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Abstract: Cancer is a highly lethal disease, and its incidence has rapidly increased worldwide over the past few decades. Although 
chemotherapeutics and surgery are widely used in clinical settings, they are often insufficient to provide the cure for cancer patients. 
Hence, more effective treatment options are highly needed. Although licorice has been used as a medicinal herb since ancient times, 
the knowledge about molecular mechanisms behind its diverse bioactivities is still rather new. In this review article, different 
anticancer properties (antiproliferative, antiangiogenic, antimetastatic, antioxidant, and anti-inflammatory effects) of various bioactive 
constituents of licorice (Glycyrrhiza glabra L.) are thoroughly described. Multiple licorice constituents have been shown to bind to and 
inhibit the activities of various cellular targets, including B-cell lymphoma 2, cyclin-dependent kinase 2, phosphatidylinositol 3-kinase, 
c-Jun N-terminal kinases, mammalian target of rapamycin, nuclear factor-κB, signal transducer and activator of transcription 3, 
vascular endothelial growth factor, and matrix metalloproteinase-3, resulting in reduced carcinogenesis in several in vitro and 
in vivo models with no evident toxicity. Emerging evidence is bringing forth licorice as an anticancer agent as well as bottlenecks 
in its potential clinical application. It is expected that overcoming toxicity-related obstacles by using novel nanotechnological methods 
might importantly facilitate the use of anticancer properties of licorice-derived phytochemicals in the future. Therefore, anticancer 
studies with licorice components must be continued. Overall, licorice could be a natural alternative to the present medication for 
eradicating new emergent illnesses while having just minor side effects.
Keywords: licorice, cancer, apoptosis, cell cycle, angiogenesis, treatment, nano-delivery

Introduction
Since ancient times, humankind has strongly relied on medicinal plants and herbs in the treatment of diverse health 
conditions, including both benign neoplasms as well as malignant tumors.1–3 Moreover, according to the World Health 
Organization (WHO) reports, about 80% of the worldwide population still depend on plant-derived drugs today, whereas 
several modern medicines have been originally isolated from medicinal plants.4 It is especially the case for anticancer 
drugs, of which more than 60% of clinically-approved drugs are directly or indirectly derived from plant kingdom.5,6 One of 
the oldest and most frequently described herbs in India, China, Southern Europe is licorice (Glycyrrhiza. glabra L.), as its 
roots have been utilized for alleviating pain and treating gastrointestinal and respiratory symptoms already for centuries.7–9 
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This plant is believed to have originated in Iraq, being widespread in China, India, Iran, Afghanistan, Spain, Kazakhstan, 
Tajikistan, Kyrgyzstan, and Russia.8,9 The extract prepared from licorice roots is very sweet and used worldwide as 
a flavoring agent in tobacco products, food, cosmetics and herbal remedies, with an estimated annual consumption of about 
1.5 kg/person.10 The earliest written evidence about the use of licorice date back to 2100 BC, when this plant was 
recommended for its health-promoting and life-enhancing properties.11 Today, we know that the roots of licorice contain 
more than 20 triterpenes and about 300 flavonoids, many of which have been described to exert various pharmacological 
effects, including different chemopreventive and anticancer bioactivities. Considering a continuous increase in the global 
incidence of new cancer cases,12–17 identification of novel efficient remedies to manage this dreadful disease is imperative.

Although several comprehensive review articles have been published about chemopreventive and anticancer activities 
of licorice and its bioactive phytocompounds in the recent years,7,9,18–22 none of them analyze anticancer properties of its 
structurally different constituents (eg, triterpenes glycyrrhetinic acid and glycyrrhetic acid; chalcones isoliquiritigenin, 
licochalcone A and licochalcone E; and isoflavone isoangustone), describing both molecular mechanisms as well as 
bioavailability of these bioactive components.23,24 Moreover, the present review article is focused on anticancer action of 
the major ingredients of licorice not only as separate agents but also in combination with approved chemotherapeutic 
drugs, administered as free compounds or encapsulated into nanoformulations to target the low bioavailability generally 
characteristic to natural substances. Therefore, this review represents an integrated contemporary overview, bringing 
together all the aspects we currently know about anticancer action of licorice, also providing modern solutions to the 
present bottlenecks associated with cancer prevention.

Literature Search Strategy and Selection Criteria
The electronic databases PubMed, Scopus, and Web of Science were searched for studies published up to 1st June, 2022, 
assessing the association between licorice and cancer prevention. The major key words used were licorice bioactive 
components and cancer cell apoptosis or cell cycle arrest or anti-inflammation or antioxidation or antiangiogenesis or 
antimetastasis. A manual search for additional references was also executed by referring to the reference lists of retrieved 
articles. The researchers completed blind double-checks, to exclude irrelevant literature by discussing with co-authors. In 
present review, we searched 656 articles and included 282 publications on anticancer actions of licorice constituents.

Licorice in Food and Medicine
Licorice is a sweetener that can be found in a variety of soft drinks, foods, snacks, and herbal medicines. Its sweet flavor 
makes it appealing to many manufacturers to mask the bitterness of many products. Licorice based snacks, Egyptian 
drink “erk soos”, Belgian beers, pastis brands, and anisettes are all widely consumed. Tobacco product manufacturers 
utilize licorice as a flavoring and sweetening agent. Herbal and licorice-flavored cough mixtures, licorice tea, throat 
pearls, licorice-flavored diet gum, and laxatives are all examples of health items that contain licorice.25

Licorice is also utilized in a wide range of medical conditions. Licorice extracts have been utilized as herbal 
treatments in China and Japan for a long time. The biggest challenge with licorice dosing is that it comes in a variety 
of forms, including snacks, soft drink and health supplements with varying concentration. It has been observed that 
production of such health supplements is not strictly controlled. European Union established a temporary upper limit of 
100 mg/day for glycyrrhizin consumption (about the amount found in 60–70 g licorice).26 Based on data from studies 
involving human volunteers, recognized food committees confirmed a daily maximum of 100 mg in April 2003.27 Due to 
limited human toxicity reports food committees are unable to conclude a specific intake dose of GA and ammonium 
glycyrrhizinate.

Glycyrrhizin is found in roughly 10–20% of licorice fluid extracts; typical doses of 2–4 mL yield 200–800 mg. According 
to a study, approximately 2% of frequent users ingest more than 100 mg of glycyrrhizinic acid on a daily basis.28 Walker and 
Edwards29 showed in 1994 that daily oral consumption of 1–10 mg glycyrrhizin, equivalent to 1–5 g licorice, is considered 
a safe amount for most healthy adults.

Licorice has long been used as an antidote to counteract the toxicity of chemotherapeutic treatment. Licorice is 
classified as “Rasayana” in Ayurveda (Indian traditional medicine), which indicates it has nourishing, renewing, and 
strengthening properties. Recent research has shown its significance in a variety of biological functions in the human 
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body, including antioxidant and anti-inflammatory properties, as well as a protective effect on several organs.30,31 

Licorice’s Generally Recognized as Safe accreditation allows it to be used in a wide range of foods at usual concentra
tions. Licorice’s sweet flavor makes it appropriate for a variety of uses in foods, such as confectionery and sauces, with 
the rhizomes and roots being the most commonly utilized plant parts. For example, licorice is used in the flavoring of 
London drops (candy brand) and Red Vines®. Licorice powder is commonly used to add a unique flavor to sweet chilli 
sauce and soy sauce in condiments. Glycyrrhiza has been used to cure a variety of diseases in traditional medicine and 
clinical practice across cultures.32 However, according to the extraction process,33 geographical origin,34,35 drying 
method,36 and harvesting period,37 the observed biological activity of Glycyrrhiza can vary.

Major Bioactive Constituents of Licorice
Glycyrrhizinic Acid
The main sweet-tasting ingredient of G. glabra (licorice) root is glycyrrhizin (or glycyrrhizinic acid or GA). It is 
a pentacyclic triterpene saponin with a structure that is employed as an emulsifier and gel-forming agent in foods and 
cosmetics (Figure 1). Enoxolone is its aglycone. It is a glycyrrhetinic acid-containing triterpene glycoside with a wide 
spectrum of pharmacological and biological properties.38,39 It comes in the forms of ammonium glycyrrhizin and mono- 
ammonium glycyrrhizin when isolated from the plant. GA is an amphiphilic molecule, with the glucuronic acid residues 
representing the hydrophilic region and the glycyrrhetic acid residue representing the hydrophobic region. The chemical 
form of GA is C42H62O16, with a molecular weight of 822.92 g/mol.40

Glycyrrhetic Acid (GLA)
GLA, also known as glycyrrhetinic acid (Figure 1), is a β-amyrin ursane-type pentacyclic triterpenoid derivative obtained 
by hydrolysis of GA, which comes from the herb licorice.41 GLA is a glycyrrhizin aglycone.42 The chemical form of 
GLA is C30H46O4, with a molecular weight of 470.7 g/mol. Many bioactive pharmaceuticals are synthesized using GLA 
as a precursor compound.

Figure 1 Chemical structures of major bioactive phytocompounds from licorice.
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Isoliquiritigenin (ILG)
Licorice root contains isoliquiritigenin (ILG) (Figure 1), a phenolic chemical component.43 ILG belongs to the trans- 
chalcone hydroxylated at the C-2’, C-4, and C-4’ class of chalcones. Chalcones are characterized chemically as α, β- 
unsaturated biphenyl ketones. In several plants, ILG is a precursor to numerous flavanones. ILG is a biosynthetic 
precursor and isomer of flavanone liquiritigenin (LG), as well as a number of other flavonoids synthesized through the 
phenylpropanoid pathway.44,45 Furthermore, investigations show that ILG and LG are interchangeable by temperature 
and pH. The chemical form of ILG is C15H12O4, with a molecular weight of 256.25 g/mol.

