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Şeker, C.; Memon, A.M.; Kurtuluş, B.;
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Abstract: The direct estimation of soil hydraulic conductivity (Ks) requires expensive laboratory
measurement to present adequately soil properties in an area of interest. Moreover, the estimation
process is labor and time-intensive due to the difficulties of collecting the soil samples from the
field. Hence, innovative methods, such as machine learning techniques, can be an alternative to
estimate Ks. This might facilitate agricultural water and nutrient management which has an impact
on food and water security. In this spirit, the study presents neural-network-based models (artificial
neural network (ANN), deep learning (DL)), tree-based (decision tree (DT), and random forest (RF))
to estimate Ks using eight combinations of soil data under calcareous alluvial soils in a semi-arid
region. The combinations consisted of soil data such as clay, silt, sand, porosity, effective porosity,
field capacity, permanent wilting point, bulk density, and organic carbon contents. The results
compared with the well-established model showed that all the models had satisfactory results for
the estimation of Ks, where ANN7 with soil inputs of sand, silt, clay, permanent wilting point, field
capacity, and bulk density values showed the best performance with mean absolute error (MAE) of
2.401 mm h−1, root means square error (RMSE) of 3.096 mm h−1, coefficient of determination (R2) of
0.940, and correlation coefficient (CC) of 0.970. Therefore, the ANN could be suggested among the
neural-network-based models. Otherwise, RF could also be used for the estimation of Ks among the
tree-based models.

Keywords: artificial neural network; deep learning; decision tree; random forest; soil data;
soil conductivity

1. Introduction

The saturated soil hydraulic conductivity (Ks) regulates hydrological activities in
soils and its accurate estimation has an important value in hydrological studies, espe-
cially for simulating infiltration, soil moisture, runoff, soil erosion, and dynamics of
groundwater [1,2]. Therefore, it is essential to know this specific parameter for the man-
agement of irrigation events. In addition, the hydrodynamic properties of soils provide
useful information regarding the entry and storage of precipitation waters into the soil
profile, especially for calcareous alluvial soils with poor structural characteristics in arid
and semi-arid environments.
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There are various techniques and methods for the determination of Ks [3–5]. Each of
these has benefits and limitations according to its usage pattern. Field measurements and
laboratory analyses can provide more accurate results; however, they cause difficulties in
the temporal and spatial evaluation due to their expensive and time-consuming applica-
tions. Therefore, various models have been developed for the estimation of Ks. Some of
them use soil–water characteristic curve (SWCC) data [6,7], while others use pedotransfer
functions (PTF) [8–13]. These valuable tools can predict the soil hydraulic properties under
diverse land and soil characteristics that rely on basic and easily measurable soil features,
such as soil textures (sand, silt, and clay), porosity, effective porosity, soil moisture charac-
teristics, field capacity, permanent wilting point, bulk density, and organic matters [6,8–17].
Among PTF, van Genuchten [6] and Saxton and Rawls [12] are frequent and well-known
equations using basic soil features for the estimation of Ks. These methods were evaluated
under different soil conditions and the findings have shown satisfactory results to estimate
Ks [18–21]. Unfortunately, PTFs are not able to estimate soil hydraulic properties with
specific soil features such as lime content, penetration resistance, and aggregate stability.
In this regard, it is difficult to develop an empirical method using all these soil features
due to the nonlinear and complex nature of Ks, thus necessitating finding new ways for
its estimation with specific soil features. Consequently, developing innovative tools such
as machine learning methods can be a solution to overcome these challenges, as these
methods are well known to model complex phenomena effectively.

Machine learning methods have been used in the past to estimate Ks. For example,
Araya and Ghezzehei [22] compared k-nearest neighbors (kNN), support vector regressions
(SVR), random forest (RF), and boosted regression trees (BRT) using different combinations
of soil inputs and found that the models predict Ks reliably. Naganna and Deka [23]
examined ANN, support vector machine (SVM), and adaptive neuro-fuzzy inference system
(ANFIS) and concluded that SVM had better performance. Sihag et al. [24] evaluated ANFIS,
ANFIS with firefly algorithms (ANFIS-FFA), and ANFIS with particle swarm optimization
(ANFIS-PSO) methods, and the results showed that the latter two methods had higher
accuracy than ANFIS. Kashani et al. [25] examined the estimation of Ks using a support
vector machine (SVM), M5 model tree (M5), extreme learning machine (ELM), multivariate
adaptive regression splines (MARS), and multiple model integration schemes driven by an
artificial neural network (MM-ANN) with basic soil inputs, where the MM-ANN model
produced satisfactory results. Kalumba et al. [26] evaluated multiple linear regression
(MLR), ANN, random forest (RF), and SVM, and reported that all the methods had a good
performance. However, according to the authors’ knowledge, all these methods have been
applied to different regions but not for the Ks estimation of calcareous alluvial soils in
semi-arid environments. These types of soils are common in some parts of Iran, Türkiye,
Spain, and Egypt [27–32].

