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Simple Summary: Medical image classification is an important task in computer-aided diagnosis,
medical image acquisition, and mining. Although deep learning has been shown to outperform
traditional methods based on handcrafted features, it remains difficult due to significant intra-
class variation and inter-class similarity caused by the diversity of imaging modalities and clinical
pathologies. This study presents an innovative method that is an intersection between 3D image
analysis and series classification problems. Therefore, the self-similarity features in medical images
are captured by converting the regions of interest to series with a radial scan and these series are
classified with U-shape convolutional neural networks. The findings of this study are expected to be
used by researchers from various disciplines working on radial scanned images, as well as researchers
working on artificial intelligence in health.

Abstract: Although many studies have shown that deep learning approaches yield better results
than traditional methods based on manual features, CADs methods still have several limitations.
These are due to the diversity in imaging modalities and clinical pathologies. This diversity creates
difficulties because of variation and similarities between classes. In this context, the new approach
from our study is a hybrid method that performs classifications using both medical image analysis
and radial scanning series features. Hence, the areas of interest obtained from images are subjected to
a radial scan, with their centers as poles, in order to obtain series. A U-shape convolutional neural
network model is then used for the 4D data classification problem. We therefore present a novel
approach to the classification of 4D data obtained from lung nodule images. With radial scanning, the
eigenvalue of nodule images is captured, and a powerful classification is performed. According to
our results, an accuracy of 92.84% was obtained and much more efficient classification scores resulted
as compared to recent classifiers.

Keywords: 4D classification; deep learning; lung nodule image; radial scanning

1. Introduction

Cancer is one of today’s most serious health issues. Despite significant and promising
advances in medicine, the desired level of prevention and elimination of many cancers
has yet to be achieved [1–3]. Cancer is a common disease that is difficult, time-consuming,
and challenging to treat. It is diverse with numerous subtypes. Some types of cancer,
which are common in most people, are lethal. Cancer treatment is a difficult process, and
early detection is critical. Early cancer diagnosis can be helped by a clinical follow-up
of the patient in later stages. In this context, screening is the search for the presence of
cancer cells in humans who have no symptoms. Screening stages are the most important
steps in the fight against cancer because they are required for early diagnosis. Information
obtained by imaging methods is used to determine the cancer type and its stage, which are
extremely useful for disease treatment planning. As a result, the accuracy of information

Cancers 2023, 15, 843. https://doi.org/10.3390/cancers15030843 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers15030843
https://doi.org/10.3390/cancers15030843
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-1465-7153
https://orcid.org/0000-0001-6254-2970
https://orcid.org/0000-0002-7061-2534
https://doi.org/10.3390/cancers15030843
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15030843?type=check_update&version=2


Cancers 2023, 15, 843 2 of 14

obtained by scanning methods can change the outcome of the disease. Patients can live
a longer and more fulfilling life due to correct screening methods and treatment plans
that are determined in conjunction with accurate analyses. The application of advanced
technology in cancer imaging, which is required for a patient’s treatment plan, as well as
correct evaluation, are highly effective for determining treatment plans. Patients who have
the opportunity to benefit from proper imaging techniques gain an advantage during the
difficult treatment process by correctly analyzing imaging data.

Due to the high cost of equipment and personnel, as well as the difficulty of the task,
it is not possible to apply known screening programs to every person. Lung nodules come
in a wide range of shapes and sizes, hence identifying and characterizing abnormalities
in these nodules is a difficult and delicate task. In this regard, computer-aided diagnosis
(CAD) systems are critical to make clinicians’ jobs easier.

Image processing and machine learning-based research on digital pathology image
classification have yielded promising results. These findings suggest that digital pathology
systems based on machine learning could be widely used in pathology clinics. Artificial
intelligence and machine learning-based solutions will be used at a much higher rate in the
coming years, particularly in pathology.

