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Abstract: Brain MR images are the most suitable method for detecting chronic nerve diseases such
as brain tumors, strokes, dementia, and multiple sclerosis. They are also used as the most sensitive
method in evaluating diseases of the pituitary gland, brain vessels, eye, and inner ear organs. Many
medical image analysis methods based on deep learning techniques have been proposed for health
monitoring and diagnosis from brain MRI images. CNNs (Convolutional Neural Networks) are a
sub-branch of deep learning and are often used to analyze visual information. Common uses include
image and video recognition, suggestive systems, image classification, medical image analysis, and
natural language processing. In this study, a new modular deep learning model was created to
retain the existing advantages of known transfer learning methods (DenseNet, VGG16, and basic
CNN architectures) in the classification process of MR images and eliminate their disadvantages.
Open-source brain tumor images taken from the Kaggle database were used. For the training of the
model, two types of splitting were utilized. First, 80% of the MRI image dataset was used in the
training phase and 20% in the testing phase. Secondly, 10-fold cross-validation was used. When
the proposed deep learning model and other known transfer learning methods were tested on the
same MRI dataset, an improvement in classification performance was obtained, but an increase in
processing time was observed.

Keywords: healthcare; deep learning; CNN; brain tumor MRI images; image processing

1. Introduction

The brain, an organ that searches for meaning and self-inquiry, serves as the center
of the entire nervous system to control the body’s other organs. Therefore, any abnormal-
ity in the brain can endanger human health. Among such abnormalities, brain tumors,
hydrocephalus, and cerebral hemorrhage are the most severe. Brain tumors are divided
into primary (primary) and secondary (secondary). Primary brain tumors consisting of
the brain’s own cells can be benign (benign) or malignant (malignant). Secondary brain
tumors occur when cancerous cells that appear in another part of the body spread to the
brain. Primary tumors are located in brain tissue, while secondary tumors expand into
brain tissue from other parts of the human body through the bloodstream [1].

According to the World Health Organization (WHO), brain tumors can be divided into
four grades. Grade 1 and grade 2 tumors describe lower-grade tumors (e.g., meningiomas),
while grade 3 and grade 4 tumors consist of more severe ones (e.g., glioma). In clinical
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practice, the incidence rates of meningioma, pituitary, and glioma tumors are approximately
15%, 15%, and 45%, respectively [2].

A series of physical and neurological examinations are performed to diagnose brain
tumors. Diagnosis is made with MR (Magnetic Resonance) and CT (Computerized Tomog-
raphy), and biopsy and pathological evaluation are performed to confirm the diagnosis.
Among all these imaging modalities, MR is considered the most preferred because it is
the only non-invasive and non-ionizing modality [3]. As a result, the type and stage of
the cancer are learned precisely, and a treatment plan is prepared. Manual review of
medical images in this process is time-consuming, hectic, and even error-prone due to
patient flow [4]. To solve this problem in the performed study, it is proposed to develop an
automated computer-aided diagnostic (CAD) system to ease the workload of classification
and diagnosis of brain MRI and act as a tool to assist radiologists and doctors.

The application was carried out using the Python programming language. Based
on free and open-source code logic, Python’s standard library, development tools, and
many other libraries can be used free of charge as open-source code without needing a
license. Another reason the Python language is preferred is that deep learning libraries
used in diagnosing brain tumors exist in Python in the background. The study’s preferred
deep learning method for image processing is a subset of machine learning where artificial
neural networks and algorithms inspired by the human brain learn from data. When we
look at the literature, there are many studies on diagnosing and classifying brain tumors.
Different data are collected from different data bases i.e through cloud and big data [5–8]
abnd these data center can be accessed through wired and wirelessly. However, the feature
vector must be extracted first to establish a model definition or machine learning system in
classical machine learning algorithms. Experts in the field are needed to extract this feature
vector. These processes take a large amount of time and keep the expert busy.

For this reason, these techniques cannot process raw data without preprocessing and
expert assistance. On the other hand, deep learning has made significant progress by
eliminating this problem that those working in machine learning have been dealing with
for many years. This was achievable because, unlike traditional machine learning and
image processing techniques, deep networks perform the learning process on raw data.

As a result, the literature and experimental research concluded that the models created
using transfer learning methods could not achieve the expected success in health image
data classification, and there were some areas open to improvement. For this reason, the
applied models were examined, and their strengths and weaknesses were reported. Then, a
new model structure was created on the CNN’s architectural structure in which the strong
points in the models were kept and the weak points were removed. This model architecture
uses a convolutional network structure with both dense layers. The proposed new deep
learning model improves classification performance and other known transfer learning
methods, but an increase in processing time was observed.This study aims to develop a
binary classification method for brain tumors (meningiomas and gliomas) and multiclass
classification using SoftMax and KNN, non-deep methods with handcrafted features, as
well as CNN deep learning methods with transfer learning. The main contributions of the
article include:

• In the study, a modified CNN-based system was proposed to increase the accuracy in
the classification of brain tumors over previously labeled data.

• Comparison of the proposed model with three different models (simple CNN, VGG16,
and ResNet) realized using these labeled data.

• After the models were run, reports were made for each model, and their matrices were
created. In this report, the shortcomings of each model were determined.

• In order to eliminate the deficiencies found as a result of the examinations on the
models, another CNN model was created, and the errors in the previously examined
systems were tried to be eliminated.

• The accuracy rate obtained from studies conducted with labeled data from the Internet
has been further increased.