The Çumra–Konya plain, located in Konya Close basin, is in the Central Anatolian
region of Türkiye. Due to the topographic condition, it is the only interior basin in Türkiye
which is not able to drain excess water to the sea by a river system. The area is one of the
driest due to low precipitation and high evapotranspiration, and therefore, water resources
are limited in the basin. The region is one of the most important agricultural areas in
Türkiye. Wheat, sugar beet, corn, and sunflower are intensively cultivated crops, and
irrigation is required for them due to unfavorable rainfall distribution during the growing
season. Therefore, the determination of appropriate Ks values can improve the sustainable
management of land and water resources in the region with high lime content, under
intensive cultivation and degradation of soil structural properties [33,34].

Also, this study evaluates the performance of two neural-network-based (ANN and
DL), and two tree-based machine learning models (DT and RF) against Van Genuchten
et al.’s [17] method within calcareous alluvial soils using different soil features in a semi-arid
environment for the estimation of Ks. The reason for comparing the said algorithms against
a mature mathematical model is to eventually provide an alternative and simpler method
for Ks estimation which can be used by engineers and scientists from various technical
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backgrounds. The main motivation comes from the fact that the current soil degradation
scenario and the indirect impact it has on food and water security requires inputs from
the workforce belonging to a spectrum of technical backgrounds. Therefore, this study is
essential to find the best alternate modeling methods for each soil input combination.

The article is organized as follows. Section 2 presents the background of the study
area and its parameters, machine learning methods used in this study, input selection and
model development process, and performance evaluation criteria. Sections 3 and 4 present
the results and discussion, respectively, and Section 5 concludes the paper.

2. Materials and Methods
2.1. Study Area and Data

The soil data were collected in Çumra–Konya plain (37◦50′54′′ N 32◦43′03′′ E–37◦12′17′′

N 33◦07′16′′ E, 1011 m altitude) within an area of about 280,000 ha located 30 km away from
the southeast of Konya city. The map is presented for the coordinates of 291 soil samples in
the study area (Figure 1). Based on the Köppen–Geiger climate system [35], the climate of
the study area is semi-arid with usually cold and snowy winters and hot and dry summers.
According to the long-term climate record, the annual average temperature, relative hu-
midity, and precipitation are 11.4 ◦C, 62.14%, and 296.8 mm, respectively [36]. The soils of
the study area are formed by volcanic rocks, marine, and lacustrine deposits [37]. However,
they have some restrictive properties such as deep clay texture formed on alluvial parental
materials, low organic matter content, high pH value, low aggregate stability, and shallow
soil depth [33,38]. Therefore, the region has insufficient drainage and faces soil erosion [39].
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Figure 1. Map of soil sampling locations in the study area.

All the soil samples were collected from 0–20 cm soil profiles and taken from at
least five points in each plot. These five samples were combined to form a representative
sample. These samples were air-dried under laboratory conditions, passed through a
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2 mm sieve, and thoroughly mixed. Finally, these processed soil samples were stored for
laboratory analyses.

Physical and chemical soil properties were measured using relevant standard labo-
ratory analytical methods (Table 1). Based on the results, porosity and effective porosity
values were calculated using Equations (1) and (2).

P =

(
1− Pb

Ps

)
∗ 10 (1)

EP = P− FC (2)

where P is porosity (cm3 cm−3), Ps is particle density (g cm−3), Pb is bulk density (g cm−3),
EP is effective porosity (cm3 cm−3), and FC is field capacity by volume (cm3 cm−3).

Table 1. Measurement methods of the soil input data.

Parameters Abbreviations Units Methods References

Soil texture (Clay, Silt, Sand) - % Bouyoucos hydrometer method [40]
Bulk density Pb g cm−3 Core method (50 * 51 mm core samples) [41]

Particle density Ps g cm−3 Pycnometer method [42]
Field capacity FC cm3 cm−3 Pressure plate apparatus at 0.33 bars

[43]
Permanent wilting point PWP cm3 cm−3 Pressure plate apparatus at 15 bars
Available water capacity AWC cm3 cm−3

Aggregate stability AS % Cornell Sprinkle Infiltrometer [44]
Penetration resistance PR PSI Digital penetrometer (Eijkelkamp)

Lime content L % Scheibler Calcimeter 1:3 acid/water [45]
Organic carbon OC % Dry combustion C and N analyzer [46]

Experimental Ks data was absent in the study area; therefore, the estimation of Ks
values was performed by the widely used methods of Saxton and Rawls [12] and Van
Genuchten et al. [17]. In the end, the correlation matrix was developed to see the relation
between estimated Ks values by the Saxton and Rawls [12], and the Van Genuchten et al. [17]
methods, and soil input data (Table 2). Accordingly, the sum of absolute values, except
insignificant values of correlation coefficients, was 2.517 for Saxton and Rawls’ [12] method,
while that for Van Genuchten et al.’s [17] method was 3.766. Therefore, the result of the
latter was selected to evaluate the performance metrics of the machine learning methods.

Table 2. Correlation matrix between Ks values and soil data.