The mortality rate from lung cancer is the greatest of any kind of cancer, although
this is a disease whose prognosis may be improved with early diagnosis. In order to
establish which pulmonary nodules are benign and which nodules need biopsy to confirm
malignancy, low-dose computed tomography has become the standard procedure for
lung cancer screening. Nevertheless, lung cancer screening has a significant clinical false-
positive rate because of the necessity to identify a high proportion of malignant nodules for
biopsy [4,5]. Due to this, many unnecessary biopsies are conducted on people who turn
out not to have cancer.

In this study, we provide a CNN architecture that combines data from volumetric
radiomics series and nodule images for categorization. Qualitative and quantitative char-
acteristics may be found in lung CT images. These characteristics illustrate the nodule’s
pathogenesis. Using mathematics and data characterization methods, these quantitative
characteristics are retrieved from the picture. The term “radiomic” is used to describe the
procedure, whereas “radiomic features” refers to the numerical characteristics that are
gleaned from the data. As defined in [6], this process involves “high-throughput extraction
of quantitative information from radiological pictures to build a radiomic, high-dimensional
dataset followed by data mining for possibly better decision support.” The radiomic charac-
teristics of nodules primarily include their morphology, shape, and gray-level distribution.
This research uses a spherical radial scan of a 3D model derived from CT scans to decode
information about the nodule’s volume and shape over time. The created regions in each
level plane are scanned radially while the planes themselves are shifted from bottom to
top. Thus, the shape shift may be considered with the gray level distributions of the CT
scans collected at the various stages. Using the LIDC-IDRI dataset, we take a novel method
to predict the malignancy of lung nodules by integrating hitherto unexplored image and
volumetric radiomic combinations with volumetric radiomics-induced series.

CAD methods still have several limitations, despite numerous studies demonstrat-
ing that deep learning approaches outperform traditional methods based on manual
features [7–10]. This is due to the fact that imaging modalities and clinical pathologies
differ. Such diversity creates difficulties because of differences and similarities between
classes. In this context, the new approach in our study is a hybrid method that classifies
data using both medical image analysis and series features. Image-derived interest areas
are subjected to a radial scan, with their centers acting as poles, in order to obtain series.
A convolutional neural network (CNN) model is used to solve the series classification
problem. We advance a method for classifying series obtained from lung nodule images.
The eigenvalue of the nodule images is captured using radial scanning and a powerful
classification is performed. According to our results, we obtained an accuracy of 92.44% and
significantly higher classification scores as compared to numerous traditional classifiers.
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Related Works

Many pre-diagnosis models capitalize the advantage of CNN architectures that rev-
olutionized computer vision research by making color images usable as input data. In
this context, input data are processed by a succession of cores that slide over image color
channels to extract characteristics such as edges and color gradients, giving the appearance
of an artificial neural network’s (ANN) downstream fully linked layers. These inputs are
summed and flattened before being sent on to the fully linked layer. Several different kinds
of preconfigured CNN architectures are available. Radiology and digital pathology both
benefit greatly from the usage of CNNs.

There has been extensive research into the development of CAD systems for lung
cancer screening. Detection and segmentation of pulmonary nodules, characterization
of nodules, and classification of malignancy were among the studies that stood out. Re-
cently, very good and promising results in lung cancer screening, as well as other cancer
screenings, have been obtained, with deep learning-supported studies on nodule detection,
segmentation, and characterization [11–13].

Capabilities of CADs and radiomic tools to improve diagnostic accuracy and con-
sistency across medical images help radiologists’ decision-making [14,15]. CADs and
radiomics rely on segmentation and quantitative feature extraction from images of identi-
fied nodules as its foundation. Moreover, machine learning algorithms use this collection of
properties as a training set for classifying unseen nodule samples [16,17]. Such studies focus
on the intranodular region and employ radiomic characteristics of its shape, boundary, and
tissue for the most accurate identification [18–22].

Deep learning saves time for medical professionals by performing the complex clas-
sification task, which requires a significant amount of time and effort and consists of
the classification of large amounts of images, while avoiding possible human-induced
lines during the diagnosis phase at the same time [23–25]. Although it is well known
that accurate and early diagnosis are effective in all disease types, deep learning-based
methods have been successfully applied in early diagnosis, which is a crucial stage in
cancer disease [26–28]. Deep network architectures have evolved and their computational
power has increased as deep learning models have advanced in specific tasks. Deep neural
networks have begun to be used effectively in computer vision processes such as image
classification, object detection, and image segmentation as CNNs have made significant
progress. Deep learning and CNN advancements have been critical in the development of
medical systems for reliable scanning and image-based diagnostics. As a result, research
has progressed from image segmentation and feature extraction to deep learning-based
automatic classification [29,30].

