## Cholinesterase, α-glucosidase, tyrosinase and urease inhibitory activities of compounds from fruits of *Rinorea oblongifolia* C.H. Wright (Violaceae)

Aristide Mfifen Munvera<sup>a\*</sup>, Alfred Ngenge Tamfu<sup>b,c</sup>, Blandine Marlyse Wache Ouahouo<sup>a</sup>, Selcuk Kucukaydin<sup>c</sup>, Jean Noel Nyemb<sup>d</sup>, Aude Marcelle Fokam Mafo<sup>e</sup>, Emar Carlain Djappa Tchapo<sup>a</sup>, Pierre Mkounga<sup>a</sup>, Augustin Ephrem Nkengfack<sup>a</sup>

<sup>a</sup> Department of Organic Chemistry, Faculty of Science, The University of Yaounde I, Yaounde, 812, Cameroon

<sup>b</sup>Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, 454 Ngaoundere, Cameroon

<sup>c</sup>Department of Medical Services and Techniques, Koycegiz Vocational School of Health Services, Mugla Sitki Kocman University, 48800 Mugla, Turkey.

<sup>d</sup>Department of Refining and Petrochemistry, National Advanced School of Mines and Petroleum Industries, University of Maroua, Kaélé, Cameroon

<sup>e</sup>Institute of Medical Research and Medicinal Plants, P.O BOX 13033 Yaoundé-Cameroon \*Corresponding author: <u>mfifena@hotmail.fr</u> (Munvera Mfifen A.)

## Abstract

From *Rinorea oblongifolia* fruits, 3-Nor-4β-friedelan-24-ol (1) and 3-decyl-6,7,8-trimethoxy-2H,5H-furo[4,3,2-de]isochromene-2,5-dione 28-(4), new derivatives alongside. hydroxyfriedelan-3-one (2), friedelin (3), 3,3',4,4',5'-pentamethylcoruleoellagic acid (5), hexamethylcoruleoellagic acid (6), 3',4,4',5,5'-pentamethylcoruleoellagic acid (7), and fatty compounds 8-11 were isolated and characterized using HRESIMS, EIMS, 1D and 2D NMR. In vitro enzyme inhibition of compounds 1, 2, 4, 5, 6 and 7 were evaluated on acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-glucosidase, urease and tyrosinase. Against AChE and BChE, the phenolic compounds 4, 5, 6, and 7 had good activity probably due to the phenolic nature and methoxy substituents. Compounds 4, 5, 6 and 7 exhibited good  $\alpha$ -glucosidase inhibition especially compound 4 whose IC<sub>50</sub> = 42.45±0.46 µg/ mL was close that of acarbose (IC<sub>50</sub> =  $20.52\pm0.84 \,\mu$ g/mL) standard drug. Urease and tyrosinase were appreciably inhibited by the compounds. Overall results of enzyme inhibitory assays indicate Rinorea oblongifolia, fruits and its constituents as potential remedy for enzymatic disorders.

**Keywords** *Rinorea oblongifolia*, triterpenoids, coruleoellagic acid derivatives, enzyme inhibition, anticholinesterase,  $\alpha$ -glucosidase inhibition

## Supplementary material

Figure S1. HRESI Mass Spectrum of compound 1

Figure S2. IR spectrum of compound 1

**Figure S3.** <sup>13</sup>C NMR spectrum ((CDCl<sub>3</sub>, 200 MHz) of compound **1** 

Figure S4-1. <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 800 MHz) of compound 1

Figure S4-2. <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 800 MHz) of compound 1

Figure S5. DEPT- HSQC spectrum (CDCl<sub>3</sub>, 800 MHz) of compound 1

Figure S6. COSY spectrum (CDCl<sub>3</sub>, 800 MHz) of compound 1

Figure S7-1. HMBC spectrum (CDCl<sub>3</sub>, 800 MHz) of compound 1

Figure S7-2. HMBC spectrum (CDCl<sub>3</sub>, 800 MHz) of compound 1

Figure S7-3. HMBC spectrum (CDCl<sub>3</sub>, 800 MHz) of compound 1

Figure S8-1. NOESY spectrum (CDCl<sub>3</sub>, 800 MHz) of compound 1

Figure S8-2. NOESY spectrum (CDCl<sub>3</sub>, 800 MHz) of compound 1

Figure S9. HMBC and NOESY correlation of compound  ${\bf 1}$ 

Figure S10-1. HR ESI Mass Spectrum of compound 4

Figure S10-2. LR EI Mass spectrum of compound 4

Figure S11. IR spectrum of compound 4

Figure S12. UV spectrum of compound 4

Figure S13-1. <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 500 MHz) of compound of compound 4

Figure S13-2. <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 500 MHz) of compound of compound 4