Sand Silt Clay Pb FC PWP P EP AS PR Lime OC Ks1

Silt −0.288 ***
Clay −0.923 *** −0.104 ns
Pb 0.471 *** −0.161 *** −0.424 ***
FC −0.809 *** 0.133 ns 0.787 *** −0.504 ***

PWP −0.772 *** 0.015 ns 0.796 *** −0.496 *** 0.893 ***
P −0.487 *** 0.143 * 0.448 *** −0.974 *** 0.510 *** 0.496 ***

MP 0.273 *** −0.001 ns −0.283 *** −0.565 *** −0.414 *** −0.321 *** 0.563 ***
AS −0.385 *** 0.122 * 0.350 *** −0.412 *** 0.211 *** 0.219 *** 0.395 *** 0.212 ***
PR 0.335 *** −0.260 *** −0.244 *** 0.464 *** −0.392 *** −0.361 *** −0.459 *** −0.106 ns −0.186 ***

Lime −0.542 *** −0.138 * 0.619 *** −0.080 ns 0.263 *** 0.320 *** 0.122 * −0.138 * 0.206 *** 0.069 ns
OC −0.398 *** −0.059 ns 0.436 *** −0.185 *** 0.253 *** 0.369 *** 0.196 *** −0.034 ns 0.273 *** 0.001 ns 0.341 ***
Ks1 0.391 *** −0.187 *** −0.331 *** −0.131 * −0.313 *** −0.237 *** 0.113 ns 0.430 *** −0.080 ns −0.036 ns −0.302 *** −0.195 ***
Ks2 0.548 *** −0.392 *** −0.411 *** −0.255 *** −0.537 *** −0.386 *** 0.226 *** 0.788 *** 0.009 ns 0.059 ns −0.223 *** −0.061 ns 0.559 ***

***: p < 0.001; *: p < 0.05; ns: not significant; Pb: Bulk density; FC: Field capacity; PWP: Permanent wilting point;
P: Porosity; EP: Effective porosity; AS: Aggregate stability; PR: Penetration resistance; OC: Organic carbon; Ks1:
Hydraulic conductivity [12]; Ks2: Hydraulic conductivity [17].

2.2. Machine Learning Methods

In this study, neural-network-based machine learning methods, artificial neural net-
works (ANN) and deep learning (DL), and tree-based machine learning methods such as
decision tree (DT) and random forest (RF) were employed to estimate the Ks parameter.
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2.2.1. Artificial Neural Networks

The artificial neural networks (ANN) algorithm is a mathematical model which is
inspired by human nervous systems. This powerful tool can handle and solve complex
and difficult problems due to its structure. Artificial neurons are the main units of a neural
network that are connected by weights inside the layers. The general working principle of
an ANN model is based on training the model first, then validating it for performance eval-
uation; this process is repeated until an acceptable level of error is encountered. Specifically,
each artificial neuron receives a weighted input. These inputs are the outputs of neurons in
the previous layer or input variables. After this procedure, the model sums up the inputs
and adds a bias term, and then passes the results using an activation function [47]. A typical
ANN structure consists of an input layer, one or more hidden layers, and an output layer.
The number of hidden layers and neurons increases with the complexity of data.

Several NN types can be used depending on the requirements of the application [48].
The most used are perceptron, feed-forward (FF), convolution, recurrent, Kohonen maps,
and support vector machines (SVM). Perceptron is the most basic and smallest NN that
performs certain computations to detect features in the input data. Having a simple
structure, they are only capable of implementing linearly separable problems. FF NNs on
the other hand, find applications in more complex applications such as image processing,
computer vision, and speech processing. They can be further classified into single and
multi-layered NNs, where the number of layers depends on the complexity. Apart from
this flexibility, they can deal with data that contain significant noise and are fast and easy to
implement. In contrast, convolution NNs are complex to design and slow in performance
depending on the number of hidden layers. For sophisticated applications such as text
auto-suggest, grammar checking, text-to-speech, and translation, recurrent NNs are used
because they are capable of modeling sequential data. However, training these NNs can
be a challenging task. Kohonen maps are used in specialized applications to recognize
patterns in the data, for instance in medical analysis to cluster data into different categories.
SVMs, which are considered very robust for prediction applications, analyze the data for
classification and regression analysis.

The ANN is a well-known and widely adopted method for modeling hydrological
studies [49,50]. In particular, the method is used in many studies for the estimation of
Ks [6,8–14,16,17]. In this study, the ANN is implemented as a reference machine learning
method to compare the performance metrics of other methods.

2.2.2. Deep Learning

Due to satisfactory results and great potential, deep learning (DL) was first introduced
by Dechter [51] and has been increasingly used for hydrological and agricultural studies
over the last years [52–54]. DL is an extended version of ANN [55]. The main difference
between DL and ANN is that it uses more hidden layers [56]. This feature gives the
possibility of higher learning skills and modeling performance, especially for complex
datasets. A typical DL structure consists of input, hidden, and output layers.