Abdoulaye et al. [31] classified mammography images into three stages. First, they
removed noise from the image by examining its surroundings, then they discovered the
physical properties of the object and extracted patterns. In this way, they were able to
create a cancer detection system based on the artificial intelligence-enabled algorithm that
they trained using a pattern they obtained. Wang et al. [32] used an automatic image
analysis technique to classify breast cancer histopathology images. They obtained 4 shape-
based features and 138 color-space features for nodule classification. As a preprocessing
step, they used bottom-up cap transformation to highlight background objects in order
to locate growing cancer cells. Afterwards, they used wavelet transform to determine the
location of ROIs, and as a result, they classified normal and malignant cell images with a
96.19% success rate. Jiang et al. [33] developed their own method by studying lymphatic
pathologies such as chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), and
mantle cell lymphoma (MCL). After preprocessing the image, they extracted a feature set
that included texture properties such as entropy, density mean, density standard deviation,
loopy back propagation, and gray level co-occurrence matrix. They used the support vector
machine (SVM) algorithm to classify pathology images based on the extracted features.
As a result, their average accuracy performance value was 97.96%. Mohammed et al. [34]
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trained ANNs to predict pancreatic cancer risk using clinical variables such as age, smoking
status, alcohol consumption, and ethnicity.

Busnatu et al. [35] and Hunter et al. [36] present a detailed account of the recent litera-
ture studies on artificial intelligence and deep learning applications classified according to
medical specialties. Readers can refer to these two studies for more comprehensive infor-
mation on deep learning applications regarding cancer diagnosis based on image analysis.

Image series can be created by taking temporary images of the same scene at different
ordered input. If each sequential input corresponds to the time tick, it is possible to say
that the obtained series are time series. Several researchers have developed effective
methods for correctly interpreting image time-series data as a result of acquiring image
data [37–47]. With early diagnosis and a correct treatment, the quality of patients’ lives can
be substantially improved due to the analysis of biomedical time series via accurate and
reliable techniques, the understanding of such data, and the rapid detection of possible
abnormalities. The use of temporal correlation in time-series analysis is critical to the
success of chosen methods. In this context, image time series are critical in biomedicine for
monitoring disease progression.

Iakovidis et al. [37] used time series obtained from chest radiographs to track the
progression of pneumonia. Contrariwise, Baur et al. [38] used canonical correlation analysis
and Dynamic Bayesian Networks (DBN) to extract validated gene regulatory networks from
time-series gene expression data. Likewise, Guo et al. [39] built gene regulatory networks
with a feature selection algorithm based on partial least squares (PLS). In their studies,
Penfold et al. [40] and Isci et al. [41] introduced Bayesian methodologies for network
analysis using biological data, especially measures of time-series gene expression. Schlitt
et al. [42] used Bayes and DBNs to explain gene expression variations over time in terms of
regulatory network topologies. According to Ni et al. [43] and Kim et al. [44], the study
of Murphy et al. [45] suggested techniques capable of expressing time-varying behavior
of the underlying biological network, hence offering a more accurate representation of
spatio-temporal input–output connections. In their work, Kourou et al. [46] used time-
series microarray gene expression data to classify differentially expressed genes (DEGs) in
cancer with great effectiveness. Imani et al. [47] expanded the analysis of radio frequency
(RF) time series to enhance tissue classification at clinical frequencies by using additional
time-series spectrum characteristics.

