Istanbul for this analysis because it is representative of global stock markets
regarding the average number of businesses traded; its structure is relatively weak since it
is an emerging market. For two time periods, we analyzed the effects of market volatility
on the prices of stocks included in the BIST100 index.

The Turkish economy had a rough year in 2018 because the loss of the national currency
versus the US dollar was at its most extreme. At the same time, the European Central
Bank (ECB) showed concern regarding the largest lenders in the Eurozone. Moreover, the
President of the United States publicly criticized Turkey’s decision to double trade duties on
steel and aluminum. Nevertheless, in this period, Qatari authorities pledged considerable
investments in Turkey.

The first round of analyses focused on the daily price returns of BIST100-listed firms
from September 2018. We divided this first period of analysis into two parts: a pre-stress
period and post-stress period.

The second round of analyses investigated the impact of the COVID-19 pandemic on
the BIST100 index. On 11 March 2020, the first COVID-19 case was discovered in Turkey
and sanctions were relaxed on May 6, 2020. Restrictions reappeared on 20 November 2020
because of a significant increase in the number of cases. For the purpose of our research,
these specific dates constituted benchmarks. Company daily price returns included in the
BIST100 index were used to construct a time series that served for measurement calculations.
To consider the second series of curfews, the post-pandemic period time series began on
11 March 2020 and ended on 9 April 2021. Moreover, to ensure that time series in the
post-pandemic period were comparable in length, the pre-pandemic period began on 13
February 2020 and ended on 10 March 2020.

The first time series had 126 time entries, while the second one had 270 time entries
for both periods. Although one hundred companies were included in the BIST100 index,
two companies with missing data were excluded from the analysis, thus, resulting in a
remaining total of ninety-eight companies. The measurement variation in network-induced
soft sets emerging in the BIST100 index during both periods was analyzed in two ways.
The first approach (which we called the “static approach”) divided time series of the two
subperiods and then analyzed soft degree distributions. The second approach (which
we called the “dynamic approach”) examined daily changes in κJSKS values of network-
induced soft sets emerging during the subperiods. Descriptive statistics are given in
Tables A1 and A2 from the Appendix section.

3.2. Static Approach

In this section, we report the results of the aforementioned analyses. In Figures 2 and 3,
we present soft degree distributions of vertices representing BIST100 companies. For the
sake of simplicity, we used company indices, which are presented in the tables from the
Appendix section.
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In Figures 4 and 5, we present directed networks and network-induced soft sets emerg-
ing throughout 2018. In Figures 6 and 7, we present directed networks and network-induced
soft sets emerging throughout the COVID-19 pandemic period for BIST100 companies.
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and E = {e1, e2, . . . , e15} is the soft parameter set.

3.3. Dynamic Approach

For this dynamic approach, we used sliding windows with sizes five, ten, and fifteen,
and an offset of one over the time series. Sliding window sizes were chosen to cover
the weekly, biweekly, and triweekly operations of BIST100 companies. Moreover, by
choosing the offset of one, we could cover the daily soft entropy similarity changes in
network-induced soft sets.

In Figures 8 and 9, we display variations in the Jensen–Shannon kernel for different
window sizes. In Figures 10 and 11, we present kernel matrices for the size-10 sliding
window defined for the network-induced soft set over the total time frame.
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Figure 8. 𝜅  values defined on the emerging network-induced soft sets for the 
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Figure 8. κJSKS values defined on the emerging network-induced soft sets for the 2018 economic
stress period: (a) weekly, (b) biweekly, (c) triweekly.
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4. Discussions

Numerous researchers have taken an interest in financial systems that are based on
bilateral connections, due to their complexity. Graph models concerning the relationships
between financial players are used to probe the underlying system. Graphs, the underlying
mathematical structure representing bilateral interactions, are generated by computing
the correlation between the time series corresponding to closing prices of financial actors.
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Though networks efficiently mimic bilateral interactions, their topological structure requests
that they ignore higher-order interactions inside the system. High-quality market contacts
are an essential part of financial optimization because they help investors make more
informed decisions across the pricing process.

In this paper, high-order linkages in financial markets were simulated using soft sets,
which were set systems. We selected Borsa Istanbul (BIST) because it is an emerging market,
therefore, more susceptible to fluctuations as compared to established markets. The number
of BIST subindices that were actively traded varied.

In the first place, we built a structure of correlation networks using the daily closing
prices of companies included in the BIST100 index. Since it was represented as a graph, it
was not straightforward to recognize topological clusters in this system. For this purpose,
we used a hierarchical cluster structure with the help of MST topology. In the context of
generating new parameters, this MST allowed the construction of soft sets. The importance
of vertices, which represent companies that are the system actors, made it easier to move
about in this structure. Hence, the standard eigenvector centrality metric was used for
spanning tree filtering.