2.2.3. Decision Tree

A decision tree (DT) is one of the widely used methods among machine learning
models for solving classification and regression problems. The DT model uses a tree figure
to show its correlation with the output data using the observed data in the dataset to be
analyzed [57]. The leaves symbolize the output of the model, while the branches symbolize
the connection of the input features of the model. One of the most important features of the
DT method is to convert complex decision-making problems to simpler and understandable
problems by dividing them into a collection of simple decisions [58].

2.2.4. Random Forest

A random forest (RF) is an ensemble model which was developed by Breiman [59]
and is used for solving classification and regression problems. It is an improved version
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of the DT model which consists of multiple decision trees. This improvement is a result
of the fact that more trees there are, the more robust the forest [60]. The limitations of DT
compared with RF are that the former has overfitting problems since the RF model uses
each DT randomly, and the output is an average of the individual DT estimation.

2.3. Selected Inputs and Model Development

The neural-network-based (ANN and DL) and tree-based machine learning methods
(DT and RF) were used to simulate the Ks value. To establish the models, soil texture (clay,
silt, and sand), effective porosity, bulk density, permanent wilting point, field capacity,
lime, organic carbon, and porosity were used as input variables. These input variables are
associated with the Ks values of soils, and they have been applied in previous studies for
the estimation of Ks [6,8–14,16,17].

It is well-known that the Ks value interacts with the physical and mechanical properties
of the soil. Therefore, the correlation of soil data belonging to this interaction with the Ks
value is shown in the correlation matrix and the combinations were developed accordingly
(Table 2). Combination 7 consisted of inputs used in the Van Genuchten et al. [17] method,
while combination 8 of input was used in the Saxton and Rawls [12] method. In this way,
the performance metrics of machine learning methods by using input combinations of these
methods could be emulated. The data reduction technique was applied for the development
of the combinations, which aimed to take advantage of the available soil feature to estimate
the Ks value at a high rate. Effective porosity was added in the first 6 combinations
due to the high correlation. Sand and clay contents were taken into consideration in
every combination and the effects of other soil mechanical properties were also evaluated
respectively. According to this phenomenon, the most relevant input combinations were
created to estimate the value of Ks. The combinations of the input variables can be seen in
Table 3.

Table 3. Input combinations of each machine learning model.

Combination
Numbers Machine Learning Models Input Combinations

1 ANN1 DL1 DT1 RF1 Sand, EP
2 ANN2 DL2 DT2 RF2 Clay, EP
3 ANN3 DL3 DT3 RF3 Sand, Clay, EP
4 ANN4 DL4 DT4 RF4 Sand, Clay, EP, FC
5 ANN5 DL5 DT5 RF5 Sand, Clay, EP, Pb
6 ANN6 DL6 DT6 RF6 Sand, Clay, EP, FC, Pb, PWP, P, Lime
7 ANN7 DL7 DT7 RF7 Sand, Silt, Clay, FC, Pb, PWP
8 ANN8 DL8 DT8 RF8 Sand, Clay, Pb, OC

ANN: artificial neural network, DL: deep learning, DT: decision tree, RF: random forest.

All the datasets were normalized between 0 and 1 for minimizing the incoherency and
redundancy of the data using the following equation:

Ynorm =
Yi −Ymin

Ymax −Ymin
(3)

where Ynorm is the normalized data of Yi, Yi is the observed data, Ymax and Ymin are the
maximum and minimum data, respectively. The observed 291 datasets were employed to
estimate the accuracy of the models using k-fold cross-validation, which is more reliable
than the train-test split method [56]. In this study, the k value of 5 was used, which means
the dataset was separated 5-fold, and models were trained using 4 (k − 1) fold. The
trained model was tested on the remaining 1-fold. This procedure was run 5 (k) times, thus
repeating the experiments 5 times and the results were averaged (Figure 2). Figure 3 shows
a flowchart of the implemented model.



Water 2022, 14, 3875 7 of 20

Water 2022, 14, x FOR PEER REVIEW 7 of 21 
 

 

All the datasets were normalized between 0 and 1 for minimizing the incoherency 
and redundancy of the data using the following equation: 𝑌 = 𝑌 − 𝑌𝑌 − 𝑌  (3)

where Y  is the normalized data of 𝑌 , 𝑌  is the observed data, Y  and Y  are the 
maximum and minimum data, respectively. The observed 291 datasets were employed 
to estimate the accuracy of the models using k-fold cross-validation, which is more reli-
able than the train-test split method [56]. In this study, the k value of 5 was used, which 
means the dataset was separated 5-fold, and models were trained using 4 (k-1) fold. The 
trained model was tested on the remaining 1-fold. This procedure was run 5 (k) times, 
thus repeating the experiments 5 times and the results were averaged (Figure 2). Figure 
3 shows a flowchart of the implemented model. 

 

Figure 2. The schematic image of k-fold cross validation (k = 5). Figure 2. The schematic image of k-fold cross validation (k = 5).

Water 2022, 14, x FOR PEER REVIEW 8 of 21 
 

 

 
Figure 3. The flowchart of machine learning models for estimation of Ks. 