Figure S14. <sup>13</sup>C NMR spectrum (CDCl<sub>3</sub>, 125 MHz) of compound 4

Figure S15. DEPT spectrum (CDCl<sub>3</sub>, 125 MHz) of compound 4

Figure S16. DEPT- HSQC spectrum (CDCl<sub>3</sub>, 500 MHz) of compound 4

Figure S17. HMBC spectrum (CDCl<sub>3</sub>, 500 MHz) of compound 4

Figure S18. NOESY spectrum (CDCl<sub>3</sub>, 500 MHz) of compound 4

Figure S19. HMBC and NOESY correlation of compound 4

**Table S1.** The NMR spectral data of compound 1

Table S2. The NMR spectral data of compound 4

**Table S3.** Cholinesterase,  $\alpha$ -glucosidase, urease and tyrosinase inhibitory activities of the isolated compounds



Figure S1: HRESI Mass Spectrum of compound 1



Figure S2: IR spectrum of compound 1





Figure S3: <sup>13</sup>C NMR spectrum ((CDCl<sub>3</sub>, 200 MHz) of compound 1







Figure S5: DEPT- HSQC spectrum (CDCl<sub>3</sub>, 800 MHz) of compound 1



Figure S6: COSY spectrum (CDCl<sub>3</sub>, 800 MHz) of compound 1



Figure S7-1: HMBC spectrum (CDCl<sub>3</sub>, 800 MHz) of compound 1



Figure S7-2: HMBC spectrum (CDCl<sub>3</sub>, 800 MHz) of compound 1



Figure S7-3: HMBC spectrum (CDCl<sub>3</sub>, 800 MHz) of compound 1







Figure S8-2: NOESY spectrum (CDCl<sub>3</sub>, 800 MHz) of compound 1



Figure S9: HMBC and NOESY correlation of compound 1



Figure S10-1: HR ESI Mass Spectrum of compound 4



Figure S10-2: LREI Mass Spectrum of compound 4



Figure S11: IR spectrum of compound 4 Scan Graph



Figure S12: UV spectrum of compound 4



Figure S13-1: <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 500 MHz) of compound of compound 4



Figure S13-2: <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 500 MHz) of compound of compound 4

BB

<107.89-163.06 -161.46 -154.13 -152.83 -149.95 -114.2149.17 49.00 48.82 48.66 48.49 34.88 63.30 51 19.34 -163. 6 Т 180 160 120 60 100 140 80 40 20 ppm

Figure S14: <sup>13</sup>C NMR spectrum (CDCl<sub>3</sub>, 125 MHz) of compound 4



Figure S15: DEPT spectrum (CDCl<sub>3</sub>, 125 MHz) of compound 4 Dept-HSQC



Figure S16: DEPT- HSQC spectrum (CDCl<sub>3</sub>, 500 MHz) of compound 4



Figure S17-1: HMBC spectrum (CDCl<sub>3</sub>, 500 MHz) of compound 4 HMBc



Figure S17-2: HMBC spectrum (CDCl<sub>3</sub>, 500 MHz) of compound 4



Figure S18: NOESY spectrum (CHCl<sub>3</sub>, 500 MHz) of compound 4



Figure S19: HMBC and NOESY correlation of compound 1

| position | δc (ppm) | δH (ppm)                           |
|----------|----------|------------------------------------|
| 1        | 20.0     |                                    |
| 2        | 39.1     |                                    |
| 3        | -        |                                    |
| 4        | 53.0     | 1,22 ; m                           |
| 5        | 50.7     |                                    |
| 6        | 35.2     |                                    |
| 7        | 19.2     |                                    |
| 8        | 52.6     | 1,47 ; m                           |
| 9        | 37,6     |                                    |
| 10       | 57.0     | 1, 18 ; m                          |
| 11       | 35.9     |                                    |
| 12       | 30.1     |                                    |
| 13       | 39.2     |                                    |
| 14       | 38.1     |                                    |
| 15       | 32.8     |                                    |
| 16       | 36.6     |                                    |
| 17       | 30.1     |                                    |
| 18       | 42.7     | 1.48; m                            |
| 19       | 34.8     |                                    |
| 20       | 28.1     |                                    |
| 21       | 34.1     |                                    |
| 22       | 39.5     |                                    |
| 23       | 8.6      | 0.93 (3H, d, 7.5 Hz)               |
| 24       | 72.8     | 3.55 ; H24a ; d, <i>J</i> = 8.5 Hz |
| 25       | 164      | 4.11; H24b; d, $J=8.5$ Hz          |
| 25       | 16.4     | 0.92 (3H, s)                       |
| 26       | 20.4     | 0.95 (3H, s)                       |
| 27       | 18.6     | 0.98 (3H, s)                       |
| 28       | 32.1     | 0.96 (3H, s)                       |
| 29       | 35.2     | 0.91 (3H, s)                       |
| 30       | 31.8     | 1.13 (3H, s)                       |