We developed network-induced soft sets, which modeled the financial market pro-
duced by a parameterization process specified on a directed tree. The incorporation of
a second-degree soft link and a third-degree joint universal element to other actors was
included in this parameterization, together with the choice of a starting actor. Moreover,
we defined a number of statistical metrics that could be used for the newly proposed
mathematical framework.

Our study considered the sensitivity of the BIST100 index by choosing two distinct
economic periods. The first period was the year 2018, when Turkey incurred numerous
trade sanctions and gloomy prospects of a plummeting national currency. The second
period regarded the impact of the COVID-19 pandemic. In addition, the soft set statistics
included two approaches, a static one and a dynamic one.

In the lead-up to the 2018 economic stress period, one could state that the BIST100 com-
panies were strongly connected. During this time, two soft clusters appeared on the market:
the financial services industry registered a notable concentration of such organizations;
other businesses were characterized by varying degrees of internal connection. The number
of isolated vertices from the resulting directional network was very small. Each actor was
involved in distinct connections during the pre-stress stage of financial engagement. In the
post-stress period, a significant topological shift in this clustering pattern was observed.
For that matter, we identified two completely distinct groups: one included two businesses
from the same holding and the other included different firms. Our results indicated that
the cluster was robust and established intense connections to other items within the soft
set. Moreover, network characteristics were mostly dominated by companies from the
banking industry. This showed that, in the context of monetary interaction, BIST companies
followed the banking sectors during the local stress phase. This outcome is in line with
findings from other research using the BIST100 index network analysis [70–73].

The static approach revealed variations in local stress levels when examining the
impact of the COVID-19 pandemic on BIST100 companies. We first noticed a variation in
the soft degree distributions, namely, evidence that the market searched for stability after a
period of local stress. Although the number of isolated vertices was not reduced, network
connection improved relative to the time before the COVID-19 pandemic.

Four distinct soft clusters emerged, although with very similar connection character-
izations (i.e., soft degree distributions). We noticed that changes in market relationships
after COVID-19 were more visible during the static approach. A connection increase and
a cluster concentration became visible when focusing on post-stress soft clusters. The
examination of the growing soft cluster revealed that the most actively traded firms were
associated with investment and finance industries. Moreover, energy corporations started
to create high-level relationships with finance and investment companies more frequently
in the post-COVID-19 period.
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Entropies of cluster systems represented another statistical tool provided by soft
clusters induced by financial networks. We denoted this strategy as the dynamic approach.
We, therefore, created networks with varied time window lengths and studied entropy
variations during stress periods with soft clusters generated by the MST filters.

With an initial value of 0.7 at the beginning of the 2018 economic stress period, the
entropy value changed significantly over time. These changes could be spotted regardless
of the time window size. Hence, this method could be considered robust. The discourse
concerning the Turkish Lira and international trade restrictions was very entropy variant.

Similar patterns were observed during the COVID-19 pandemic period. The analyzed
time frame began with an entropy having a value close to 0.7. This indicated that the BIST
market registered a soft set entropy stability value of 0.7. During the second period of
analysis, fluctuations in entropy values were different as compared to the 2018 period.
In this sense, during the early days of the COVID-19 pandemic, entropy measurements
showed significant oscillations. They began to follow a particular order after a longer period;
nevertheless, they resurfaced during the second curfews. For that matter, fluctuations had
a tough time achieving equilibrium after the recurring curfew. In the context of the BIST100
index, this result suggested that a panic situation appeared on the market. Furthermore,
periods tended to cluster among themselves when the kernel matrices of biweekly sliding
windows were examined. This situation not only demonstrated the efficacy of the defined
kernel function, but it also illustrated that irregularities of financial markets were in flux
during different stress periods.

5. Conclusions

Soft set theory, which can be applied to a variety of fields, was used in our study to
simulate higher-order interactions in financial systems. We deemed that our study could
offer a powerful mathematical structure for scholars and investors interested in financial
optimization during various stress periods.

When an increasing number of components were added to the system, the computa-
tional complexity that came with it became a bottleneck for current statistical approaches.
Yet, by introducing spectral techniques, computational advantages could be gained in the
parameterization procedure. Soft sets have been used in many different mathematical
frameworks as reported in the literature. Future research could show the benefits of these
soft sets. The examination of social networks, biological networks, and other complex
networks may also be included in studies that go beyond the realm of monetary systems.