2.4. Performance Evaluation 
The performance metrics of the ANN, DL, DT, and RF models were used including 

mean absolute error (MAE), root means square error (RMSE), coefficient of determina-
tion (R2), and correlation coefficient (CC). The calculations of these metrics are shown be-
low:  MAE = ∑ Z − Yn  (4)

RMSE = ∑ Z − Yn  (5)

R = 1 − ∑ 𝑌 − 𝑍∑ 𝑌 −  𝑌  (6)

CC = ∑ 𝑌 − 𝑌  𝑍 − �̅�∑ 𝑌 − 𝑌 ∑ 𝑍 − �̅�  (7)

where 𝒁𝒊 is the predicted value, and Yi is the observed value. 𝐘 is the mean value of ob-
served values and 𝐙 is the mean value of the predicted values. For the evaluation of the 
model performance, the high model performance can be confirmed when the RMSE and 
MAE values are low, and 𝐑𝟐 and CC values are high. 

3. Results 
3.1. Adjustment of Input Variables 

The correlation matrix of the input and output soil variables is presented in Table 2. 
This matrix helps to develop combinations for the models, as there is no significant rela-
tion between aggregate stability and penetration resistance variables with Ks value. 
Therefore, these two soil input variables were not used in the combinations. However, 
soil organic carbon, despite having insignificant relation with Ks value, is still used in 
combination 8 because this combination is used as input variables for Saxton and Rawls 
[12] equation. The other soil input variables such as sand, silt, clay, field capacity, per-
manent wilting point, porosity, effective porosity, and lime contents were used for the 
development of combinations. The findings demonstrated that effective porosity and Ks 
values (0.788) have the highest correlation among the soil input variables. The second 

Figure 3. The flowchart of machine learning models for estimation of Ks.

2.4. Performance Evaluation

The performance metrics of the ANN, DL, DT, and RF models were used including
mean absolute error (MAE), root means square error (RMSE), coefficient of determination
(R2), and correlation coefficient (CC). The calculations of these metrics are shown below:

MAE =

∣∣∣∣∑n
i=1(Zi −Yi)

n

∣∣∣∣ (4)
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RMSE =

√
∑n

i=1(Zi −Yi)
2

n
(5)

R2 = 1− ∑n
i=1[Yi − Zi]

2

∑n
i=1
[
Yi − Y

]2 (6)

CC =
∑n

i=1
(
Yi −Y

) (
Zi − Z

)√
∑n

i=1
(
Yi −Y

)2
∑n

i=1
(
Zi − Z

)2
(7)

where Zi is the predicted value, and Yi is the observed value. Y is the mean value of
observed values and Z is the mean value of the predicted values. For the evaluation of the
model performance, the high model performance can be confirmed when the RMSE and
MAE values are low, and R2 and CC values are high.

3. Results
3.1. Adjustment of Input Variables

The correlation matrix of the input and output soil variables is presented in Table 2.
This matrix helps to develop combinations for the models, as there is no significant relation
between aggregate stability and penetration resistance variables with Ks value. Therefore,
these two soil input variables were not used in the combinations. However, soil organic
carbon, despite having insignificant relation with Ks value, is still used in combination 8
because this combination is used as input variables for Saxton and Rawls [12] equation.
The other soil input variables such as sand, silt, clay, field capacity, permanent wilting
point, porosity, effective porosity, and lime contents were used for the development of
combinations. The findings demonstrated that effective porosity and Ks values (0.788) have
the highest correlation among the soil input variables. The second highest correlation of
0.548 was observed between Ks and sand values. The third highest correlation of 0.226 was
obtained between Ks and porosity. Among the significant values, other soil input variables
such as silt, clay, bulk density, field capacity, permanent wilting point, and lime had a
negative correlation with Ks. The statistical values of the soil data can be seen in Table 4.
The negative values of skewness were −0.06, −0.06, −0.57, and −0.13 mm h−1 for silt, field
capacity, porosity, and effective porosity, and the positive values of kurtosis were 0.12, 0.08,
0.12 and 3.37 mm h−1 for bulk density, porosity, lime, and organic carbon, respectively. The
maximum, minimum, mean, and standard deviation values of Ks were 58.91, 0.88, 16.08,
and 11.33 mm h−1, respectively. The highest value of variation coefficient was observed
for Ks values with 0.66 mm h−1. The highest value of skewness was obtained by Ks value
with 0.86 mm h−1 and the lowest value of kurtosis was obtained by an effective porosity
value of −0.88.

Table 4. Statistical values of the Ks and soil data.