Isoangustone A (IAA)
IAA (Figure 1) is a flavonoid compound found in the root of licorice. IAA belongs to the isoflavanones family. The 
chemical form of IAA is C25H26O6, with a molecular weight of 422.5 g/mol.46

Licochalcone A (LicoA)
LicoA (Figure 1) is a phenol chalconoid derivative found in and isolated from the roots of the Glycyrrhiza species G. glabra 
(licorice) and G. inflata. LicoA is a flavonoid that belongs to the oxygenated retro-chalcones group. Two phenolic hydroxyl 
groups, a methoxyl group, and an isoprene side chain replace the chalcone nucleus in LicoA.47 It is one of the main important 
active components of licorice root.48,49 The chemical form of Lico A is C21H22O4, with a molecular weight of 338.4 g/mol.

Licochalcone E (LicoE)
LicoE (Figure 1) is a retrochalcone isolated from the root of G. inflate and possesses numerous biological and pharmacological 
properties.50 The chemical form of LicoE is C21H22O4, with a molecular weight of 338.4 g/mol.

Absorption and Metabolism Studies of Major Licorice Bioactive Compounds
With the high associated toxicity encountered by cancer patients, there is an urgent need to investigate novel ways to 
protect patients from the side effects of traditional drug delivery systems.51,52 Licorice is commonly utilized as an 
ingredient in many traditional medicinal systems, such as traditional Chinese medicine in China, Ayurveda and Siddha in 
India, and Unani in Southern Europe, and it has been studied for its numerous pharmacological properties, including its 
anticancer capabilities.53 Pharmacokinetic studies are required to comprehend the absorption, distribution, metabolism, 
and excretion (ADME) features of bioactive substances. The ADME properties of licorice bioactive compounds vary 
because of the natural product class they belong to such as tri-terpenoids and flavonoids as evidenced in Tables 1 and 2, 
respectively.

Cellular Targets of Licorice Constituents in Cancer
Anti-Inflammatory and Antioxidant Potential
Inflammation that occurs in response to physical, chemical or biological stimuli plays a substantial role in preventing or 
promoting carcinogenesis through immune surveillance.54,55 Inflammatory mediators, such as growth factors, cytokines and 
chemokines, are released by immune cells such as macrophages, neutrophils and lymphocytes.56 ROS, on the other hand, can 
play a role in activating the inflammation related transcriptional factors (eg, NF-κB and STAT-3) and contribute to the 
carcinogenesis processes, including genomic instability, resistance to apoptosis, cellular proliferation, angiogenesis, invasion 
and metastasis.57–62 Licorice is known to have significant anti-inflammatory activity and its use in the treatment of inflamma
tory diseases dates back to ancient times.63 Many studies have shown that licorice triterpenes, such as glycyrrhizin and 
glycyrrhetinic acid, and flavonoids, such as dehydroglyasperin C, echinatin, glabridin, glyurallin B, isoangustone A, isoliquir
itigenin, licochalcone A-E, licoricidin and licorisoflavan A, have significant anti-inflammatory effects.63,64 Glycyrrhizin, 
which has an anti-inflammatory effect similar to the glucocorticoids and mineralocorticoids, can inhibit inflammatory factors 
and promote the healing of mouth and stomach ulcers.65 Sun and coworkers66 have reported that glycyrrhizin suppresses 
lipopolysaccharide (LPS)-induced inflammatory responses via blocking the high mobility group protein box 1 (HMGB1)-Toll- 
like receptor 4 (TLR4)-NF-κB pathway. Moreover, glycyrrhizin and 18β-glycyrrhetinic acid have been defined by different 
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Table 1 ADME Profile of Triterpenoids (GA and Glycyrrhetic Acid) of Licorice

Compound Pharmacokinetic 
Parameters

Results Reference

GA Absorption Oral intake: Cmax = 1.3μg/mL after a dose of 50 mg/kg. AUC = 7.3 ± 1.8 μg.h/mL 

Intraperitoneal: Cmax = 238.9 μg/mL after a dose of 50 mg/kg with a mean bioavailability 

rate of 80% 
Intravenous: Decreased exponentially after administration

[210]

Fructose containing molecules hinder the uptake of glycyrrhizin [211]

Distribution Volume of distribution ranges from 37–64 mL/kg to 59–98 mL/kg [212]

Does not bind with any plasma proteins [213]

Metabolism Conversion to 18-glycyrrhetic acid 3-O-monoglucuronide and glycyrrhetic acid by intestinal 

bacteria

[39,214]

Upregulated CYP3A4 mRNA and protein expression via Pregnane X receptor activation 

Inhibition of CYP7A1 enzyme due to increased expression of small heterodimer protein

[215]

Excretion Excretion profile of 3β-monoglucuronyl-18β-glycyrrhetinic acid was measured as 

glycyrrhizin is completely metabolized to this by-product 

Average tmax was found to be 23.9 h 
Value of Cmax was found to between 0.49 and 2.69 μg/mL

[216]

Glycyrrhetic 
acid

Absorption Inhibitor of P-glycoprotein which affects multidrug resistance [217]

Inhibits uptake of sodium and copper ions when co-administered [218]

Metabolism Kaempferol and berberine significantly affect bioavailability at certain time intervals [219]

Inhibits metabolism of cortisone and cortisol causing increased half-life and Cmax [220]

Inhibits CYP3A4 enzyme [221]

Major route of elimination via glucuronide conjugation in a rapid way [222]

Abbreviations: AUC, area under curve; Cmax, maximum serum concentration; CYP3A4, cytochrome P450 3A4; GA, glycyrrhizinic acid; tmax, time to peak drug 
concentration.

Table 2 ADME Profile of Flavonoids (Isoliquiritigenin, Isoangustone a, Licochalcone A) of Licorice

Compound Pharmacokinetic 
Parameters

Results Reference

Isoliquiritigenin Absorption After intraperitoneal injection: 

tmax = 60 min 

Rapid absorption from GI tract

[223]

Distribution After intraperitoneal injection biodistribution was found to be: 

Liver > kidney > spleen > blood > lung > brain > heart 
Organ biodistribution achieved at 120 min

[223]

Metabolism Hydroxy metabolite is a potent antioxidant but a weaker anti-apoptotic agent [224]

Metabolite butein formed by liver microsomes is a potent antioxidant [225]

Increases CYP1A1 levels 

Major route of elimination by glucuronidation

[226]

(Continued)
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investigators as significant inhibitors of inflammatory factors, such as cyclooxygenase-2 (COX-2), HMGP 1, inducible nitric 
oxide synthase (iNOS), interleukin-6 (IL-6), IL-10, tumor necrosis factor-α (TNF-α), TGF-β, prostaglandin E2 (PGE2), 
myeloperoxidase (MPO) and nuclear factor-κB (NF-κB).67–72 Dehydroglyasperin C has been reported to suppress the 
production of ROS and singlet oxygen radicals, and it exerts anti-inflammatory activities by reducing the DNA binding 
activity of NF-κB, increasing the expression of MKP-1 and heme oxygenase-1, and inhibiting COX-2 expression via blocking 
the MKK4 and PI3K pathways.73–75 Although echinatine, licochalcone A and licochalcone B inhibit IL-6 and PGE2 in LPS- 
induced macrophage cells, licochalcones B and D reduce the production of TNF-α and monocyte chemotactic protein 1 
(MCP-1).76–78 Moreover, licochalcone C inhibits the NF-κB pathway by reducing the expression of iNOS, ICAM-1 and 
VCAM-1. Licochalcone E also shows anti-inflammatory activity by suppressing NF-κB and AP-1 and reducing the expression 
of iNOS and COX-2.79,80 In addition, glabridin, one of the most studied anti-inflammatory flavonoids isolated from licorice, 
suppresses inflammatory responses in different cell lines via the NF-κB pathway and inhibition of the expression of various 
cytokines and chemokines.81 It has been reported by different researchers that glabridin suppresses the expression of 
C-X-C motif chemokine ligand 5 (CXCL5), IL-1β, IL-6, IL-8, IL-12, IL-17A, IL-22, IL-23, interferon (IFN)-α/β, iNOS, 
monocyte chemoattractant protein-1 (MCP-1), nitric oxide (NO), TNF-α, PGE2, COX-2, MPO and lipoxygenase (LOX) and 
inhibits the activation of the p38 MAPK, ERK, NF-κB and AP-1 signaling pathways (Figure 2).81 A natural chalcone called 
isoliquiritigenin, isolated from licorice, also has significant anti-inflammatory activity via inhibition of caspase-1, 
COX-2, IL-1, IL-6, IL-8, iNOS, TNF-α, NF-κB ligand RANKL and eotaxin-1, and suppression of the NF-κB, MAPK, 
AP-1 signaling pathways and NLRP3 inflammasome activation.45,82–87 Furthermore, isoliquiritigenin and isoliquiritin inhibit 
inhibitory κBα (IκBα) phosphorylation and degradation, and increase the expression of nuclear factor erythroid 2-related 
factor 2 (Nrf2) and heme oxygenase-1 in LPS-induced macrophage cells.88

The phenolic ingredients, such as chalcones, coumarins, flavonoids, isoflavones and methylated isoflavones, seem to be 
responsible for the antioxidant activity of licorice (Figure 2). ROS has a high affinity for DNA and other biomolecules. This 
can result in DNA damage and oncogenic mutations being incorporated into normal cells leading to genomic instability, and 
finally cancer.89 Due to the phenolic hydroxyl structure of chalcones, they act as proton donors and combine with a radical to 
prevent oxidative damage.90,91 The chalcones isolated from licorice, such as echinatin, isobavachalcone, isoliquiritigenin, 
and licochalcones A-D, have been reported as powerful antioxidant agents.76,92,93 Although isobavachalcone and licochal
cones A-D suppress NADPH induced lipid peroxidation, echinatin and licochalcone A and B possess strong radical 
scavenging activity. Licochalcone A and C elevate the expression of antioxidant enzymes, such as catalase, glutathione 

Table 2 (Continued). 