We believe that these cutting-edge statistical procedures, which are likewise provided
for financial marketplaces of varying strengths, could generate valuable outcomes in
upcoming studies.
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Appendix A

Table A1. Descriptive statistics for the 2018 economic period data set.

Pre-Stress Period Post-Stress Period

Index Company Min Max Mean Standard
Deviation Skewness Min Max Mean Standard

Deviation Skewness

1 AFYON 4.78 7.98 6.80352 0.981159 −0.638345 4.49 6.27 5.12544 0.452556 0.439657

2 AKBNK 7.06 11.08 9.34088 1.12375 −0.493996 5.44 7.67 6.72712 0.570895 −0.407728

3 AKSA 10.72 17.39 14.0272 1.9506 −0.245635 7.23 12.2 9.78232 1.38406 −0.208425

4 AKSEN 3.76 5.19 4.37856 0.373848 0.0412235 2.56 4.38 3.76336 0.559787 −0.811035

5 ALGYO 39.38 57.45 47.3488 4.52349 0.0161842 37.8 56.8 47.8383 4.43465 −0.062091

6 ALARK 4.43 7.46 6.17856 0.971271 −0.610421 1.92 5.17 3.16976 1.25274 0.414768

7 ALBRK 1.2 1.69 1.51528 0.116982 −0.828259 1.16 1.51 1.32416 0.0676827 0.365817

8 ALKIM 17.68 26.56 22.5662 2.51997 −0.494494 17.7 25.24 22.461 2.16459 −0.592267

9 AEFES 22.84 28.6 25.989 1.34214 −0.490912 17.84 23.6 20.8878 1.11046 0.0268611

10 ARCLK 15.01 21.8 18.0585 1.63972 0.170845 11.83 16.58 14.0966 1.36809 −0.049353

11 ASELS 29.62 44.4 36.5602 3.90465 −0.245562 27.3 34.5 29.659 1.66621 0.997756

12 BERA 1.72 7.9 3.398 1.78125 1.06475 1.55 2.15 1.80792 0.155098 0.30905

13 BIMAS 63.7 79.75 71.9744 3.41995 −0.232885 64.85 88.65 77.0732 6.76445 −0.209872

14 BRSAN 8.08 14.71 11.9082 1.91785 −0.638474 7.45 9.99 8.45024 0.587745 0.307411

15 BRYAT 35.2 48. 40.9862 2.47256 0.231651 36.5 42.1 38.9424 1.3909 0.595098

16 BRISA 5.76 8.04 6.92344 0.639787 −0.035386 5.79 7.33 6.30816 0.327688 1.0946

17 CCOLA 31.92 38.64 35.5933 1.53419 −0.629036 27.2 34.6 30.2362 1.76325 0.572583

18 CEMAS 1.54 6.85 2.59088 1.17693 1.72275 0.72 4.35 2.50352 0.833217 −0.557142

19 CEMTS 4.12 5.73 4.88184 0.373493 0.296627 5.35 7.65 6.53624 0.562527 −0.059523

20 CIMSA 10.41 14.36 12.8786 1.235 −0.709501 7.17 10.94 8.73552 1.13519 0.222077

21 DEVA 3.69 4.87 4.218 0.290028 0.0128273 3.25 4.45 3.85024 0.33519 −0.329284

22 DOHOL 0.72 1.46 0.94728 0.173611 1.2832 0.93 1.38 1.1172 0.0934086 0.0223721

23 DOAS 6.75 9.2 7.97144 0.632858 −0.206268 4.09 7.08 5.24432 0.828661 0.466435

24 ECZYT 8.07 11.21 9.856 0.857708 −0.418923 6.69 9.78 7.78512 0.725923 0.64256

25 EGEEN 277. 399.2 335.958 31.3252 0.237903 293.5 465.4 372.945 45.5331 0.0929182

26 EGGUB 22.7 33.2 28.2118 3.06464 −0.264439 20.1 25.62 22.5293 1.22272 0.305046

27 ECILC 3.29 4.73 4.072 0.399903 −0.568129 2.7 3.86 3.2672 0.311331 −0.070838

28 EKGYO 1.88 2.85 2.45208 0.232883 −1.07722 1.49 2.03 1.72768 0.110841 0.205264

29 ENJSA 1.16 1.73 1.45088 0.169972 −0.507287 0.86 1.34 1.10376 0.126336 0.032597

30 ENKAİ 4.15 5.96 5.20488 0.486943 −0.517393 4.43 5.37 4.8136 0.261911 0.562262

31 ERBOS 62.65 104. 79.1988 10.4206 0.328433 60.8 79.7 66.6796 4.46059 1.44475

32 EREGL 9.63 12.37 10.6013 0.558435 0.521141 7.11 12.21 9.99432 1.52687 −0.536378

33 FENER 32.14 45.14 34.8288 2.21755 2.41043 6.43 32.3 16.9826 9.33197 0.0644164

34 FROTO 54.3 69.75 60.9768 2.74565 0.0584024 48.8 68.45 58.7914 5.22033 −0.086403

35 GSRAY 1.59 6.56 3.58032 2.02182 0.528233 1.17 1.81 1.4568 0.204808 0.0317085

36 GLYHO 3.27 4.98 4.0184 0.354003 0.5603 2.48 3.75 2.99856 0.284366 0.0605749

37 GOZDE 2.39 6.12 4.59432 1.1025 −0.697523 2.04 3.04 2.6 0.241838 −0.236242

38 GUBRF 3.11 4.65 3.96608 0.471801 −0.387898 2.76 3.69 3.08744 0.246157 0.870546

39 SAHOL 8.44 11.47 10.2419 0.771027 −0.52949 6.85 8.9 7.6508 0.477662 0.804217

40 HDFGS 1.34 3.1 2.08856 0.415492 −0.042038 1.03 2.05 1.37 0.238168 0.736194

41 HEKTS 6.92 12.1 9.3456 1.3985 −0.269799 8.58 12.17 9.77496 0.752389 1.20559
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Table A1. Cont.