Sand
(%)

Silt
(%)

Clay
(%)

Pb
(Mg
m−3)

FC
(cm3

cm−3)

PWP
(cm3

cm−3)

P
(cm3

cm−3)

EP
(cm3

cm−3)

AS
(%)

PR
(PSI)

Lime
(%)

OC
(%)

Ks1
(mm
h−1)

Ks2
(mm
h−1)

Maximum 66.40 40.00 79.57 1.75 0.42 0.29 0.59 0.31 61.01 434 41.50 2.30 24.45 58.91
Minimum 5.43 11.60 21.10 1.09 0.14 0.09 0.35 0.00 3.15 60 6.47 0.29 0.00 0.88

Mean 28.24 24.41 47.36 1.31 0.28 0.17 0.51 0.15 21.74 198 15.96 0.85 5.083 17.21
Standard
deviation 13.91 5.38 13.39 0.12 0.05 0.05 0.04 0.07 11.04 70.16 6.79 0.30 5.095 11.35

Variation
coefficient 49.25 22.05 28.27 9.32 18.82 26.26 8.79 49.34 50.78 35.49 42.51 35.35 100.24 65.93

Skewness 0.59 −0.06 0.10 0.57 −0.06 0.32 −0.57 −0.13 0.58 0.71 0.66 1.38 1.50 0.86
Kurtosis −0.52 −0.23 −0.66 0.12 −0.57 −0.63 0.08 −0.88 −0.05 0.12 0.12 3.37 1.94 0.68

Pb: Bulk density; FC: Field capacity; PWP: Permanent wilting point; P: Porosity; EP: Effective porosity; AS:
Aggregate stability; PR: penetration resistance; OC: Organic carbon; Ks: Hydraulic conductivity.
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3.2. Performance of Machine Learning Methods

The performance metrics of four supervised machine learning methods using eight
combinations of measured soil input variables are shown in Tables 5 and 6, and Figure 4 for
estimation of Ks. Scatter and residual plots of observed and simulated Ks values are shown
in Figures 5–8 for the ANN, DL, DT, and RF methods, respectively, for the eight soil input
combinations. In general, the highest MAE and RMSE values were observed for the ANN6
method with soil inputs of sand, clay, effective porosity, permanent wilting point, field
capacity, bulk density, porosity, and lime contents, and the highest R2 and CC values were
observed for the ANN7 method with soil inputs of sand, silt, clay, permanent wilting point,
field capacity, and bulk density. It can be concluded that neural-network-based models
(ANN and DL) had the best performance metrics for combination 7 with soil inputs of
sand, silt, clay, permanent wilting point, field capacity, and bulk density values, while they
had the lowest performance metrics for combination 2 with soil inputs of clay and effective
porosity. For tree-based models (DT and RF), the lowest performance was obtained for
combination 8 with soil inputs of sand, clay, bulk density, and organic carbon contents,
while the best performance was obtained for combination 5 with soil inputs of sand, clay,
effective porosity, and bulk density.

Table 5. Performance metrics of neural-network-based models (ANN and DL) for estimation of Ks
with eight different soil data.

Method
MAE RMSE

R2 CC(mm h−1) (mm h−1)

ANN1 3.617 5.230 0.838 0.915
ANN2 4.272 5.603 0.806 0.897
ANN3 2.684 3.817 0.910 0.954
ANN4 2.512 3.411 0.920 0.959
ANN5 2.411 3.301 0.924 0.961
ANN6 2.015 3.109 0.929 0.964
ANN7 2.407 3.096 0.940 0.970
ANN8 4.081 4.876 0.825 0.908

DL1 4.283 5.285 0.816 0.903
DL2 4.898 6.965 0.707 0.840
DL3 3.977 4.936 0.861 0.928
DL4 3.427 4.428 0.880 0.938
DL5 3.833 3.853 0.894 0.945
DL6 3.244 4.099 0.872 0.934
DL7 2.167 3.423 0.919 0.959
DL8 4.407 5.655 0.776 0.881

Table 6. Performance metrics of tree-based models (DT and RF) for estimation of Ks with eight
different soil data.

Method
MAE RMSE

R2 CC(mm h−1) (mm h−1)

DT1 2.508 5.586 0.769 0.876
DT2 2.860 5.905 0.744 0.862
DT3 2.193 5.459 0.774 0.879
DT4 2.223 5.333 0.785 0.886
DT5 2.121 5.130 0.804 0.896
DT6 3.074 6.163 0.729 0.852
DT7 2.410 5.358 0.791 0.889
DT8 3.179 6.886 0.661 0.811
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Table 6. Cont.

Method
MAE RMSE

R2 CC(mm h−1) (mm h−1)

RF1 3.072 4.290 0.860 0.927
RF2 3.229 4.912 0.820 0.906
RF3 2.760 4.099 0.874 0.935
RF4 2.789 4.178 0.869 0.932
RF5 2.685 3.936 0.887 0.942
RF6 3.626 4.998 0.822 0.906
RF7 3.104 4.663 0.844 0.919
RF8 4.106 5.736 0.755 0.869
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3.3. Performances of Neural-Network-Based Machine Learning Methods