 Table S1: The NMR spectral data of compound 1

| position            | δH (ppm)  | δc (ppm)  |
|---------------------|-----------|-----------|
| 1                   | -         | -         |
| 2                   |           | 175.2     |
| 2a                  | -         | 114.2     |
| 3                   | -         | 161.5     |
| 4                   | -         | -         |
| 5                   | -         | 163.1     |
| 5a                  |           | 107.5     |
| 6                   |           | 154.1     |
| 7                   |           | 148.1     |
| 8                   |           | 150.0     |
| 8a                  |           | 152.8     |
| 8b                  |           | 107.9     |
| 1'                  | 2.39      | 35.8      |
| 2'                  | 1.60      | 26.1      |
| 3'-9'               | 1.23-1.26 | 23.6-34.8 |
| 10'                 | 0.86      | 14.5      |
| 6-OCH <sub>3</sub>  | 3.99      | 62.7      |
| 7- OCH3             | 4.23      | 62.4      |
| 8- OCH <sub>3</sub> | 4.01      | 62.5      |

 Table S2. The NMR spectral data of compound 2

|              | Cholinesterase inhibitory activity |                 |                                  |                             |                            |                             |                            |                             |                            |                             |
|--------------|------------------------------------|-----------------|----------------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|
|              | AChE inhibition                    |                 | BChE inhibition                  |                             | α-glucosidase inhibition   |                             | Urease inhibition          |                             | Tyrosinase inhibition      |                             |
| Test samples | Inh. (%)<br>(at 100 µg/mL)         | IC50<br>(µg/mL) | Inhibition (%)<br>(at 100 µg/mL) | IC <sub>50</sub><br>(µg/mL) | Inh. (%)<br>(at 100 µg/mL) | IC <sub>50</sub><br>(µg/mL) | Inh. (%)<br>(at 100 µg/mL) | IC <sub>50</sub><br>(µg/mL) | Inh. (%)<br>(at 100 μg/mL) | IC <sub>50</sub><br>(μg/mL) |
| 1            | 28.00±0.74                         | >100            | 46.61±0.33                       | >100                        | 46.15±0.22                 | >100                        | 51.83±0.66                 | 96.43±0.75                  | 46.98±0.34                 | >100                        |
| 2            | 24.00±0.22                         | >100            | 33.40±0.63                       | >100                        | 43.56±0.45                 | >100                        | 52.27±0.70                 | 94.85±0.76                  | 25.51±0.33                 | >100                        |
| 4            | 48.72±0.45                         | >100            | 60.47±1.25                       | 70.87±0.95                  | 73.91±1.20                 | 42.45±0.46                  | 58.63±0.44                 | 75.17±0.63                  | 35.21±0.46                 | >100                        |
| 5            | 35.90±0.26                         | >100            | 57.43±0.53                       | 76.41±0.79                  | 66.30±0.62                 | 60.51±0.67                  | 58.33±0.25                 | 75.48±0.58                  | 75.90±0.85                 | 36.24±0.86                  |
| 6            | 37.30±0.16                         | >100            | 59.62±0.77                       | 71.24±0.56                  | 64.78±1.10                 | 68.79±1.25                  | 61.20±0.56                 | 66.45±0.38                  | 76.51±0.77                 | 35.72±0.55                  |
| 7            | 32.63±0.54                         | >100            | 50.42±0.21                       | 98.86±0.90                  | 65.39±1.05                 | 66.80±1.30                  | 46.30±0.20                 | >100                        | 55.25±0.80                 | 81.34±0.48                  |
| Galantamine  | 85.50±0.70                         | 5.50±0.25       | 74.65±0.20                       | 42.10±0.45                  | NT                         | NT                          | NT                         | NT                          | NT                         | NT                          |
| Thiourea     | NT                                 | NT              | NT                               | NT                          | NT                         | NT                          | 83.75±0.60                 | 8.20±0.35                   | NT                         | NT                          |
| Kojic acid   | NT                                 | NT              | NT                               | NT                          | NT                         | NT                          | NT                         | NT                          | 79.50±0.32                 | 23.75±0.20                  |
| Acarbose     | NT                                 | NT              | NT                               | NT                          | 82.40±0.70                 | 20.52±0.84                  | NT                         | NT                          | NT                         | NT                          |

**Table S3.** Cholinesterase,  $\alpha$ -glucosidase, urease and tyrosinase inhibitory activities of the isolated compounds

Values represent the means  $\pm$  SEM of three parallel sample measurements (p < 0.05). *NT*: not tested.