Pre-Stress Period Post-Stress Period

Index Company Min Max Mean Standard
Deviation Skewness Min Max Mean Standard

Deviation Skewness

42 IHLGM 0.89 2.26 1.60256 0.377714 −0.276678 1.05 1.63 1.32048 0.107109 0.725315

43 IHLAS 0.32 0.56 0.45 0.0709611 −0.485378 0.29 0.43 0.34736 0.0382088 0.478875

44 INDES 6.95 17.3 12.3041 3.05311 −0.383144 5.2 8.45 6.2496 0.846065 0.81005

45 IPEKE 4.41 8.2 5.50136 0.796778 1.66417 4.36 6.15 5.20664 0.418632 0.421366

46 ISFIN 1.42 5.8 2.57736 1.1203 0.895398 1.88 5.17 2.85936 0.966975 1.3895

47 ISGYO 0.92 1.46 1.24664 0.159333 −0.7149 0.86 1.06 0.93064 0.0577361 0.736336

48 ISMEN 2.04 2.55 2.28288 0.155552 −0.0442992 1.95 2.27 2.08624 0.0592107 0.928767

49 JANTS 23.26 38.36 29.8042 4.32348 −0.201844 23.96 28.08 25.9811 0.900804 −0.050858

50 KRDMD 3.08 5.16 3.90912 0.558003 0.465523 2.13 5.04 3.63368 0.875726 −0.412889

51 KARSN 1.28 2.46 1.93768 0.284855 −0.749433 1.15 1.72 1.38968 0.147199 0.696516

52 KARTN 244.3 304.6 274.32 16.3943 −0.0821657 257. 380.4 322.618 32.0567 −0.572765

53 KERVT 1.79 132.1 78.1262 39.9558 −1.08414 1.75 2.71 2.02512 0.230111 1.32758

54 KCHOL 13.05 19.24 16.0127 1.88571 0.00884313 12.59 17.35 14.8881 1.16793 0.0538161

55 KONYA 186. 268.7 233.392 25.2154 −0.491438 174.1 232.8 189.783 13.4513 1.31277

56 KORDS 5.87 8.32 7.37368 0.621042 −0.543263 6.39 10.95 9.15808 1.27175 −0.725025

57 KOZAL 32. 51.45 41.3875 5.06277 0.031109 36.86 54.5 47.575 4.4138 −0.274291

58 KOZAA 5.16 8.84 6.31864 0.798482 1.39986 5.04 8.08 6.318 0.772713 0.795304

59 LOGO 37.84 60.95 51.0728 5.58933 −0.300283 25.8 42.5 33.0482 3.80422 0.260759

60 MGROS 18.29 27.86 22.9474 2.6455 −0.232621 13.01 20.58 15.911 2.0199 0.983797

61 MPARK 1.17 2.33 1.70968 0.318912 −0.248749 1.3 1.85 1.51776 0.121932 0.165251

62 NTHOL 1.66 2.62 2.12752 0.25476 −0.29144 1.68 2.28 1.9976 0.1439 −0.420848

63 NETAS 7.92 16.4 12.9462 2.75455 −0.574076 6.46 9.72 8.05936 0.986328 0.0683042

64 NUHCM 9.13 11.6 10.2621 0.561892 −0.11521 7.74 9.35 8.6328 0.447599 −0.55855

65 ODAS 3.88 7.77 6.19784 1.17356 −0.677702 1.88 5.56 3.56176 1.03977 0.312082

66 OTKAR 69.4 129.8 100.942 20.3982 −0.402122 62.45 88.4 76.2924 6.30319 0.109277

67 OYAKC 0.8 1.28 1.04136 0.119376 −0.548506 0.83 2.04 1.06104 0.189727 2.24014

68 PARSN 11.72 18.78 14.6446 1.61059 0.256838 8.9 29.52 16.8007 5.09358 0.81477

69 PGSUS 23.86 37.34 31.7091 4.3731 −0.552645 20.04 31. 24.948 2.39928 0.482988

70 PETKM 4.28 8.41 6.89016 1.44954 −0.801556 4.13 6.19 5.11496 0.436412 −0.520571