Various non-local deep learning architectures, which we also used in the compari-
son analysis, have been successfully used in the nodule classification task. Shen et al. [48]
proposed multi-crop convolutional neural networks and Al-Shabi et al. [49] advanced gated-
dilated networks for malignancy classification and obtained above 87% accuracy scores.
Moreover, Ren et al. [50] built a unique manifold regularized classification deep neural net-
work (MRC-DNN) to conduct classification directly based on the manifold representation of
lung nodule images, which was motivated by the observation that genuine structure among
data was typically contained on a low-dimensional manifold. Shen et al. [51] showed that
the resilience of a representative DL-based lung-nodule classification model for CT images
could be improved, highlighting the need of assessing and assuring model robustness while
creating comparable models. To increase the depth of representation, Jiang et al. [52] first
developed a contextual attention mechanism to model contextual relationships between
neighboring sites. Then, authors employed a spatial attention technique to automatically
find the zones that were crucial for nodule categorization. Finally, they used an ensemble
of models to increase the reliability of their predictions. Al-Shabi et al. [53] suggested using
residual blocks for local feature extraction and non-local blocks for global feature extraction.
Furthermore, Al-Shabi et al. [54] used 3D Axial-Attention, which only needs a little amount
of processing power as compared to a traditional non-local network.

2. Methodology

The 3D volumetric structure comprises the sections designated as nodules by radiolo-
gists from 2D CT scans, together with the series derived from the boundary curves of each
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section. The following paragraphs explain boundary curves and the process of extracting
series out of them. Moreover, details on 3D models and the underlying deep learning
framework are provided.

2.1. Series by Radial Scanning

A radial scan gathers image samples in a sparser distribution at the periphery of the
image and in a denser distribution closer to the center of the image. This is the preferred
scanning paradigm for several imaging applications, such as imaging the optic nerve head,
as each B-scan acquired includes a cross-sectional image of the optic cup [55–57]. The
volumetric, render, and morphometric analysis of the ensuing image may be used to see
and analyze the radially obtained data samples. A straightforward radial-to-Cartesian
coordinate translation may be used to resample data to a Cartesian mesh system.

Figure 1 provides a radial scan as an illustration. The region of interest of a lung
nodule imaging is shown in Figure 1a. The radial scan axis is positioned at the center of
the area of interest, and the boundary curve of the area of interest is depicted in Figure 1b.
The boundary curve points’ separation from the scanning center will vary as the scanning
angle changes, resulting in a series, as illustrated in Figure 1c.
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ROIs are portions of a designated data collection that are used for a certain objective.
The term ROI is often used in a variety of application fields. For instance, in medical
imaging, the borders of a tumor can be specified in an image or a volume to determine its
size. For the purpose of assessing cardiac function, the endocardial boundary can be seen
on an image at various points in the cardiac cycle, such as end-systole and end-diastole.
The ROI establishes the perimeters of an item under inspection in computer vision and
optical character recognition.

The CT images used in this study first underwent pixel-by-pixel binarization. After
this morphological processing, large components in the binarized images are handled as
ROIs. The center of the ROI is used to calculate the discrete center of gravity of the ROI for
radial scanning. Due to the binary nature of the image, this center may be easily located
without any weight.

The modified Canny edge recognition approach [58] is first applied to the ROI in
each image to extract the appropriate form attributes. This extraction is made possible
via the use of the improved Canny edge detector approach (one for each ROI within each
image). The Canny operator employs a multi-step process to identify the edge pixels of an
object. The first step is to adjust the area boundaries by using a Gaussian filter. After that, a
regular 2D first derivative operator is used to compute edge strength. Pixels that are not
a component of the local maximum are zeroed out when the non-maximum suppression
method scans the region in the gradient direction. Lastly, a threshold is employed in order
to determine the correct edge pixels. Therefore, each ROI may be represented by its own
border curve.
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It is essential to streamline the edges for ROI representation while extracting image
features. The aim of the region boundary simplification stage is to create a smooth curve
while minimizing the number of line segments used to delineate the area. This method
is known as polygon approximation, and it is used to approximate a polygon curve that
has a set number of vertices. The polygon curve approach looks for a subset of the initial
vertices in order to minimize the objective function. The min-number problem is only one
way to frame the issue. The appropriate approximation of an N-corner polygon curve is
achieved by joining a certain number of straight-line M segments with another polygon
curve. A common heuristic for finding a solution to the minimum number problem is the
Douglas–Peucker (DP) method [59].