Compound Pharmacokinetic 
Parameters

Results Reference

Isoangustone A Metabolism Major metabolic routes include hydroxylation, glucuronidation and sulfation [227]

Licochalcone A Distribution Well distributed in liver and mammary tissues [226]

Metabolism Downregulates the activity of CYP2C19, CYP2C8, CYP2C9 and CYP3A4 

proteins

[228]

Time dependent inhibition of CYP3A enzymes [229]

Liver microsomal pathway of biotransformation 
Slow metabolism by phase I pathway as compared to rapid elimination by 

Phase II pathways 

Metabolites formed were mainly from oxidation, glucuronidation and 
glutathione pathways

[230]

Inhibition of CYP3A4 and P-glycoprotein transporter caused nifedipine 
overdose

[231]

Abbreviations: ADME, absorption, distribution, metabolism and excretion; GI, gastrointestinal.
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Figure 2 Anti-inflammatory and antioxidant activities of licorice and its constituents. 
Abbreviations: AP-1, activator protein 1; COX-2, cyclooxygenase-2; CXCL5, C-X-C motif chemokine ligand 5; HMGB1, high mobility group protein box 1; IFN, 
interferon; IL, interleukin; iNOS, inducible nitric oxide synthase ICAM-1, intercellular adhesion molecule 1; IκBα phos, nuclear factor of kappa light polypeptide gene 
enhancer in B-cells inhibitor, alpha phosphate; LOX, lysyl oxidase; LPL, lipoprotein lipase; MAPK, mitogen-activated protein kinase; MCP-1, monocyte chemoattractant 
protein-1; MKK4, mitogen-activated protein kinase kinase 4; MPO, myeloperoxidase; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B; NO, nitric oxide; 
PGE2, prostaglandin E2; PI3K, phosphatidylinositol 3-kinase; RANKL, receptor activator of nuclear factor kappa-Β ligand; ROS, Reactive oxygen species; TGF-β, transforming 
growth factor-β; TLR4, Toll-like receptor 4; TNF-α, tumor necrosis factor-α; VCAM-1, vascular cell adhesion molecule 1.
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peroxidase and superoxide dismutase.94,95 Moreover, dihydroisoliquiritigenin inhibits glutamate-induced oxidative stress in 
neuronal cells, and glypallichalcone acts as an inhibitor of LPL oxidation.96,97 Similar to the chalcone derivatives, coumarin 
compounds in licorice have significant radical scavenging activity.98,99 Moreover, saponins and polysaccharides isolated 
from licorice have been reported to exert antioxidant activities.100–102 Consequently, it seems that the triterpenes, chalcones, 
coumarins, flavonoids, isoflavones and methylated isoflavones have significant antioxidant activity inhibiting the processes 
of carcinogenesis, and these contents of licorice have great potential as novel anticancer agents.

Apoptosis and Cell Cycle Arrest
Cancer is one of the leading diseases affecting human life and is caused by various reasons, such as environmental pollution 
and unhealthy lifestyle.103–106 Apoptotic cell death is known to regulate cancer cell proliferation, invasion and survival. 
Intrinsic and extrinsic apoptosis are the two major pathways induced by chemotherapeutics to inhibit tumor proliferation 
(Figure 3). Inhibition of apoptosis is considered to be an important mechanism toward drug resistance. In recent years, the 
interest has shifted to exploring apoptotic phytochemicals for cancer treatment and overcoming drug-resistance with lower 
side-effects.56,107–111 The anticancer properties of licorice were studied in MCF-7 (breast cancer) and HepG2 (liver cell 
carcinoma) cell lines where licorice root extract was used to synthesize gold nanoparticles (AuNPs). It was observed that 
50 µg/mL and 23 µg/mL of the synthesized AuNPs could successfully inhibit the growth of MCF-7 and HepG2 cell lines, 
respectively.112 Similar results were obtained in a study conducted by Vlaisavljević et al113 where different cancer cell lines, 
such as SiHa, HeLa (cervical), T47D, MDA-MB-361, MDA-MB-231, and MCF7 (breast), and A2780 (ovarian), were treated 
with licorice extract and it was found that 30 µg/mL extract induced apoptosis or necrosis in the cells, inhibiting tumor growth.

Licorice contains various flavonoids, such as glabridin, glycyrrhetinic acid, Lico, GA, ILG, and liquiritin.114 The 
glabridin exhibits anticancer activities as it activates the caspase cascade and mitochondrial apoptotic pathway leading to 
apoptosis in cancer cells.115 It regulates various signaling pathways, such as signal transducer and activator of 
transcription 3 (STAT-3), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), mitogen-activated 
protein kinase (MAPK) and extracellular-signal-regulated kinase (ERK) to inhibit proliferation of various cancer cells, 
and induces apoptosis of these cells. Glabridin induced apoptosis in Huh7 liver cancer cells by cleaving caspase-9 levels 

Figure 3 Suggested apoptotic mechanisms of bioactive metabolites of licorice. They are known to initiate apoptotic cell death in cancer via intrinsic and extrinsic 
mechanisms. 
Abbreviations: Bax, Bcl-2-associated X protein; BCL-2, B-cell lymphoma 2; DISC, death-inducing signaling complex; DR4, Death receptor; Fas (L), Fas ligand; MAPK, 
mitogen-activated protein kinase; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B; ROS, reactive oxygen species; STAT-3, signal transducer and activator of 
transcription 3; tBID, truncated BID; TRAILR, TNF-related apoptosis-inducing ligand.
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and increasing the release of cytochrome c (cyt. c),116 and in SK-BR-3 breast cancer cells by cleaving caspase-9, caspase- 
8, and caspase-3, and increasing the concentration of PARP.117 Further, in addition to the caspase cascade, glabridin 
induced apoptosis in HL-60 acute myeloid leukemia cells by activating the JNK1/2 and p38 MAPK signaling 
pathways.118 The glycyrrhetinic acid and its derivatives induce mitochondrial-mediated apoptosis in cancer cells, as it 
was found in a study conducted by Lin et al119 where apoptosis was induced by the generation of reactive oxygen species 
(ROS) when NTUB1 (human bladder cancer cells) were exposed to glycyrrhetinic acid 25. Another derivative of 
glycyrrhetinic acid, 18β- glycyrrhetinic acid (GRA) caused apoptosis in MCF-7 by activating the mitochondrial death 
cascade, caspase-9 and release of cyt. c. GRA had no inhibitory effect on the MCF-10 A (normal mammary epithelial 
cells).120 In another study, it was found that GRA was capable of inducing cell cycle death in HepG2 cells by arresting 
cell growth in the G1-phase and inducing apoptosis at a higher concentration.121 Another triterpene compound exhibiting 
antitumor properties is glycyrrhizin which is isolated from the roots of licorice. The antitumor activity of glycyrrhizin has 
been demonstrated in DU-145 and LNCaP human prostate cancer cells. Glycyrrhizin induces apoptosis in both cell lines 
in a concentration-dependent and time-dependent manner.122 Further, the GA, another flavonoid extracted from the roots 
of licorice also induces apoptosis and suppresses the proliferation of MDA-MB-231 breast cancer cells by increased 
generation of ROS.123 GA induces cell cycle arrest at G1/S phase in gastric cancer cells by downregulating the cyclin E1, 
cyclin E2, and cyclin D1-3 levels causing cell death in these cancer cells.124

Another important group of metabolites of licorice is chalcones.82,125 The chalcones inhibit cancer cell growth by 
interacting with the protein nucleophiles and inducing autophagy, apoptosis, and cell cycle arrest in cancer cells.126 

Licochalcones A, B, C, and D, ILG, echinate, paratocarpin A, kanzonol C, and isoliquiritin apioside (ISLA) are different 
kinds of chalcones studied for their anticancer properties. Lico A inhibits cancer cell growth through the mitochondrial 
pathway by activating the caspase cascade and mediating apoptotic and antiproliferative effects via a Sp1-mediated signaling 
pathway.127 There are several studies depicting the anticancer properties of lico A in gastric cancer cells,128 PC-3 prostate 
cancer cells,129 and glioma cells.130 Lico B exhibits its anticancer activity via caspase-3 activation, Bax expression 
enhancement,131 suppressing the expression of CDK1, CDK2 mRNA, cyclin A, antiapoptotic proteins (Mcl-1, Bcl-xL, and 
Bid), and leading to S-phase arrest.132 Licochalcones C and D, and kanzonol C have anticancer mechanism similar to 
licochalcone B.133–135 Different studies demonstrate the anticancer mechanism of ILG in breast cancer cells arresting the 
cancer cell growth at G0/G1 phase,136 A549 non-small-cell lung cancer cells by activation of the protein kinase B survival 
pathway and caspase cascades,137 renal cancer cells by ROS generation and STAT-3 pathway inhibition,138 and oral squamous 
cells by G2/M cell cycle arrest.139 Endoplasmic reticulum (ER)-stress) and ROS signaling pathways induce extrinsic and 
intrinsic apoptosis, leading to the cancer cell death in esophageal squamous cells when treated with echinatin.140 Tables 3 
and 4 represent an overview of various in vitro and in vivo anticancer studies mediated by bioactive compounds of licorice.