71 RTALB 1.62 2.97 2.3628 0.482505 −0.318179 1.65 2.43 2.01664 0.149758 −0.189098

72 SASA 8.45 15.85 11.5578 1.80438 0.325931 7.93 11.96 9.39752 0.742289 0.524825

73 SELEC 3.36 4.01 3.72992 0.16223 −0.538979 2.73 3.91 3.28008 0.350395 0.366802

74 SKBNK 1.12 1.87 1.54024 0.211772 −0.51094 0.92 1.32 1.09744 0.104124 0.232855

75 SOKM 1.23 2. 1.63376 0.236758 −0.459705 1.04 1.77 1.3176 0.17967 0.540506

76 TAVHL 20.84 26. 22.8472 1.27043 0.481242 20.86 32.96 26.309 3.28153 0.230703

77 TKFEN 13.61 18.81 16.4098 1.06603 −0.180823 17.2 23.38 20.6598 1.67631 −0.317168

78 TKNSA 3.14 5.7 4.55792 0.752249 −0.224434 2.89 5.27 4.13416 0.718848 −0.344938

79 TOASO 23.32 33.98 27.771 3.18814 0.244489 16.12 24.06 20.5538 2.30931 −0.704191

80 TRGYO 2.51 3.4 2.9184 0.240639 0.234495 1.49 2.73 1.85008 0.356077 1.08816

81 TCELL 11.17 16.86 14.1746 1.42309 −0.57207 10.26 13.24 11.682 0.705872 −0.099327

82 TUPRS 96.05 125.1 111.971 6.29855 −0.30129 98.15 142.9 121.862 11.2938 −0.29551

83 THYAO 12.52 19.77 16.763 1.80009 −0.551502 13.54 19.22 16.3915 1.25731 −0.040551

84 TTKOM 4.89 7.09 6.17384 0.542484 −0.775679 3.2 5.58 3.96032 0.551027 1.08112
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Table A1. Cont.

Pre-Stress Period Post-Stress Period

Index Company Min Max Mean Standard
Deviation Skewness Min Max Mean Standard

Deviation Skewness

85 TTRAK 48.28 80. 68.271 10.7848 −0.601984 33.24 52.3 42.9468 6.26018 −0.245434

86 GARAN 8.11 12.36 10.3126 1.27252 −0.206222 5.72 8.59 7.25904 0.767802 −0.318026

87 HALKB 7.15 11.02 8.91192 1.06446 −0.179096 5.78 7.84 6.72408 0.49702 −0.185978

88 ISCTR 5.57 8.22 6.7836 0.708519 −0.0120491 3.82 5.82 4.36816 0.486519 1.46563

89 TSKB 0.92 1.69 1.40976 0.222099 −0.838833 0.71 1.02 0.79888 0.0685356 1.15944

90 TURSG 31.4 41.04 37.772 2.13003 −1.34094 25.98 36.58 29.2936 2.44839 0.51082

91 SISE 3.98 5.2 4.70032 0.359244 −0.561709 4.23 6.3 5.2308 0.497503 0.220849

92 VAKBN 4.76 7.57 6.3728 0.770054 −0.511776 3.08 5.05 3.78936 0.400189 1.12849

93 ULKER 16.71 23.98 21.2021 2.02589 −0.679279 13.76 18.51 15.9911 1.16859 0.346025

94 VERUS 21.66 28.92 25.448 1.78194 −0.0423428 13.83 33.28 22.179 5.87349 0.132888

95 VESBE 9.2 11.48 10.4679 0.628843 −0.0433434 9.74 13.5 11.1742 1.05218 0.50243

96 VESTL 8.23 12.23 9.78584 0.942292 0.627674 5.5 9.34 7.59072 1.17761 −0.332711

97 YKBNK 2.27 4.85 4.14016 0.717108 −1.72974 1.56 2.49 1.8036 0.240109 1.44576

98 ZOREN 1.31 2.19 1.80344 0.247657 −0.286927 1.07 1.65 1.33744 0.131602 0.537303

Table A2. Descriptive statistics for the COVID-19 economic period data set.