In this study, prior to using the Hough transform to extract features, the borders of
ROIs are simplified using the Douglas–Peucker (DP) technique. The closeness of a vertex to
an edge segment is a factor in the DP method. This approach operates top-down, beginning
with a rough initial estimate on a simplified polygonal curve, or more specifically, on the
single edge linking the first and end vertices of the polygonal curve. Then we determined
the closeness of the remaining vertices to that edge. The corner that is furthest from the
edge is added to the simplification if there are vertices further away from the edge than
the provided tolerance (ε > 0). As a result, the reduced polygonal curve receives a new
estimate. Recursion is used to continue this process for simplification until all vertices of
the original polygonal curve fall inside the tolerance.

If the ROI border is considered a closed curve, we must figure out the optimal distribu-
tion of all neighboring vertices, including the initial one. The simplest approach is to start
from the vertex with the fewest errors. Compared to the open-curve procedure, this simple
method for a curve with N corners is N times more complicated to implement. There are a
number of options to consider when deciding where to set off. This research makes use
of a heuristic technique inspired by Sato’s strategy [60]. The first step in this procedure is
starting at the furthest location from the ROI’s spatial center.

2.2. 3D Nodule Segmentation

In this research, computer-assisted techniques were used to identify nodules. Auto-
matic nodule recognition and segmentation is achieved using the union of the You Only
Look Once, Version 3 (YOLOv3) [61] and iW-Net [62] architectures. The short version
is that the model is fine-tuned to identify lung nodules by minimizing a loss function
that considers breadth, height, and center of gravity of the estimate in comparison to the
baseline. In order to take 3D information into account, the algorithm is trained using
3-channel images that consist of one axial slice comprising the nodule center as well as
two equally spaced neighboring slices. Candidates are joined if their bounding boxes
overlap, and estimates are calculated for each axis slice. Only the first block of iW-Net,
which makes a segmentation prediction, is utilized for actual segmentation. We employ an
image classification method to identify nodules with a bounding box in order to facilitate
the use of temporal statistical classification with the series collected from the image. This
image was achieved by manually creating these marks. Each image of interest has different
dimensions according to the series methodology used in this research. After the series has
been normalized, this variation has no bearing on the categorization.

The LIDC-IDRI database contains thoracic CT images with highly annotated lesions for
the purpose of detecting lung cancer. The series acquisition approach for the automatically
segmented nodule outlined how to find the nodule border by drawing a closed curve
around each nodule wherever it was present, beginning at the first pixel outside the lesion.
CT scan findings are recorded in an XML file connected with each participant. Nodules in
each XML file are grouped into one of three sizes based on their diameter. The locations
of the nodules and their z coordinates are included in the data. With these coordinates,
we were able to generate a box and mask in three dimensions that were centered on the
annotated lung nodule sites and were a fixed size. Our experimental boxes are 32 pixels
square and 32 slices thick. Nodule boundary curves in the sections are scanned radially in
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5625-degree increments to conform to the 3D volumetric data format. By using a thickness
of 32 for the slices, we may encode the nodule’s border geometry as a matrix of type 32× 32.

Figure 2 depicts a 3D segmented nodule and the aforementioned shape matrix. In order
to explain the methodology, we ran 2D radial scans with an angle increase of 2 degrees and
applied Laplace smoothing to the Delaunay mesh that we had derived from the boundary
points shown in Figure 2. Following the smoothing of the nodule surface, 180 z-axis steps
were chosen.
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2.3. Classification with U-Net

Two-dimensional conventional CNN designs typically layer-by-layer integrate raw
input data with learnable filters. It may be built using several layers, each of which is trained
to recognize a particular aspect of an image. Each training image is passed through a series
of filters of increasing granularity, and the resulting convolutional image serves as input for
the layer below it. An image filter may begin with basic characteristics such as brightness
and edges and progress to more complicated characteristics that better characterize the
item being filtered. This study proposes a technique that works well inside a deep learning
framework using higher-order CNNs for effective feature learning of CT image data from
unprocessed information. This is accomplished by stacking many convolutional layers in
order to collect a wide variety of representative characteristics. By using convolutions and
trainable filters with specific filter coefficients, we can link input and output neurons.