Antiangiogenesis Effect
Angiogenesis or neovascularization is considered to play a vital role in tumor proliferation and metastasis.141–144 In 
tumors, angiogenesis is intervened by targeting numerous markers that regulate angiogenesis and are considered 
proangiogenic factors, such as vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMPs) and 
basic fibroblast growth factor (bFGF).145–148 These angiogenesis markers have a broader spectrum of target cells 
which play an essential role in angiogenesis.149,150 In a hypoxic condition, tumor cells cause the release of proangiogenic 
factors, such as VEGFs, epidermal growth factor (EGF), FGF, insulin-like growth factor-1 (IGF1) and transforming 
growth factor-β1 (TGFβ1)), within the tumor.151 In tumor cells, VEGF is the main angiogenic activator that stimulates 
angiogenesis via binding to VEGFR2152 (Figure 4). Therefore, according to literature, targeting these pathways’ 
inhibitors in angiogenesis by herbal plant extract and isolated phytoconstituents was considered an anticancer treatment 
approach with clinical importance.

The extract of G. glabra used to treat mice with Ehrlich ascites tumor cells showed a reduction in the level of cytokines and 
decreased VEGF revealing its angioinhibitory potential.153 Licochalcone A (LicA) is a potent constituent of licorice having 
various biological properties, such as anti-inflammatory, antiangiogenic and antitumor effects. LicA was reported for its apoptosis 
inducing potential in prostate cancer via modulating the protein expression of Bcl-2. LicA inhibits the process of angiogenesis 
and tumorigenesis both in vitro and in vivo by regulating the signaling of VEGFR-2.154 In addition, LicA also reduced the vessel 
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Table 3 In vitro Anticancer Effects and Mechanistic Insight of Licorice Bioactive Phytocompounds

Type of 
Cancer

Cell Lines Anticancer 
Effects

Mechanisms Concentration Reference

Melanoma SK-MEL-28 

and SK-MEL 

-5

Induced apoptosis ↓G1 phase, ↓cyclin D1, ↓cyclin E, ↓p-Akt, ↓p-GSK3β, 

↓p-JNK1/2, ↓PI3K, ↓MKK4, ↓MKK7

10–20 μM [46]

Glioma C6 Suppressed cell 

proliferation

↓Cell viability, ↑cytotoxicity towards cancer cells, 

↑antitumor activity, ↓cell number, ↑differentiated 

morphology, ↑reversion of tumor cells to the normal 

differentiated cells, ↓topoisomerase IIγ

1, 10, 25, 50, 75, 

and 100 μM

[232]

Nasopharyngeal C666-1 

cells

lncRNA-regulated 

mechanism

↓lncRNA, ↓AK027294, ↑production of EZH1, ↑caspase-3, 

↑caspase-8, ↑caspase-9

0.25, 0.5, and 1  

mg/mL

[233]

Nasopharyngeal C666-1 Induced apoptosis ↑Antiproliferative properties, ↑apoptosis rate, ↑percentage 

of down-regulated amino acids and lipids leading to 

decreased metabolic disorders, ↓cell proliferation, ↓cell 

viability, ↑caspase-9 protease activities, ↑caspase-3

0.2, 0.5, and 1  

mg/mL

[234]

Pharyngeal 

squamous

FaDu Induced apoptosis ↑Cytotoxicity towards cancer cells, ↑number of dead cancer 

cells, ↑chromatin condensation, ↑Fas, ↑cleaved caspase-8, 

↑Bax, ↑apoptotic protease-activating factor 1, ↑caspase-9, 

↑p53, ↓Bcl-2, ↑cleaved caspases-3, ↑cleaved PARP

0,12.5,25 and 50  

µg/mL

[202]

Adenoid cystic ACC-2 and 

ACC-M

Induced autophagic 

and apoptotic cell 

death

↓mTOR, ↑appearance of membranous vacuoles, ↑formation 

of acidic vesicular organelles, ↑punctate pattern of LC3 

immunostaining, ↓autophagic flux, ↓apoptosis, ↓LC3- II/LC3- 

I ratio, ↓ cleavage of LC3, ↓autophagic flux, ↑caspase-3, 

↑Bax/Bcl-2 ratio, ↑PARP-cleavage, ↓phosphorylated-S6 

(downstream target of mTOR)

5–20 µM [235]

Colon HT-29 Induced apoptosis ↓Proliferation, ↓viability of cells, ↑cell death of cancer cells, 

↓HSP90

50,100,150, and 200 

µg/mL

[236]

Non-small cell 

lung cancer

H1975 

A549

Inhibited 

metastasis

G0/G1 growth phase cycle arrest, ↓number of cells at both 

S growth phase and G2/M growth phase, ↓cyclin B1 and 

cyclin A2, ↓p21 (CDK inhibitor), ↑CDK2, ↑ESR1, ↑PPARG, 

↑ESRRA, ↑PRKACA, ↑CXCL8, ↑PLAA, ↑RXRB, ↑MAPK14 

levels of CDK4, ↓cyclin D1, ↓CDK4-Cyclin D1 complex

200,400,600 and 

800 μg/mL

[237]

Gastric MKN28 Inhibited 

metastasis

↓Proliferation and metastasis, ↓migration and invasion, 

↑LC3II/LC3I ratio, ↑Beclin 1, ↓p62, ↓p-Akt, ↓p- mTOR

0,5,10,15 and  

20 µM

[238]

Hepatocellular MHCC97- 

H, LO2, and 

SMMC7721

Induced apoptosis 

and autophagy

↓Cell viability and proliferation, ↑apoptosis frequency, ↑Bax, 

↑cleaved-caspase-3, ↑cleaved PARP, ↑endogenous LC3-II, ↓ 
Bcl- 2, ↓P62, punctate LC3, ↓p-Akt, ↓p-PI3K, ↓p- mTOR

12.5, 25, and 50 μM [239]

Hepatocellular HuH7 and 

HepG2

Induced autophagy ↑Autophagosome number, ↑ROS generation, ↑TSC1/2 

complex, ↑PRAS40, ↑ CTMP, ↑PP2A, ↑ PDK1 and ↑Rubicon 

↑LC3 II, ↑cleaved-PARP, ↑cleaved-caspase-3

10,20,50,100 μM [240]

Renal Caki Induced apoptosis ↑Cleavage of caspase-9, caspase-7 and caspase-3, and PARP, 

↑Bax, ↓Bcl-2, ↓ Bcl-xL, ↑cyt. c release, ↑p53, ↓MDM2, ↑ROS 

levels, ↓STAT3, ↓cyclin D1 and D2, ↓p-JAK2,

0,5,10,20 and  

50 µM

[138]

Breast MDA-MB 

-231 triple 

negative

Induced apoptotic 

and autophagic- 

mediated apoptosis

↓Cell cycle progression, ↓cyclin D1, ↑sub-G1 phase 

population, ↓Bcl-2, ↑ Bax, ↑caspase-3, ↑PARP, ↓mTOR, 

↓p-mTOR ↓ULK1, ↓cathepsin B, ↑p62, ↑Beclin1, ↑ LC3, 

↑caspase-8

10, 25 and 50 µM [241]

(Continued)
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Table 3 (Continued). 

Type of 
Cancer

Cell Lines Anticancer 
Effects

Mechanisms Concentration Reference

Breast MDA-MB 

-231

Induced apoptosis ↓Cell migration, ↓cell proliferation, ↑ mitochondrial 

membrane potential, ↑DNA damage, ↓ oxidative stress, 

↑cleaved-caspase 3 and 9, ↓Bcl-2 expression, ↑E-cadherin 

↓Vimentin, ↓N-cadherin, ↑release of cytochrome c from the 

mitochondria into the cytoplasm, ↑ROS

30–40 µM [242]

Breast MDA-MB 

-231

Exerted anti- 

inflammatory and 

antitumorigenic 

effects

↓NO production, ↓iNOS, ↓LPS/IFN-γ, ↑NF κB, ↑ERK, ↑miR- 

155, ↓bound p50 and p65

10,50,100 and  

200 μM

[243]

Breast MCF-7 Induced apoptosis Cell cycle arrest in the G1 phase, ↓Bcl-2, ↑Bax, ↓cyclin D1, 

↑PARP cleavage, ↑CIDEA

15, 10, and 5 µg/mL [244]

Breast MCF-7 Induced apoptosis ↓Cell viability and proliferation, ↑apoptosis frequency, ↑TFF1 

(pS2), ↑CTSD, ↑CDKN1A (an effector of p53), ↑RPS6KA 

(RSK; MAPK-related) ↑NRIP1 (RIP140, AP-1-related), 

↓TP53I11 (p53- related), ↓PRKCD ↓ARHGDIA (a Ras 

super-family gene)

0.1–100 μM [245]

Murine 

mammary

4T1 and 

MCF-10A

Inhibited 

metastasis

↓Tumor growth, cell proliferation, ↓VEGF-A, ↓CD31 ↓HIF- 

1α, ↓iNOS, ↓COX-2

0,1,2.5 and 5.0  

µg/mL

[246]

Bladder T24 Induced apoptosis ↑Nuclear condensation, ↑ nuclear fragmentation, ↑ 
apoptotic ratio, ↑decrease in the ΔΨ m, ↑Bax, ↑ Bim, ↑Apaf- 

1, ↑caspase-9, ↑caspase-3, ↓Bcl-2, ↑CDK2

10,20,30,40,5, 60.70 

and 80 µg/mL

[247]