During COVID-19 Post-COVID-19

Index Company Min Max Mean Standard
Deviation Skewness Min Max Mean Standard

Deviation Skewness

1 AFYON 1.23 2.99 1.76712 0.412329 1.03336 1.44 5.73 3.96626 1.04184 −0.713805

2 AKBNK 5.35 8.68 6.99771 0.796843 −0.02394 4.58 7.35 5.63304 0.64091 0.25633

3 AKSA 3.77 7.28 4.96362 1.06408 0.758046 5.01 17.19 9.29912 3.74054 0.742238

4 AKSEN 2.11 4.29 2.9352 0.649323 0.707849 3.06 12.51 6.76421 2.61857 0.698443

5 ALGYO 5.99 16.69 8.94642 3.26155 0.921443 8.47 29.15 17.9487 5.20094 0.448157

6 ALARK 2.257 6.203 3.99063 1.28502 0.204894 3.418 12.092 6.71384 2.4817 0.867208

7 ALBRK 0.963 1.908 1.30011 0.24348 0.618012 1.03 2.59 1.66454 0.32881 0.183853

8 ALKIM 3.34 8.02 4.64306 1.25823 1.16449 6.44 20.02 13.3243 3.11507 −0.150313

9 AEFES 14.36 22.38 18.067 1.92549 0.290469 13.92 26.23 19.3084 2.85873 0.120196

10 ARCLK 14.14 20.76 17.7455 1.45537 −0.02995 11.63 34.43 23.2515 6.87428 0.0309029

11 ASELS 8.18 15.15 10.2319 1.58636 1.23986 10.34 19.27 16.3641 2.01891 −1.158

12 BERA 1.55 4.71 2.56343 0.95914 0.724168 2.05 27.5 11.8623 7.95499 0.586072

13 BIMAS 32.13 49.38 41.2014 3.99271 −0.51726 42.63 74.65 63.2759 7.20346 −1.17694

14 BRSAN 7.14 13.43 9.16775 1.55683 1.13811 6.6 37.08 17.8348 9.06661 0.746687

15 BRYAT 31.17 76.76 41.2963 12.7219 1.45624 41.61 616.74 220.189 178.747 0.679694

16 BRISA 5.13 9.92 6.91258 1.36671 0.703224 6.28 30.96 16.2083 7.27676 0.606662

17 CCOLA 22.55 45.08 32.3358 5.11376 0.766975 31.54 79.29 51.1922 14.0753 0.451873

18 CEMAS 0.444 1.078 0.667277 0.21406 0.45421 0.515 2.019 1.35148 0.398783 −0.35067

19 CEMTS 4.515 9.294 6.05739 1.16501 0.924478 4.397 17.81 12.0747 3.93904 −0.346059

20 CIMSA 5.58 10.28 7.48727 1.24374 0.55661 5.8 25.24 13.9548 5.50147 0.396435

21 DEVA 3.484 11.481 6.59327 2.14048 0.547862 7.334 34.324 21.5946 6.13889 −0.158384

22 DOHOL 0.931 1.982 1.36907 0.34284 0.297072 1.21 4.121 2.44918 0.682609 0.406614

23 DOAS 3.19 11.73 6.03583 2.44908 0.69012 4.6 35.25 18.2661 8.48382 0.236403
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Table A2. Cont.