The best performance was observed when the ANN 2(2-3-4-4-8-6-4)-4-1, which means
that the algorithm consists of two neurons of combination 1, two neurons of combination 2,
three neurons of combination 3, four neurons of combination 4, four neurons of combination
5, eight neurons of combination 6, six neurons of combination 7 and four neurons of
combination 8 in input layers, four neurons in the hidden layer and one output layer. The
rectified linear unit (ReLU) was employed as the activation function in this study since it
is the most used activation function. The ANN7 model fed with soil inputs of sand, silt,
clay, permanent wilting point, field capacity, and bulk density demonstrated the highest
performance metrics among the other models considering MAE (2.407 mm h−1), RMSE
(3.096 mm h−1), R2 (0.940), and CC (0.970). However, the ANN2 fed with soil inputs
of clay and effective porosity had the poorest performance with MAE of 4.272 mm h−1,
RMSE of 5.603 mm h−1, R2 of 0.806, and CC of 0.897. The scatter plots of estimated Ks
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values by the ANN model with eight soil input combinations are shown in Figure 5A. The
data of the scatter plots are generally close to the reference line (1:1) for all combinations.
However, the combinations of 1, 2, and 8 for the ANN model showed more scattered points
than combinations of 3, 4, 5, 6, and 7. The residual plots of estimated Ks values by the
ANN model with eight soil input combinations are shown in Figure 5B. The residual plot
demonstrated that the most errors occurred in combination 8, while the least error occurred
in combination 6 for the ANN model.

The best accuracy of the Ks value was observed when two hidden layers (50-50) and
ReLU were used for the DL model in this study. As can be seen in Table 5, it is seen that
the DL model produces the lowest performance for combination 2 with MAE, RMSE, R2,
and CC equal to 4.898, 6.965, 0.707, and 0.840. The combination of DL7 with soil inputs
of sand, silt, clay, field capacity, permanent wilting point, and bulk density showed the
best performance with MAE of 2.167 mm h−1, RMSE of 3.423 mm h−1, R2 of 0.919, and CC
of 0.959. The scatter plots of estimated Ks values by the DL model with eight soil input
combinations are shown in Figure 6A. From the figure, it can be seen that combinations 2
and 8 had more scattered points than other combinations. The least scattered points were
observed for the combination of 7. The residual plots of estimated Ks values by the DL
model with eight soil input combinations are shown in Figure 6B. The least residual errors
were observed for the combination of 7, while the most residual errors were observed for
the combination 8 for the DL model.

3.4. Performances of Tree-Based Machine Learning Methods

The lowest performance was obtained for the DT8 fed with soil inputs of sand,
clay, bulk density, and organic carbon contents considering MAE (3.179 mm h−1), RMSE
(5.736 mm h−1), R2 (0.887), CC (0.942). The performance metrics improved significantly
when adding organic carbon instead of bulk density values from the soil inputs. In that case,
the highest performance was observed for the fifth combination with MAE of 2.121 mm h−1,
RMSE of 5.130 mm h−1, R2 of 0.804, and CC of 0.896. Similar performances were obtained
for combination 1 and 3 and also for combinations 4 and 7. The scatter plots of estimated
Ks values by the DT model with eight soil input combinations are shown in Figure 7A.
It can be noticed that the combinations of the DT model were more scattered than the
combinations of the ANN, DL, and RF models. The residual plots of estimated Ks values
by the DT model with eight soil input combinations are shown in Figure 7B. The highest
residual Ks values were observed in combination 6 with the value of 18.60 mm h−1. The
least residual errors occurred in combination 5 for the DT model.

The RF model observed the best performance when the number of trees was fixed to
10. The model gave the poorest performance for combination 8 with MAE of 4.106 mm h−1,
RMSE of 5.736 mm h−1, R2 of 0.755, and CC of 0.869. The performance of the RF model
improved when adding organic carbon instead of bulk density from the soil inputs. The
performance metrics demonstrated similar performance to the RF model for the third,
fourth, and fifth input combinations. The best performance was observed for the RF5
model with soil inputs of sand, clay, effective porosity, and bulk density with MAE of
2.685 mm h−1, RMSE of 3.936 mm h−1, R2 of 0.887, and CC of 0.942. The scatter plots
of estimated Ks values by the RF model with eight soil input combinations are shown
in Figure 8A. The most scattered points were obtained from combination 8, while the
least scattered points were obtained from combination 7 for the RF model. The residual
plots of estimated Ks values by the RF model with eight soil input combinations are
shown in Figure 8B. According to the figure, similar residual errors were observed for the
combination of 3, 4, and 5. However, among them, the least residual errors occurred in
combination 5 for the RF model.

4. Discussion

The present study evaluated neural-network-based (ANN and DL) and tree-based
(DT and RF) models with different combinations of soil input variables based on the van
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Genuchten formula in the semi-arid environment. Zhang and Schaap [2] suggested in their
studies that new statistical methods should be employed using relevant and good-quality
data for the estimation of Ks. In this study, the results indicated that all the machine
learning methods used have a satisfactory correlation between Ks and soil input variables.
Due to solving complex and nonlinear features, machine learning methods can simulate
the complicated process of soil nature because these methods do not need to know the
characteristic of the implemented variables [61].