This paper provides a solution to the 4D input issue of jointly categorizing nodule
volumetric radiomic and border information. For this challenge, we use a method centered
on U-Net models that generalize 2D and 3D architectures [63,64]. As shown in Figure 3,
we need to calculate the shape matrix obtained from radial scanning with a tensor that
takes the coordinates in mm3 units of each volume segmented in the 3D volume and
the grayscale value in these coordinates in order to train our 4D U-Net model efficiently
and use it in the classification process. The model makes use of the 4D data input that it
generates collectively. Lower-order models need data reduction prior to network training.
In contrast, our suggested architecture makes extensive use of higher-dimensional data
while performing all operations on nominally sized datasets.
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where ϕ(·) is the activation function, wij is the value of the kernel connected to the current
feature map at position (i, j), xc(k+i)(l+j) is the value of the input neuron at input channel c,
bij is the bias of the computed feature map. Moreover, by following the extension method
presented in [65], we can straightforwardly extend Equation (1) to 4D with
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With our deep pixel-level categorization, each pixel can only be assigned to one of C
distinct categories. Because cross-entropy may be understood as the log-likelihood function
of the training samples, it was chosen as the loss function to transform the network’s
outputs back into probabilities. Training our models with this loss function combines
the So f tMax activation with the cross-entropy loss to provide a probability across the C
possible classes for each pixel.

3. Results

Overall, for this study, 244,559 images and 1018 CT scans from 1010 patients were
provided by the Lung Image Database Consortium (LIDC) [66]. The five categories used
to classify lesions in the LIDC image collection regarding pulmonary nodules are: highly
likely to be benign (level 1); moderate probability of being benign (level 2); uncertain prob-
ability (level 3); moderate probability of malignancy (level 4); it is likely to be malignant
(level 5). Due to the absence of a database structure, radiologists have not yet established
relationships between images, examinations, and the possibility of malignancy from nod-
ules, making the first LIDC image collection difficult to use. Thus, we choose to utilize the
not only SQL (NoSQL) document-oriented Pulmonary Nodule Database (PND) [67] for
our analysis.

The LIDC-IDRI study may be broken down into three major phases: image interpre-
tation, nodule characteristic evaluation, and data recording. A radiologist was required
to analyze each image of a CT examination using a computer interface and highlight le-
sions deemed to be nodules with in-plane dimensions between 3 and 30 mm, independent
of assumed histology. As a result, these lesions may represent a primary lung cancer, a
metastatic disease, a noncancerous condition, or of unknown etiology. Each nodule outline
was intended to be a localizing “outside boundary” such that, according to the radiologist,
the outline itself did not overlap nodule-specific pixels. According to the LIDC-IDRI litera-
ture, throughout the nodule characteristic evaluation procedure, each reader was requested
to subjectively assign an integer value to nine distinct qualities. The data is stored in an
eXtensible Markup Language (XML) file, and its classifications and Cartesian coordinates
are based on nodule classifications. The XML file and all CT scans from a single test are
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kept in a folder, and all folders from all examinations were uploaded to a web server hosted
on the website of the Cancer Imaging Archive (TCIA) [68]. In order to avoid unnecessary
scans, PND only uses the radiologist’s annotations that identify the most lesions during
each exam, which amounts to 752 scans and 1944 lung nodules. To normalize the image
contrast, a gray-scale lung windowing was applied by adjusting the window/level from
1600 to −600 Hounsfield units.

Nodules, which may be up to 30 mm in diameter, are a kind of lung opacity [69]. Ini-
tially, we computed the nodule size as a straightforward 2D measure of the biggest diameter
in a slice, which may be done in the axial plane along the axis of the longest diameter [70].
To get these rough estimates, we measured the x and y minimum and maximum coordinates
of every nodule slice. According to [71], lung nodules with a PND malignancy grade of
3 were considered too dangerous to keep. We did not include any nodules in the LIDC
collection that were annotated as non-solid because of the form complexity and low density
of these objects. Therefore, following this phase, 897 nodules ranging in size from 3 mm to
30 mm remained (616 benign and 281 malignant). We were restricted from selecting smaller
lesions due to the LIDC requirement of a 3 mm subthreshold.