During COVID-19 Post-COVID-19

Index Company Min Max Mean Standard
Deviation Skewness Min Max Mean Standard

Deviation Skewness

24 ECZYT 5.47 12.29 7.63708 1.87581 0.766093 6.77 60.7 23.6312 14.8713 1.1623

25 EGEEN 333.97 681.12 466.507 79.5553 0.966822 366.81 1762.5 1010.83 478.51 0.330857

26 EGGUB 21.2 56.55 33.6213 10.7478 0.555657 31.38 246.31 123.605 61.1082 0.455258

27 ECILC 2.145 4.251 2.92458 0.62283 0.691663 2.932 8.85 6.41936 1.12005 −0.692972

28 EKGYO 1.028 1.705 1.33779 0.16542 0.166562 1.048 2.658 1.87707 0.409154 −0.415539

29 ENJSA 4. 7.28 5.31288 0.90362 0.631267 5.22 12.42 8.74619 1.83028 0.126007

30 ENKAİ 3.612 5.857 4.61658 0.55050 0.303678 4.569 8.542 6.47242 0.922462 −0.183978

31 ERBOS 13.7 26.87 18.4617 3.9562 0.542653 13.67 81.5 33.1247 17.457 1.10639

32 EREGL 5.238 8.453 6.61376 0.74740 0.498183 6.284 16.31 9.59633 2.86829 0.637

33 FENER 6.06 19.44 10.7884 3.90797 0.418634 6.87 49.24 24.67 11.5687 −0.181721

34 FROTO 38.62 73.41 54.6811 8.3082 0.435716 39.95 222.18 104.145 45.6823 0.780675

35 GSRAY 1.15 4.1 1.79668 0.56262 1.93048 1.33 4.99 3.38176 0.755224 −0.538536

36 GLYHO 2.65 5.28 3.77288 0.68838 0.266462 2.07 6.83 4.54205 1.05542 −0.233805

37 GOZDE 2.48 5.49 3.63173 0.80824 0.709064 2.25 9.14 5.73531 1.54818 −0.32818

38 GUBRF 2.31 19.55 5.69779 4.07717 1.83589 12. 86.05 41.0767 22.157 0.575377

39 SAHOL 6.39 9.69 8.11509 0.76183 −0.24350 6.64 11.3 8.8341 1.26363 0.370338

40 HDFGS 0.296 0.844 0.466491 0.15458 0.913594 0.376 3.994 1.68245 1.01017 0.530144

41 HEKTS 1.043 3.079 1.6924 0.58813 1.03851 2.219 9.766 4.75263 1.99916 1.06328

42 IHLGM 0.583 1.184 0.809351 0.13552 1.04053 0.592 1.613 1.21988 0.202657 −0.846892

43 IHLAS 0.281 0.842 0.508863 0.15922 0.736177 0.353 1.258 0.856648 0.217511 −0.288515

44 INDES 1.387 3.192 1.9232 0.46875 1.24791 1.416 8.257 3.86433 1.57915 0.891294

45 IPEKE 4.22 10.48 6.29554 1.72678 0.93599 5.84 17.26 12.3796 1.94661 −1.20046

46 ISFIN 2.09 9. 4.22568 2.01404 0.805872 2.07 4.36 3.72044 0.39001 −1.54623

47 ISGYO 0.86 2.15 1.15875 0.34043 1.392 1.17 2.79 1.95769 0.360449 0.0169647

48 ISMEN 1.825 4.541 2.96725 0.78848 0.120702 2.969 20.263 10.23 5.19039 0.433456

49 JANTS 2.718 7.894 4.58619 1.58088 0.390807 4.496 113.673 30.4624 26.4028 1.09316

50 KRDMD 1.812 3.13 2.25213 0.32554 1.05288 1.81 7.83 4.16747 1.84588 0.585767

51 KARSN 0.985 1.97 1.31345 0.26470 0.612003 1.18 5.58 3.0326 1.04699 0.187746

52 KARTN 10.97 18.23 12.881 1.78055 1.33022 10.13 125.21 47.6058 33.5036 0.498572

53 KERVT 1.45 3.81 2.34686 0.70853 0.4303 2.26 7.7 5.4181 1.26235 −0.432228

54 KCHOL 13.91 20.5 17.3976 1.47428 −0.13853 12.2 23.32 17.0136 2.88867 0.455021

55 KONYA 162. 301.2 210.199 37.5319 0.792086 155.1 1730. 703.133 455.189 0.493204

56 KORDS 8.51 14.97 11.7579 1.19867 0.319578 7.98 29.16 14.6659 5.30088 1.15791

57 KOZAL 40.3 84.45 61.1398 13.237 −0.05884 51.4 152.1 88.9229 22.4042 0.974592

58 KOZAA 5.36 12.71 8.10941 1.94251 0.246077 7.67 20.48 13.4982 2.19793 0.128733

59 LOGO 7.578 19.85 11.362 2.93578 1.31279 11.97 45.904 25.3755 7.6518 0.584661

60 MGROS 11.33 26.7 18.6617 4.5419 0.129677 17.99 51.35 37.8553 6.41285 −1.26284

61 MPARK 10.08 18.84 13.7909 2.10972 0.324003 10.19 26.2 18.5875 3.43255 0.160751

62 NTHOL 1.46 2.65 1.88993 0.33176 0.975078 1.19 5.94 2.96952 1.07354 0.69253

63 NETAS 5.53 16.53 9.45266 3.00872 0.772234 7.68 35.3 20.0682 7.28608 0.484591

64 NUHCM 5.23 11.46 7.43613 2.17428 0.586615 7.94 64.38 30.0508 18.4578 0.46327

65 ODAS 0.799 2.36 1.25803 0.38187 1.43403 1.16 4.3 2.8963 0.897559 −0.285881

66 OTKAR 85.07 150.51 114.927 18.2664 0.27763 91.74 419.64 209.162 104.625 0.79215
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Table A2. Cont.