Bladder T24 Induced apoptosis ↓Proliferation, ↑ROS,↑apoptosis frequency, ↑mitochondrial 

dysfunction, ↑caspase-3, ↑PARP cleavage, ↑ER stress; GRP 

78, ↑growth arrest, ↑DNA damage-inducible gene 153/C/ 

EBP homology protein (GADD153/CHOP) expression, 

↑caspase-12

20, 40, 60, 80, or 

100 µM

[248]

Endometrial HEC-1A, 

Ishikawa, 

and RL95-2

Inhibited 

metastasis

↓Survival rate of cancer cells, ↓N-cadherin, ↑E-cadherin 1, 5, 10, and 20 µM [182]

Endometrial Ishikawa, 

HEC-1A, 

and RL95-2 

cells

Induced apoptosis 

and autophagy

↓Viability of cancer cells, ↑sub-G1 or G2/M phase arrest, 

↑DNA damage, ↑cell cycle arrest, ↑apoptotic cell death, 

↑cleaved caspase-3, ↑cleaved PARP, ↑caspase-7/LC3BII, 

↑p-ERK, ↑LC3-II, ↑SQSTM1/p62 levels

5, 10, 25, 50, 75, 

and 100 μM

[249]

Prostate PC-3 Induced apoptosis 

and autophagy

↓Proliferation, G0/G1 cell cycle arrest, ↑apoptotic effect, 

↑necrosis percentage, LC3B-II protein, ↑LC3B-II/LC3B-I 

ratio, ↑LC3A, ↑mRNA level ULK1 and AMBRA1, ↑NBR1 

and p62

3–200 μg/mL 

glycyrrhiza extract 

+ 3–100 nM 

Adriamycin

[250]

Ovarian OVCAR5 

and ES-2

Induced apoptosis ↓Viability of cancer cells, ↑G2/M phase arrest, ↑cleaved 

PARP, ↑cleaved caspase-3, ↑Bax/Bcl-2 ratio, ↑LC3B-II, 

↑Beclin-1

1, 5, 10, 20, 25, 50, 

75, and 100 µM

[251]

Cervical SiHa, HeLa, 

HK 2

Induced autophagy 

and apoptosis

↓Viability of cancer cells, ↑cleaved-caspase-3, ↑cleaved 

caspase-9, ↑cleaved-PARP, ↓Bcl-2, ↑LC3-II, ↑Beclin1, ↑Atg5, 

↑Atg7 ↑ Atg12, ↓PI3K (p85), ↓p-Akt (ser473), ↓p-mTOR 

(ser2448), ↓p-mTOR (ser2481)

10, 30, and 50 µM [252]

(Continued)

OncoTargets and Therapy 2022:15                                                                                                 https://doi.org/10.2147/OTT.S366630                                                                                                                                                                                                                       

DovePress                                                                                                                       
1429

Dovepress                                                                                                                                                              Tuli et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Table 3 (Continued). 

Type of 
Cancer

Cell Lines Anticancer 
Effects

Mechanisms Concentration Reference

Osteosarcoma Saos-2 Induced apoptosis ↓Proliferation, ↓cell migration, ↓cyclin D1, ↑p53, ↑p21, ↑p27, 

↓Bcl-2, ↑Bax, ↓level of ATP-synthesis, ↓ PI3K/Akt signaling, 

↓MMP2, ↓MMP9

0,3,10,30, and  

100 µM

[253]

Osteosarcoma U2OS Induced apoptosis ↓Proliferation, ↓invasion and migration, ↑apoptosis, ↑Bax, 

↑active caspase-3, ↓Bcl- 2, ↓p-Akt, ↓p-mTOR, ↓PI3K/Akt 

signaling pathway

5, 10 and 20 µM [254]

Abbreviations: AMBRA1, activating molecule in Beclin-1-regulated autophagy protein 1; AP-1, activator protein 1; Apaf-1, apoptotic protease activating factor-1; 
ARHGDIA, Rho GDP dissociation inhibitor alpha; Atg, autophagy related; ATP, adenosine triphosphate; Bax, BCL2 associated X; BCL-2, B-cell lymphoma 2; CD31, cluster 
of differentiation 31; CDK, cyclin dependent kinase; CDKN1A, cyclin dependent kinase inhibitor 1A; CHOP, CCAAT/enhancer-binding protein (C/EBP) homologous protein; 
CIDEA, cell death activator; COX-2, cyclooxygenase-2; CTMP, carboxyl-terminal modulator protein; CTSD, cathepsin D; CXCL, chemokine (C-X-C motif) ligand; DNA, 
deoxyribonucleic acid; ER, endoplasmic reticulum; ERK, extracellular signal-regulated kinase; ESR1, estrogen receptor 1; ESRRA, estrogen related receptor alpha; EZH-1, 
enhancer of zeste 1 polycomb repressive complex 2 subunit; GADD, growth Arrest and DNA damage inducible protein 153; GRP78, glucose-regulating protein; HIF-1α, 
hypoxia inducible factor 1α; HSP, heat shock protein; IFN-γ, interferon- γ; IL, interleukin; iNOS, inducible nitric oxide synthase; LC3, microtubule-associated protein 1A/1B- 
light chain 3; lncRNA, long non-coding RNA; LPS, lipopolysaccharide; MAPK, mitogen-activated protein kinase; miR, microRNA; MAPK, mitogen-activated protein kinase; 
MMP, matrix metalloproteinase; mRNA, messenger ribonucleic acid; mTOR, mammalian target of rapamycin; NBR1, neighbour of BRCA1 gene; NF-κB, nuclear factor kappa- 
light-chain-enhancer of activated B cells; NO, nitric oxide; NRIP1, nuclear receptor-interacting protein 1; p-Akt, phospho-Akt; PARP, poly (adenosine diphosphate-ribose) 
polymerase; PDK1, phosphoinositide-dependent kinase 1; p-ERK, phospho-extracellular signal-regulated kinase; p-GSK3β, phospho-glycogen synthase kinase-3β; PI3K, 
phosphoinositide 3-kinase; p-JNK, phospho-c-Jun N-terminal kinase; PLAA, phospholipase A2-activating protein; PP2A, protein phosphatase 2A; PPARG, peroxisome pro
liferator-activated receptor gamma; PRAS, proline-rich Akt substrate; PRKACA, protein kinase CAMP-activated catalytic subunit alpha; PRKCD, protein kinase C delta; 
RIP140, receptor-interacting protein 140; ROS, reactive oxygen species; RPS6KA, p90 ribosomal S6 kinase-3; RSK, ribosomal S6 kinase; RXRB, retinoid X receptor beta; 
SQSTM1, sequestosome 1; STAT3, signal transducer and activator of transcription 3; TFF1, trefoil factor 1; TP53, tumor protein p53; TSC, tuberous sclerosis complex; 
ULK1, Unc-51-like autophagy activating kinase 1; VEGF-A, vascular endothelial growth factor A; ΔΨ, mitochondrial membrane potential.

Table 4 In vivo Anticancer Effects and Mechanistic Insight of Licorice Bioactive Phytocompounds

Type of 
Cancer

Animal Models Antitumor 
Effects

Observed Changes Dosage Duration Reference

Melanoma BALB/c nu/nu mice 

xenografted with SK- 

MEL-28 cells

Induced apoptosis ↓Tumor growth, ↓tumor volume, ↓tumor 

weight

2 or 10  

mg/kg

35 days [46]

Adenoid cystic 

carcinoma

BALB/c nude mice 

xenografted with 

ACC-M cells

Induced autophagic 

and apoptotic cell 

death

↓Tumor frequency, ↑LC3, ↑autophagic 

responses, ↑apoptosis, ↓mTOR, ↑Atg5 

expression

0.5 g/kg  

or 1 g/kg/

30 days [235]

Colon Male BALB/c mice 

injected with CT-26 

cells

Inhibit tumor 

metastasis

↓Tumor weight, ↑spleen index, improve the 

physical condition of the tumor bearing mice, 

↑formation of tumor necrotic foci through 

recruiting inflammatory cells, no infiltrated 

cancer cells were found in the lungs, ↑gut 

friendly bacteria

500 mg/kg 15 days [238]

Colon BALB/c mice bearing 

CT-26 cells

Induces apoptosis ↓Tumor growth, ↑immune organ index, 

↑CD4+, ↑CD8+ immune cells population, ↑IL 

2, ↑IL 6, ↑IL 7, ↓TNFα

500 mg/kg 14 days [255]

Colon CT 26 Induces apoptosis ↓Proliferation of cancer cells, ↑IL-7 

gene,↓tumor growth, ↑CD4+ and CD8+ 

immune cells population, ↑IL 2, IL 6, IL 7, 

↓TNFα

1–100  

μg/mL 

500 mg/ 

kg once 

daily

14 days [255]

Non-small cell 

lung

C57BL/6 mice 

injected with LLC cells

Anti-metastatic ↑PD-L1, ↑CD8+,↑antigen presentation 200 mg/kg 19 days [237]

(Continued)
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formation by endothelial cells as well invasion and migration via modulating the expression of MMP-9, VEGF-A and 
plasminogen activators.155 In a study, Jiang et al156 reported that glabridin, a potent constituent of G.glabra, has anticancer 
potential as it inhibits the migration, invasion and angiogenesis of human breast cancer cells by modulating the FAK/Rho 
signaling pathway. The aqueous extract of G. glabra blocks the in vitro and in vivo proliferation of Ehrlich ascites tumor cells. 

Table 4 (Continued). 