Another aim of this study was to estimate the Ks values with the least input combina-
tions ensuring high accuracy. For this purpose, eight combinations were developed using
ANN, DL, DT, and RF models to evaluate the estimation of Ks value. Accordingly, the
first six combinations included effective porosity to see the performances of the models,
since it has the highest impact on soil water transmission and correlates to the selected
soil properties, except for penetration resistance and organic carbon. The first three com-
binations are developed based on clay and sand from the soil texture, as it is known that
sand and clay contents are one of the most important factors that directly affect the Ks in
soil [62–64]. When the soil contains a high amount of sand, the Ks are increased. On the
contrary, when the soil contains a high amount of clay, the Ks are decreased. This finding
is in agreement with Table 2. It can be seen that the performance metrics of the first three
combinations have similar results since the use of clay and sand contents together offer
high accuracy to the models. It has been stated in many studies that the field capacity is
used in the estimation of Ks [12,65,66]. However, the field capacity does not have a direct
impact on the estimation of Ks and therefore does not impact the result significantly. Since
bulk density is an indicator of soil compaction, it impacted positively on the estimation of
Ks. The compression of the pores starts from the effective porosity and progresses towards
the micropores [14]. With the decrease of effective porosity, infiltration is decreased, and
runoff is increased. Finally, bulk density increases. In this respect, in five combinations, the
soil textures and bulk density have a high impact on machine learning methods for the
estimation of Ks. Lime content and porosity are calculated by bulk density in this study.
Therefore, the combination which was developed from these two soil parameters does
not impact the estimation of Ks values. The previous study conducted in this study area
showed that soil lime content plays a key role in water retention up to certain levels, but
this efficiency decreases due to rising lime content [67]. The decrease in the disclosure rate
in combination 8 is explained by the organic carbon value not being correlated with Ks
values. When many studies are examined, it is seen that the organic carbon value affects
the water movement of the soils. However, in this study, it is seen in the correlation matrix
values that it has no effect, since the organic carbon in the soils of the study area is very low
with an average of 0.85 and the variability in the carbon value is limited.

The performance metrics demonstrated that the ANN was superior to the DL method
in all soil input combinations for the neural-network-based models. This finding can be
explained by the fact that the DL method requires more experimental data for boosting
its modeling performance. A similar explanation was pointed out also by Kamilaris
and Prenafeta-Boldú [53] who indicated that the usage of the DL method has recently
increased in soil science due to its ability to solve complicated datasets. The performance
metrics showed that the RF model was a better result than the DT model in all soil input
combinations for the tree-based models. RF is an improved version of the DT model since it
boosts the robustness of the classification feature. However, the RF is known as a black-box
model and therefore it is less explicable than the DT model, but it is seen that the RF models
demonstrate better performance and stability than the estimation in previous studies.

The RF model with combination 5 had the highest performance among the tree-based
models, while the ANN model with combination 7 had the highest performance among
the neural-network-based models. It can be seen from Table 3 that combination 5 had four
input parameters but combination 7 had six input parameters. This can be explained by
the fact that the ANN model had a much more complicated architecture than the RF model,
which allowed for boosting its modeling performance with more input variables.
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In general, the ANN model demonstrated better performance metrics compared to
other models. This observation is in agreement with the results of [68] who reported that
the ANN model shows satisfactory results for the estimation of Ks. Similarly, [69] indicated
that the ANN demonstrates good performance for the estimation of Ks.

5. Conclusions

Soil hydraulic conductivity is a fundamental parameter for the estimation of water
balance at regional and global levels and the determination of groundwater recharge in the
vadose zone. In recent years, mathematical methods have been applied frequently by using
soil features to obtain Ks. This study demonstrated that the machine learning methods can
be an alternative way to overcome these challenges.

The comparison analysis of neural-network-based models (ANN and DL) and tree-
based models (DT and RF) models was evaluated based on the van Genuchten equation
under eight combinations of soil input data. The reason for using two group of machine
learning methods is to find out the best category. In general, all the machine learning
methods had satisfactory performance for estimation of Ks. Among the categories, the
neural-network-based models (ANN and DL) had better performance than tree-based
models (DT and RF). The overall results showed that the ANN method with sand, silt, clay,
field capacity, permanent wilting point, and bulk density (ANN7) had the best performance
among the other methods. The RF method with sand, clay, effective porosity, and bulk
density (RF5) had the best performance among the tree-based models. These findings
demonstrate that the ANN method is more applicable to the study area. Likewise, the
ANN method can figure out a much more complex dataset to estimate Ks for calcareous
alluvial soils in a semi-arid region. In the case of the input data, it was observed that soil
texture, bulk density, and effective porosity variables have a great impact on estimating
the Ks value since soil properties, such as lime penetration resistance, aggregate stability,
and porosity, have a low impact on the estimation of Ks. These findings are important to
understand the impact of soil parameters in a study area for estimating the Ks value.

Lastly, further studies should collect more data for enhancing modeling performance.
Likewise, the machine learning methods should be tested under different environmental
conditions, which means seeing the performance metrics of different specific soil input
combinations for the study area. This is particularly important to see the adaptation of new
statistical methods such as machine learning.
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