During COVID-19 Post-COVID-19

Index Company Min Max Mean Standard
Deviation Skewness Min Max Mean Standard

Deviation Skewness

67 OYAKC 2.59 6.1 3.9202 1.29497 0.37782 4.59 9.87 7.43234 1.23474 −0.73381

68 PARSN 9. 18.77 13.5168 2.42608 0.140852 10.96 39.16 21.7749 6.86437 0.702529

69 PGSUS 26.2 86.4 53.344 19.0001 −0.025989 23.62 92.1 57.5285 14.5189 0.343092

70 PETKM 2.75 3.854 3.13123 0.223836 0.687314 2.333 6.26 3.98389 1.04881 0.58836

71 RTALB 1.15 2.89 1.63148 0.500135 0.874048 2.3 62.8 32.9593 14.4566 −0.19592

72 SASA 3.566 7.7 4.91365 0.845634 1.45837 3.683 36.905 14.1411 8.42044 1.27624

73 SELEC 3.066 7.467 4.86752 1.03803 0.471192 5.244 17.87 9.83355 2.48366 0.94617

74 SKBNK 0.699 1.207 0.908421 0.12983 0.59501 0.649 1.698 1.24546 0.26479 −0.62580

75 SOKM 7.35 11.45 9.69812 0.865975 −0.289991 6.68 14.41 11.9745 1.42546 −1.3876

76 TAVHL 16.66 27.69 23.533 1.98326 −0.079059 13.24 26.74 18.8895 3.09781 0.478895

77 TKFEN 12.81 25.82 20.2595 3.01343 0.023539 11.06 18.88 15.3099 1.78408 0.004616

78 TKNSA 1.226 8.152 2.40248 1.4494 1.9265 2.575 14.013 6.49072 2.56534 0.724539

79 TOASO 12.06 22.93 16.7999 2.95988 0.516465 13.03 35.61 25.0067 6.14607 0.262406

80 TRGYO 1.53 3.16 2.18391 0.419102 0.734094 1.67 5.2 3.43176 0.725085 −0.749715

81 TCELL 10.28 14.18 12.2821 0.992613 0.049025 11.48 16.72 14.6134 1.28494 −0.511009

82 TUPRS 92.25 143.5 124.765 8.94016 −0.698192 67.3 112.2 89.8608 10.5235 0.480667

83 THYAO 9.97 15.29 13.0551 1.12287 −0.164162 7.71 15.02 11.5592 1.43127 −0.158209

84 TTKOM 3.78 8.26 5.61576 1.21085 0.535109 5.44 8.67 7.27864 0.659723 −0.064098

85 TTRAK 22.41 55.97 36.2503 9.83336 0.561585 35.34 230.24 114.097 55.1032 0.453213

86 GARAN 6.92 12.22 9.36458 1.19704 0.459781 6.33 10.53 8.03388 1.09857 0.331392

87 HALKB 4.94 7.69 6.14114 0.672736 0.481539 4.32 6.55 5.30264 0.380907 0.345466

88 ISCTR 4.706 7.346 5.8311 0.552968 0.406276 4.367 7.161 5.39736 0.717756 0.750076

89 TSKB 0.638 1.364 0.912863 0.190596 0.837652 0.863 2.659 1.41312 0.422116 0.714267

90 TURSG 0.831 2.705 1.54355 0.509439 0.638249 1.535 7.152 4.979 1.53458 −0.773243

91 SISE 3.817 6.378 4.89623 0.578183 0.444672 3.541 7.933 6.16648 1.1528 −0.621656

92 VAKBN 3.39 6.86 4.9024 0.78181 0.535839 3.45 5.38 4.44509 0.388754 −0.280576

93 ULKER 16.3 25.36 20.0801 2.06085 0.801713 17.48 27.58 22.8085 1.61909 0.0033168

94 VERUS 13.99 22.52 17.928 2.23989 0.105094 13.29 72.65 37.7405 15.6178 0.21624

95 VESBE 11.218 25.216 15.7119 3.57776 1.10228 12.479 59.967 30.7847 11.7318 0.660761

96 VESTL 6.3 17.5 11.4969 2.19912 0.262398 8.91 38.12 19.4336 6.67911 0.891811

97 YKBNK 1.8 3.065 2.32439 0.278354 0.469189 1.722 3.231 2.3644 0.389536 0.546658

98 ZOREN 1.06 1.75 1.33753 0.187684 0.742286 0.96 3.15 2.2874 0.632207 −0.885673
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