Type of 
Cancer

Animal Models Antitumor 
Effects

Observed Changes Dosage Duration Reference

Hepatocellular BALB/c-nu/nu mice 

xenografted with 

Hep3B cells

Inhibit metastasis 

and induces 

apoptosis

↓Cyclin D1, ↓PI3K/Akt signaling pathway, 

↓Vimentin, ↓N-cadherin,↓Bcl-2

50 mg/kg, 18 days 

weeks

[256]

Hepatocellular Hep3B Inhibit metastasis 

and induces 

apoptosis

G1/S cell cycle arrest, ↓migration and 

metastasis of cancer cells, ↓cyclin D1, ↑p21, 

↑p27, ↓cell cycle transition, ↓PI3K/Akt 

pathway, ↑E-cadherin, ↓Vimentin, 

↓N-cadherin,↓Bcl-2,

30,40,50,60 

µM 50  

mg/kg

3 weeks [256]

Hepatocellular BALB/c nude mice 

xenografted with 

SMMC7721 cells

Induces apoptosis 

and autophagy

↓Tumor growth, ↓tumor volume, ↓body 

weight, ↓tumor weight, ↑cleaved-PARP, 

↑cleaved-Caspase-3, ↑Bax, ↑ LC3II, ↓ mTOR, 

↓p-Akt, ↓ p-mTOR, ↓Bcl-2

50 mg/ Kg 24 days [235]

Breast Nude-Foxn1nu mice 

xenografted with 

MDA-MB-231cells

Induce apoptotic 

and autophagic- 

mediated apoptosis

↓Tumor weight, ↓volume, ↑caspase-3, ↑ Ki- 

67, ↑ p62, ↓ VEGF

2.5 and 

5.0 mg/kg

14 days [237]

Breast Athymic nu/nu mice 

xenogarfted with 

MDA-MB-231 cells

Anti-inflammatory 

and anti- 

tumorigenic

↓Tumor weight, ↓tumor outgrowth, ↓ iNOS, 

↓3-NT, ↓inflammation, ↓JAK2/STAT3

10 mg/kg 28 days 

weeks

[239]

Endometrial Nude mice (CAnN. 

Cg-Foxn1nu/CrlNarl 

xenografted with 

HEC-1A-LUCcells

Inhibit metastasis ↓Cancer cell migration, ↓tumor metastasis, 

↓peritoneal dissemination and serum level of 

TGF-β1, ↓N-cadherin, ↓p-Smad2/3, 

↓TWIST1/2, ↑E-cadherin

10 mg/k 28 days [182]

Murine 

mammary

BALB/c mice 

xenografted with 

4T1 cells

Inhibits metastasis ↓p-p65NFκB, ↓MMP-9, ↓ICAM-1, ↓VCAM-1, 

↓VEGF-A, ↓metastatic lung nodules, 

↓infiltration of macrophages, ↓CD31, ↓VEGF- 

receptor(r)2, ↓LYVE-1, ↓VEGF-C, ↓VEGF-R3

2 or 4 mg/ 

kg

21 days [246]

Endometrial Athymic nude mice 

by subcutaneous 

injection of HEC-1A- 

LU)

Induces apoptosis 

and autophagy

↓Tumor growth, ↓PCNA, ↓caspase-7, 

SQSTM1/p62, ↓LC3B

1 mg/kg 46 days [249]

Cervical Athymic BALB/c 

mice xenografted 

with SiHa cells

Induces autophagy 

and apoptosis

↑↓Body weight, ↑cleaved-PARP, ↑cleaved- 

caspase-3, ↑LC3-II, ↓Ki-67

10 and 

20 mg/kg

28 days [252]

Osteosarcoma NOD-SCID mice 

xenografted with 

Saos-2 cells

Induces apoptosis ↓PCNA, ↓MMP2, ↓ MMP9, ↑caspase-3, 

↓p-PI3K, ↓p-Akt

50 mg/kg 56 days [253]

Abbreviations: Atg, autophagy related; Bax, BCL2 associated X; BCL-2, B-cell lymphoma 2; CD, cluster of differentiation; ICAM, intercellular adhesion molecule; IL, 
interleukin; iNOS, inducible nitric oxide synthase; JAKL, Janus Kinase 1; LC3, microtubule-associated protein 1A/1B-light chain 3; LC3, microtubule-associated protein 1A/1B- 
light chain 3; LYVE-1, lymphatic vessel endothelial hyaluronan receptor 1; MMP, matrix metalloproteinase; mTOR, mammalian target of rapamycin; PARP, poly (adenosine 
diphosphate-ribose) polymerase; PCNA, proliferating-cell nuclear antigen; PD-L1, programmed death-ligand 1; PI3K, phosphoinositide 3-kinase; p-Smad 2/3, phosphorylated 
small mothers against decapentaplegic 2/3; SQSTM1, sequestosome 1; STAT-3, signal transducer and activator of transcription 3; TGF-β1, transforming growth factor-β; TNF-α, 
tumor necrosis factor-α; TWIST ½, Twist family basic helix-loop-helix transcription factor 2; VCAM, vascular cell adhesion molecule; VEGF, vascular endothelial growth factor.
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According to Kim et al.157 Glycyrrhizin isolated from the roots of G. glabra inhibited the metastasis and survival of tumor by 
modulating the levels of onco-suppressor p53 gene, MAPK, ERK and EGFR which led to apoptosis and showed antiangioge
netic effect.

Antimetastic Activities
Metastasis is a multistep process that contributes to the spread of cancer cells to distant organs of the body through blood or the 
lymphatic system, resulting in death in cancer patients.158–163 Targeting metastasis is an attractive strategy in the management 
of progression and development of cancer (Figure 5).164–166 According to literature, various in vitro and in vivo models 

Figure 4 Tumor angiogenic processes and growth of cancer progression are inhibited by phytoconstituents isolated from licorice. 
Abbreviations: EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; FGF, fibroblast growth factor; FGFR, fibroblast growth factor receptor; IGF1, 
insulin-like growth factor-1; TGF-β, transforming growth factor-β; VEGF, vascular endothelial growth factors; VEGFR2, vascular endothelial growth factor receptors 2.

Figure 5 Antimetastatic actions governed by bioactive metabolites of licorice. It has been observed that metabolites of licorice suppress the expression of MMPs via JNK/ 
MAPK and AP-1 signaling. 
Abbreviations: AP-1, activator protein 1; JNK, c-Jun N-terminal kinases; MAPK, mitogen-activated protein kinase; MMPs, matrix metalloproteinases; NF-κB, nuclear factor kappa- 
light-chain-enhancer of activated B; p-Smad 2/3, phosphorylated small mothers against decapentaplegic 2/3, TWIST ½, Twist Family basic helix-loop-helix transcription factor 2.
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showed that natural bioactive compounds, including those from G. glabra, have antimetastasis potential167 including Matrix 
metalloproteinases (MMPs), such as MMP-2, and MMP-9, and urokinase plasminogen activator (uPA) play a significant role 
in the metastasis process by degrading extracellular matrix (ECM) of cancerous cells as well as modulating the mechanism of 
angiogenesis in the maintenance of tumor cell survivability.168,169 MMPs are degradation enzymes that modulate numerous 
physiological processes, such as cell growth, differentiation and apoptosis. However, overexpression of MMP-2 and MMP-9 
is linked with prooncogenic events, such as neoangiogenesis, tumor cell proliferation, and metastasis.170–172 In addition to 
MMPs, ERK1/2, p38, MAPK and JNK/SAPK play a central role in the regulation of cancer metastasis expression.173–176 

Furthermore, once cancer cells develop a more invasive nature, they can enter blood and spread to distant regions, resulting in 
metastasis. Tumor cells that have moved to a secondary site can either go into metastatic dormancy or stimulate angiogenesis 
and start growing new blood vessels.177 Hence, to control the mechanism of metastasis, targeting oncogenic molecular 
pathways by natural phytoconstituents is an important therapeutic approach.178,179

Glabridin, a major chemical constituent of licorice, significantly blocks the migration/invasion of various HCC cells, namely 
Huh7 and Sk-Hep-1, by modulating the expression levels of MMP-9 and the phosphorylation processes of ERK1/2 and JNK1/2 
markers. This inhibitory effect was linked with an upregulation of tissue inhibitor of MMP-1 and a downregulation of the 
transcription factors NF-κB and activator protein 1 signaling pathways.180 Wang et al181 reported that GA has the potential to 
suppress breast tumor outgrowth and pulmonary metastasis by modulating the p38 MAPK-AP1 signaling pathway. In vitro 
experimentation revealed that LicE decreased the expression of specificity protein 1 (Sp1) in MCF-7 and MDA- MB-231 cell 
lines, resulting in regulation of the cell cycle as well as inhibiting the process of carcinogenesis and tumor metastasis. 
Isoliquiritigenin, an isolated component of licorice, inhibited the process of tumor metastasis via upregulating E-cadherin and 
downregulating the N-cadherin, p-Smad2/3, and TWIST1/2 protein expression in HEC-1A, Ishikawa, and RL95-2 xenograft 
animal model.182

Synergistic Actions of Licorice Phytochemicals with Anticancer Agents
Licorice is extensively used as an herbal medicine in traditional Chinese as well as Indian medicine to treat gastric, liver, 
and respiratory problems and different types of cancers, and to reduce the toxicity caused by other herbs. Licorice and its 
flavonoids show more potential effect against various cancers when used in conjunction with other anticancer drugs. 
Numerous studies have been conducted to investigate the role of licorice and other anticancer drugs individually in 
various cancers. These chemotherapeutic drugs showed great potential in the treatment of a diverse range of cancers, on 
the other hand, they also exert side effects to the normal cells and induce toxicity.183–185 But when the researchers used 
anticancer drugs, such as paclitaxel, cisplatin, and gemcitabine in combination with licorice, it inhibited the side effects 
by protecting the normal cells from toxicity along with enhancing anticancer potential. Tables 5 and 6 show the 
synergistic effects of licorice with other anticancer drugs both in vitro and in vivo.