A major restriction in this study was that the dataset has an uneven distribution of
classes throughout its 897 nodules. During the phase of cross-validation training, the
well-known Synthetic Minority Oversampling Approach (SMOTE) [72] method was used
to develop synthetic nodule samples. This approach is also known as the synthetic minority
oversampling approach. The method was developed with the intention of delivering a
comprehensive and well-rounded approach. At each step of the process of cross-validation,
nine folds were chosen to form the training set, whereas the remaining fold was used
to form the test set. Moreover, we made sure that the appropriate proportions were
preserved. Training sets comprised 550 benign nodules and 252 malignant nodules. Around
298 synthetic samples are produced by the SMOTE algorithm throughout each step of the
procedure. This ensures that malignant nodules are represented as precisely as possible.

To assess the performance of the developed model, we employ a number of machine
learning metrics, as the problem at hand is fundamentally a pixel-level multi-class classifi-
cation task. True positives (TP), false positives (FP), false negatives (FN), and true negatives
(TN) are the four possible outcomes when comparing a pixel’s prediction to its baseline
accuracy score. True and False represent equality between the ground truth label and the
predicted label, whereas Positive and Negative correspond to the class from which the
metric is being calculated. In this study, common ML metrics are employed for each type
of data using the above definitions. Namely, the metrics are:

Recall = TP/(TP + FN) (3)

Precision = TP/(TP + FP) (4)

Accuracy = (TP + TN)/(TP + FP + FN + TN) (5)

F1 = 2 × (Precision × Recall)/(Precision + Recall) (6)

The number of filters utilized for effective feature learning and the number of stack-
layers in the proposed U-Net model are two major hyper-parameters that have a substantial
impact on the model’s performance. In order to determine which combination of hyper-
parameters produces the best results, we conducted an ablation study.

In the experiments, the effect of increasing the number of stack levels on the perfor-
mance of the U-Net is analyzed. We trained two separate 4D U-Net models, one with a
depth of 3 and the other with a depth of 4. Table 1 shows that the network’s generalization
capacity increases when more filters are applied, suggesting that the network is becoming
more robust. Naturally, the time needed to train the network grows in proportion to the
number of filters, as each filter has its own set of parameters that must be learned. We also
find that using only four filters in the U-Net, as opposed to eight, improves performance
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across the board when the depth is increased from three. Overall, the best U-Net model can
be trained in around 11 h, has a depth of 3, and has a classification accuracy of 92.84%.

Table 1. Metrics for classification and training times (in minutes) for 4D U-Net models.

Depth No. of Filters Recall Precision Accuracy Time

3
4 80.13 81.54 83.45 469.92

8 92.41 92.63 92.84 661.8

4
4 80.04 79.63 81.22 477.74

8 87.19 88.01 88.73 668.4

Table 2 summarizes and tabulates comparisons between our proposed method and
state-of-the-art lung nodule classification methods. The results of our evaluations show that
our proposed method consistently outperforms the state-of-the-art methods. Not only that,
but it outperforms other non-local-based methods such as Local-Global [52], 3D Directed
Partitioning Networks (DPNs) [53] and 3D Axial-Attention [54].

Table 2. The proposed method’s performance compared to the state-of-the-art methods.

Method AUC Recall Precision Accuracy F1

HSCNN [14] 85.6 70.5 N/A 84.2 N/A

Multi-Crop [48] 93.0 77.0 N/A 87.14 N/A

Local-Global [52] 95.62 88.66 87.38 88.46 88.01

Gated-Dilated [49] 95.14 92.21 91.85 92.57 92.03

3D DPN [53] N/A 92.04 N/A 90.24 N/A

MRC-DNN [50] N/A 81.00 N/A 90.00 N/A

Perturbated DNN [51] 91.0 90.0 N/A 83.0 N/A

3D Axial-Attention [54] 96.17 92.36 92.59 92.81 92.47

Our method 96.19 92.41 92.63 92.84 92.51

4. Discussion and Conclusions

Because lung nodules are so minuscule that they can easily blend in with the surround-
ing tissue and cling to complicated anatomical systems like the pleura, this work presents a
deep learning strategy that additionally deals with volumetric radiomic information for
classifying nodules in the lungs.