Table 5 In vitro Synergistic Action of Licorice Phytocompounds with Various Anticancer Drugs

Licorice 
Metabolites

Anticancer 
Drugs

Type of 
Cancer

Cell Lines Mechanisms Reference

Liquiritigenin Cisplatin Melanoma B16F10 ↓PI3K/Akt, ↓MMP-2, ↓MMP-9 [257]

Glycyrrhizin Cisplatin Hepatocellular 
carcinoma

Huh7 ↑MRP2, MRP-3, MRP-4, MRP5 m-RNAs [258]

Licochalcone-A Paclitaxel and 
vinblastine

Leukemia, 
breast cancer

MCF-7 and 
HL-60

↓Bcl-2 and Bcl-2/Bax [258]

Licochalcone-A Geldanamycin Ovarian cancer OVCAR-3 and 
SK-OV-3

↑Caspase-8- and Bid-dependent pathways and the 
mitochondria-mediated apoptotic pathway

[259]

Isoliquiritigenin Cyclophosphamide Cervical 
cancer

U14 ↓Proliferation [260]

Abbreviations: Bax, BCL2-associated X; BCL-2, B-cell lymphoma 2; MMP, matrix metalloproteinase; MRP, multidrug resistance associated proteins; PI3K, phosphoinositide 3-kinase.
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Nanotechnology Studies of Bioactive Constituents of Licorice in Cancer
Nanotherapeutics (1–100 nm) have been shown to overcome the shortcomings of conventional treatments,185 such as 
unwanted side effects on rapidly growing healthy cells, non-specific targeting and distribution, dose-dependent toxicity, 
and multi-drug resistance.185–187 They possess enhanced target-specificity, increased permeability and retention time of 
the drug in the cancer cells, improved biocompatibility, and decreased dose of the drug which together contribute to 
reduced toxicity.185,188,189 Romberg et al190 and Cheng et al191 pointed out that recently developed nanoparticles possess 
various limitations, thereby shifting the focus of formulation sciences to natural compounds-based nanoparticles which 
would increase targeting efficiency to cancer cells and lower the rate of clearance. This is further supported by various 
advantages, such as increased patient compliance (with peroral administration), less extensive metabolic by-products and 
subsequent higher bioavailability.192 As summarized in Tables 7 and 8, various nanoformulations containing licorice and 
its bioactive compounds were developed and tested against specific cancer types and results from these studies have been 
listed. Various cell line studies, as evidenced by Table 7, have focused on hepatic carcinoma due to the abundance of 
glycyrrhetinic acid receptors which are over-expressed on hepatocytes making it a viable targeting options.193 These have 
been explored due to the limitations of conventional therapies as mentioned above. The results from cell line studies need 
to be tested in animal models to confirm the efficacy and safety of the drug or formulation under study. The studies listed 

Table 6 In vivo Synergistic Effect of Licorice with Various Anticancer Drugs

Metabolites of 
Licorice

Anticancer 
Drugs

Type of 
Cancer

Model Antitumor Effects Mechanisms Reference

Liquiritigenin Cisplatin Melanoma Female C57 BL/6 

black mice

Suppressed cell migration and 

cell invasion

↓PI3K/Akt [257]

Licoricidin Gemcitabine Osteosarcoma Female BALB/c 

nude mice

Enhanced cytotoxicity ↓Akt and NF- 

κB

[261]

Licochalcone A Cisplatin Colon 

carcinoma

BALB/c mice Suppressed cell proliferation ↓DNA 

synthesis

[262]

Isoliquiritigenin Cyclophosphamide Cervical 

Cancer

KM mice Suppressed cell proliferation DNA strand 

break

[260]

Abbreviations: NF κB, nuclear factor kappa-light-chain-enhancer of activated B cells; PI3K, phosphoinositide 3-kinase.

Table 7 In vitro Studies of Nanoformulations of Bioactive Compounds of Licorice

Formulation Type Drug Used Cell Line Main Results Reference

GA-alginate nanogel Doxorubicin + 
Glycyrrhizin 

(20 mg/mL)

Murine macrophage cell line 
(RAW 264.7)

Activation and invasion by macrophages 
averted due to the presence of glycyrrhizin 

Cells retained the normal morphology, less 

nitric oxide production 
Reduced IL-6 and tumor necrosis factor-α 
expression 

Reduced phagocytosis of drug

[263]

Hepatocellular carcinoma 

HepG2 cells

Confirmed pathway of endocytosis and 

active liver targeting which increased 
nanogel particle phagocytic intake 

Decreased cell viability and increased cell 

toxicity, apoptosis due to reduced efflux 
activity of p-glycoprotein, upregulation of 

caspase-3 mRNA and a high Bax/Bcl-2 ratio

(Continued)
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Table 7 (Continued). 

Formulation Type Drug Used Cell Line Main Results Reference

PEGylated nano-liposomes Silibinin (25% w/v) 

+ GA (75% w/v)  
(IC50 = 48.67  

μg/mL)

Human hepatocellular carcinoma 

HepG2 cells and fibroblast cells

Decreased IC50 value and increased 

cytotoxicity (10x) than respective free 
drugs 

Synergistic action of silibinin in presence of 

GA

[264]

Nano-micelles formulated 

as solid dispersion using 
tannic acid and disodium 

glycyrrhizin

Camptothecin 

(0.0145 μg/mL)

Human hepatocellular carcinoma 

HepG2 cells

Increased cell inhibition and cell apoptosis 

activity compared to free drug 
Tannic acid inhibited P-gp glycoprotein 

efflux activity thereby increasing cellular 

drug uptake

[265]

Glycyrrhizin Conjugated 

Dendrimer and Multi- 
Walled Carbon Nanotubes

Doxorubicin 

(Dendrimer IC50 = 
2 μM) (Nanotubes  

IC50 = 2.7 μM

Human hepatocellular carcinoma 

HepG2 cells

Reduction in IC50 value of the drug 

compared to formulations without 
glycyrrhizin and free drug 

Increased cytotoxicity due to increased 

drug intake via receptor mediated 
endocytosis 

Dendrimers (more apoptotic cells) are 

more effective carriers than nanotubes 
(more necrotic cells) when attached with 

glycyrrhizin

[266]

GA-conjugated human 

serum albumin 

nanoparticles

Resveratrol  

(IC50 = 62.5  

μg/mL)

Hepatocellular carcinoma 

HepG2 cells

Concentration dependent uptake [267]

Valerate- conjugated 

chitosan nanoparticles 
surface modified with 

glycyrrhizin

Ferulic acid  

(IC50 = 60 μg/mL)

Hepatocellular carcinoma 

HepG2 cells

Increased cytotoxicity due to glycyrrhizin 

receptor mediated intake of drug

[268]

Glycyrrhetinic acid- 

modified hyaluronic acid 
nanoparticles

Adenine (0.25  

mg/mL)

Human HepG2 cells, L02, Bel- 

7402 and MCF-7 cells

Absorption into HepG2 in a time 

dependent manner 
Targeting efficiency: HepG2>L02>MCF-7 

Inhibition of colony formation in time and 

dose dependent manner 
Induced apoptosis in cancer cells thus 

inhibiting proliferation of cancer cells

[269]

Glycyrrhetinic acid- 

modified hyaluronic acid 

nanoparticles

Docetaxel  

(IC50 = 1.6 μg/mL)

HepG2 cells and Human breast 

cancer MCF7 cells

More uptake by HepG2 than MCF7 cells 

Decrease in IC50 values and cell viability 

compared to free drug 
Inhibition of colony formation of HepG2 

cells in time and dose dependent manner 

Increased apoptosis and deformed 
morphology

[270]

Hyaluronic acid- 
glycyrrhetinic acid 

conjugated nanoparticles

Doxorubicin  
(IC50 = 5.75  

μg/mL)

Hepatocellular carcinoma 
HepG2 cells

Increased cleavage in presence of 
glutathione 

Rapid intracellular release and nuclear 

delivery of drug compared to standard of 
care conventional formulations

[271]

(Continued)
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in Table 8 represent the intratumor studies conducted thereby helping to uncover the tremendous potential possessed by 
these nanoformulations in the chemotherapeutic field. Our thorough search revealed that although there were in vitro and 
in vivo studies carried out for isoangustone A,194–197 licochalcone A198–201 and licochalcone E155,202,203 as anticancer 
molecules, there were no studies conducted for these molecules in the nanotherapeutics domain. The difficulties 

Table 7 (Continued). 