We started by obtaining 3-tensor data types representing gray levels of 3D nodule
shape modeled from cross-sectional CT scans. Grayscale values between 0 and 255 are
fed to this tensor at each node. Our study presents a deep learning classification solution
to the age-old issue of picture classification by including the series collected from nodule
segments. Our method takes into consideration the self-similarity of the boundary curves
that characterize the nodule segments in order to provide a more precise categorization
of nodules. By treating the series of the border curvatures of each section as rows in the
matrix, we are able to solve the 4D classification issue.

For this research, we accessed a dataset hosted by LIDC. Over 95% accuracy was
achieved when using the deep learning algorithms YOLOv3 and iW-Net to identify and
isolate the nodules in the annotated photos. The respective photos were manually cropped
and recorded in this LIDC dataset using tags. After that, we employed the image process-
ing techniques described in the methodology section to locate the nodule’s outside and
innermost curves. The use of 32 × 32-type matrices, the scanning at 5.625 degrees and
32 section steps yielded shape matrices that were consistent with the volumetric radiomics
of the nodule.
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The research used a U-Net-type convolutional neural network, which proved to
be successful for the 4D categorization in previous studies [73–76]. Experiments were
conducted using 4 and 8-filter meshes of depths 3 and 4, respectively. When compared to
other networks, the one with three depths and eight filters performed quite well (92.84%
accuracy). This outcome informed the selection of the network design from our study.

In the context of volumetric radiomics, comparisons were made between the results of
this research and 3D CNN networks. The provided method yields superior performance
results as compared to numerous non-native solutions presently available. The method
presented in our research is most comparable to the 3D Axial Attention among the non-local
approaches. Due to the fact that it takes into consideration the nodule’s 3D shape, the
3D Axial Attention approach is far more discriminating than earlier methods. However,
the approach we present takes into account both the 3D geometry and the shape of the
nodule, allowing for a 5D convolution. Although its performance is comparable to that
of the 3D Axial-Attention approach, its outcomes are superior to those of prior methods.
Future research may try using more radiomic variables within the framework of the 3D
Axial Attention approach in order to get even more discriminating findings.

Limitations in the study design are inevitable, as is the case with every investigation.
The primary barrier is the dearth of trained radiologists and experts in computer-assisted
segmentation. The issue of class imbalance in the dataset may be addressed in a number
of ways, all of which need careful consideration. Because the series angles derived from
the radial-scanning boundary curve of the nodule follow one another in time, we may
argue that the series represents a time series. An up-and-coming area of study in the
field of forecasting is the use of time-series characteristics for model selection and model
averaging [77–79]. However, most current methods need human intervention to choose a
suitable collection of features. In modern time-series analysis, the use of machine learning
techniques for automatically extracting characteristics from time series is becoming more
important. Hybrid networks that can deal with radiomic features utilizing 3D geometry
classification and machine learning-based time-series feature extraction may be studied in
the future. Because our research demonstrates the usefulness of radial scanning, particularly
in the context of medical image processing and classification, we believe it will serve as a
benchmark for future studies examining other medical imaging methods.

In conclusion, we show that series from lung imaging may be used to effectively
characterize lung nodules, and that a shape matrix, aided by an area of interest curve, can
be used to reliably ascertain whether or not a tumor is malignant. We tested our methods
using a large dataset of lung nodule pictures that was made accessible to the public, and
we compared the outcomes to those produced by established methods for classifying both
still photos and video over time. The requirement for our study to be repeatable prompted
us to conduct these comparisons. Our research indicates that radial scanning series may be
a powerful asset in the identification and categorization of lung nodules.
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