Formulation Type Drug Used Cell Line Main Results Reference

Glycyrrhetinic acid- 

modified curcumin 
supramolecular hydrogel

Curcumin  

(IC50 = 10.7 μM)

Hepatocellular carcinoma 

HepG2 and Mouse fibroblast 
3T3 cells

Reduced IC50 values 

Greater targeting efficiency 
Higher cellular uptake due to pro-gel 

formulation approach

[272]

Glycyrrhetinic Acid 

Functionalized Graphene 

Oxide

Doxorubicin  

(0.5 μg/mL)

Human hepatocellular carcinoma 

HepG2 cells, normal human 

hepatic L02 cells, and rat cardiac 
muscle H9c2 cells

Targeting efficiency: HepG2>L02>H9c2 

Taken via endocytosis and delivered to 

mitochondria 
Decreased the potential difference of 

mitochondrial membrane which in turn 

opened up mitochondrial permeability 
transition pore to initiate a series of 

responses and leads to caspase-3 activation 

necessary for apoptosis

[273]

Glycyrrhetinic acid- 

functionalized mesoporous 
silica nanoparticles

Curcumin  

(2 mg/mL)

Hepatocellular carcinoma 

HepG2 cells

Higher cytotoxicity compared to curcumin 

loaded mesoporous silica nanoparticles 
Receptor mediated endocytosis intake of 

drug 

Increased rate of apoptosis

[274]

Dual-functional (modified 

with glycyrrhetinic acid and 
L-histidine) hyaluronic acid 

nanoparticles

Doxorubicin  

(5 μg/mL)

Hepatocellular carcinoma 

HepG2 cells

Decrease in IC50 values 

Increased drug distribution in cytoplasm 
and nuclear regions 

Receptor mediated endocytosis intake of 

drug

[275]

Nano-suspension Isoliquiritigenin 

(0.18 μM)

A549 lung cancer cells Increased apoptosis at 7.5 to 10-fold 

Less cytotoxic to healthy cells

[276]

Isoliquiritigenin-iRGD 
nanoparticles

Isoliquiritigenin 
(50 μM)

Human breast cancer cell lines 
(MDA-MB231 and MCF7) and 

mouse breast cancer cell line 

(4T1)

MCF7 cells showed better inhibition than 
free drug but not better than 

isoliquiritigenin nanoparticles 

MDA-MB231 and 4T1 showed better 
inhibition than isoliquiritigenin 

nanoparticles formulation and free drug 

Increased apoptosis compared to free drug 
and nanoparticles due to high rates of 

cellular drug uptake

[277]

Isoliquiritigenin loaded 

nanoliposomes

Isoliquiritigenin 

(<12.5 μM)

HCT116, SW620 and HT29 

colorectal cancer cell lines

Better inhibition compared to free drug 

Increased rate of apoptosis 

Decreased uptake of glucose and lactic acid 
Reduced oxygen consumption led to 

reduced adenosine triphosphate synthesis 

Decreased Akt/mTOR expression which is 
important for tumor progression

[278]

Abbreviations: Bax, BCL2-associated X; BCL-2, B-cell lymphoma 2; GA, glycyrrhizinic acid; IC50, half maximal inhibitory concentration; mTOR, mammalian target of 
rapamycin; w/v, weight/volume.
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encountered during the manufacturing of these medications as nanotherapeutics could be one of the factors limiting their 
usage as anticancer moieties. The findings suggest that these compounds could be developed into viable anticancer 
nanomedicines in the future. As a result, the findings can be extended, implying that they have a lot of potential for future 
clinical research. More research is needed to overcome the problems of nanoformulations and generate reliable medicines 
with few adverse effects.

Table 8 In vivo Studies of Nanoformulations of Bioactive Compounds of Licorice

Formulation Type Drug Used Model Used Main Results Reference

Glycyrrhzic acid-alginate nanogel Doxorubicin + 
glycyrrhizin 

(2.5 mg/kg)

Male Sprague- 
Dawley rats

Higher blood concentrations of therapeutic agent 
Increased distribution half-life by 7.5 folds 

Decreased elimination rate

[263]

H22 tumor 

bearing 

Kunming mice

Glycyrrhzic acid inhibited multidrug resistance protein- 

1 in hepatoma cells enhancing the availability of drug 

and subsequently anti-tumor activity Less systemic 
toxicity with no body weight loss

Nano-micelles formulated as solid 

dispersion using tannic acid and 

disodium glycyrrhizin

Camptothecin 

(5 mg/kg)

Male Sprague- 

Dawley rats

Improved bioavailability compared to free drug [265]

HepG-2 

tumor-bearing 

BALB/c nude 
mice

Highest distribution at 8h with maximum amount 

concentrated at tumor site 

Increased tumor inhibition activity 
Maintained body weight 

Tumor cells displayed increased interstitial spaces, large 

necrotic area and decreased nuclear chromatin

GA-conjugated human serum 

albumin nanoparticles

Resveratrol 

(5 mg/kg)

H22 tumor 

bearing male 
Kunming mice

Better and concentrated biodistribution to liver [267]

Glycyrrhetinic acid-modified 
hyaluronic acid nanoparticles

Adenine 
(10 mg/kg)

Kunming mice Faster biodistribution within 1 hour in mice compared 
to free drug 

Reduced tumor volume effectively compared to control 

and placebo groups 
Decreased proliferating cell nuclear antigen levels 

Increased apoptotic cell count

[267]

Hyaluronic acid-glycyrrhetinic acid 

conjugated nanoparticles

Doxorubicin 

(4 mg/kg)

H22 tumor 

bearing 

Kunming mice

Improved biodistribution with liver tumor targeting 

efficiency 

Decreased tumor volume 
No significant weight loss

[271]

Glycyrrhetinic Acid Functionalized 
Graphene Oxide

Doxorubicin 
(2 mg/kg)

HepG2 cells 
bearing BALB/ 

c nude mice

Increased Bax:Bcl2 ratio confirmed mitochondrial 
permeability transition pore opening and activation of 

caspase 3.7 and 9 

Decreased tumor size significantly

[273]

Dual-functional (modified with 

glycyrrhetinic acid and L-histidine) 
hyaluronic acid nanoparticles

Doxorubicin 

(5 mg/kg)

H22 tumor 

bearing mice

Increased liver targeting capacity 

Higher tumor inhibition efficiency

[275]

Isoliquiritigenin-iRGD nanoparticles Isoliquiritigenin 
(25 mg/kg)

4T1 bearing 
female nude 

mice

Mean tumor volume reduced 
Higher mitotic bodies indicate reduced cell viability

[277]

Abbreviations: Bax, BCL2-associated X; BCL-2, B-cell lymphoma 2.
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Safety Studies of Licorice
In general, licorice products are considered to have no hazard to the public and are utilized widely in food (ice cream, 
candies, chewing gums, and beverages), cosmetics (toothpaste) and tobacco as flavoring and sweetening agents.7,9 

However, before licorice extract or any of its individual components can enter into clinical oncological practice, due 
to their strong pharmacological activities, their safety must be verified thoroughly and systematically, paying special 
attention to the dosage and duration of the treatment.18 Several studies have indeed warranted for the toxicity of licorice 
depending on its dosage and duration.18 Actually, chronic licorice intake was shown to induce a condition comparable to 
that found in primary hyperaldosteronism, while licorice overconsumption resulted in hypermineralocorticoidism char
acterized by salt and water retention, hypertension, hypokalemia, metabolic alkalosis, and suppression of the renin- 
aldosterone system.28,204 Biochemical evidence suggests that licorice and its phytochemicals, particularly glycyrrhizi
nates, can reversibly block the cortisol-inactivating enzyme, 11β-hydroxysteroid dehydrogenase, thereby producing 
hypermineralocorticoid-like effects.205 In addition, based on a case report, excessive consumption of licorice may also 
lead to toxic consequences in the form of thrombocytopenia.206 Therefore, health care providers should be aware of the 
hazardous consequences related to chronic and excessive intake of licorice extracts to be able to prevent worsening of 
these symptoms when detected early [16]. Furthermore, caution must be exercised when using licorice during pregnancy, 
as heavy licorice consumption has been associated with lower gestational age and preterm delivery in humans.207,208 

Accordingly, the main challenge in exploiting the promising anticancer activities of licorice constituents in clinical 
settings primarily lies on its appropriate dosing, besides targeted delivery to malignant sites, inducing minimal adverse 
reactions in normal healthy tissues. It is highly expected that future experimental studies with nano-sized carriers will 
provide a strong base for overcoming these challenges by virtue of modern nano-technological methods.

Clinical Trials
Several clinical trials conducted with licorice products have also reported glycyrrhizin-related complications, such as 
elevated blood pressure due to increasing extracellular fluid volume and large artery stiffness, and reduced serum 
potassium levels.209 However, other clinical trials (mostly on the gastrointestinal disorders) have suggested diverse 
healing properties of licorice preparations without exerting any observable adverse effects.205,209 A clinical stage II 
preliminary trial revealed that licorice root extract in combination with docetaxel works in treating patients with 
hormonal therapy resistant metastatic prostate tumors (NCT00176631). Similarly, licochalcone A and paclitaxel have 
been shown to increase natural cell death and apoptosis in OSCC tumors (NCT03292822).

Conclusions and Perspectives
Our present review describes anticancer potential of the phytoconstituents of G. glabra along with synergistic 
chemotherapeutic insight. Traditionally, licorice has been utilized as a sweetening and flavoring agent for food items. 
Roots of licorice are reported to possess strong therapeutic potential to reduce inflammation and cancer progression. 
Among the reported phytoconstituents, the flavonoids and terpenoids are the major therapeutically active molecules. 
The in vitro and in vivo data presented in the current review article clearly show the strong potential of licorice-derived 
phytochemicals from the classes of triterpenes, chalcones and isoflavones in the fight against different types of cancer. 
Despite potential therapeutic importance of these effects, several obstacles, such as toxic reactions observed with 
excessive consumption, have impeded moving on with clinical trials. It is highly expected that surpassing these 
bottlenecks by using modern nanotechnological methods might lead us to expansion of the current anticancer arsenal. 
In addition, as licorice constituents possess a wide range of molecular targets in cancer, they might be helpful in 
preventing drug resistance. Therefore, synergistic mechanistic insight of licorice-derived phytoconstituents and con
ventional chemotherapeutic drugs should be further explored. There are few human studies available and more 
randomized controlled trials are needed to measure the effectiveness of licorice-based cancer treatment. The story of 
licorice reflects a fascinating example of how an ancient herbal medicine can be introduced as a drug into clinical 
settings, after intensive efforts in elucidating its constituents and molecular mechanisms behind their various 
bioactivities.
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