Life 2023, 13, 349 3 of 16

• Medical professionals can use a clinical decision support system to detect brain tumors,
which has been developed over the model with increased accuracy.

• Data found on the Internet, previously labeled and made suitable for classification,
were used.

2. Materials and Methods

The human brain is one of the most complicated organs in our body, with new features
being discovered every day. For this reason, many studies on this organ exist in the
literature. These can be classified as medical and engineering studies of technology on
brain data. For this reason, screening studies related to brain tumors with a wide literature
perspectives were limited to the following topics. The following headings were scanned:

• Machine and deep learning algorithms;
• Morphological-based segmentation methods;
• CNN-based classification.

In the study carried out by Gwak et al., a model using deep feature and machine
learning classifiers from ensemble learning models was proposed. The study extracted deep
features from brain MR images using the transfer learning method in a deep convolutional
neural network. Various machine learning classifiers then evaluated the extracted deep
features. The top three deep features that perform well in the machine learning classifier
are selected and combined into a deep feature collection. Experimental results emphasize
that the performance of the ensemble obtained from deep features can help to significantly
improve the success of the model [2].

In the study by Asaf Raza et al., a hybrid deep learning model named DeepTumorNet
was developed for three types of brain tumors (CT) (glioma, meningioma, and pituitary
tumor classification) over a basic convolutional neural network (CNN) architecture. On the
GoogLeNet architecture of the CNN model, the last 5 layers were removed, and 15 new
layers were added. A Leaky ReLU activation function has been added to the feature map to
increase the significance of the model. The proposed model was tested on a public research
dataset for evaluation purposes and achieved 99.67% accuracy, 99.6% precision, 100% recall,
and 99.66% F1 score [9].

Traditional approaches to image processing are performed by the process of extracting
features from the lower layers. However, this algorithm is not particularly suitable for
medical images. In their study, researchers named Lakshmi and Rao aimed to detect
brain tumors early using the deep learning approach and hyperparameters by using the
Inception-v3 convolutional neural network model. In the study, it is seen that the accuracy
of the Inception-v3 algorithm was recorded as 99.34% in the training data and 89% in the
validation data [10].

In the study by Chenjie Ge et al., a model using a graph-based semi-supervised
learning method was proposed to benefit more from unlabeled data. The proposed model
was tested on two glioma datasets, the TCGA dataset for IDH mutation prediction and the
MICCAI dataset for glioma grading. It has been reported that an 86.53% test accuracy was
obtained in the TCGA dataset and 90.70% in the MICCAI dataset [11].

As can be seen from the literature, many studies have been carried out on brain tumors
in recent years. It can be seen that there are many medical imaging techniques for the
diagnosis of these tumors [12]. It has been concluded that most of the previous studies
were on the segmentation of areas of brain tumors, but recent studies have focused on
classifying these areas into different types of brain tumors. Based on this, the study was
carried out to increase the success rate of the binary classification of brain tumors.

During the literature research phase of the study, many recent studies were examined.
The most striking of these studies are presented in Table 1. These studies draw attention
because the issues to be considered in the model to be created are included. The table below
discusses the models used in the studies, the success rates, and the results obtained from
the study.
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Table 1. Comparative Analysis.

Ref. Year Methodology Dataset Result Drawback

[13] 2020 PNN
Classification CNN KaggleTCIA %90 Accuracy Lack of

comparative analysis

[14] 2019 Inception
Pre-Trained CNN BRATS 13,14,17,18 %99.12

Accuracy Complex Approach

[15] 2019 CNN with a Modified
Softmax Loss Function

BRATS, ISLES,
FLAIR, DWI %98.9 Accuracy

It can be developed and can
be tested with
large datasets.

[16] 2018 ELM-LRF MNI Brain Website %97 Classifica-
tion Success

More efficient than related
work because training time

is shorter than others

[17] 2029 CNN TCIA, Kaggle %90
Accuracy Long Process Time

[18] 2022 CNN Harvard Medical
School website %98.5 Accuracy

Computational time, system
complexity, and memory
space requirements are

too much

[19] 2022 SVM BRATS 2017 %92.3 Accuracy SVM cannot handle a larger
data set.

[20] 2022 Evolutionary CNN

BRATS 2015 data set
and brain image

datasets from Harvard
Medical School,

%97.4 Accuracy Complex System

[21] 2021 HOG + LBP + deep
features BRATS2015 %96 DSC The problem in

thresholding point

3. Methodology
3.1. Overview

Convolutional neural networks are a sub-branch of deep learning and are often used
to analyze visual information. CNN or ConvNet is short for convolutional neural network.
Convolutional neural networks consist of many layers that can be trained. These are the
input, convolution, jointing, and full link layers. The convolution layer and the jointing
layer can be fine-tuned with hyperparameters. Different CNN architectures combined with
different transfer learning techniques have achieved great success thanks to their improved
performance in image classification. In this way, they have surpassed traditional machine-
learning models in the last few years. CNN algorithms can automatically recognize much
more important visual patterns with less preprocessing on the raw pixels of images. Serving
as a test environment, ImageNet has played an important role in advancing deep image
recognition architectures. CNN algorithms started to be used rapidly with the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) competition, which was first held in
2012 [22].

Another CNN architecture, VGG16Net, was ranked second in ILSCRC for accuracy
in 2014 [18]. The largest created VGG16 architecture consists of 16 layers, 3 of which are
fully connected and contain an average of 144 million parameters. The layers contain five
pooling layers 2 × 2 in size in each convolution layer. There is also a softmax linear layer at
the output. The ReLU activation function is applied in all fully connected layers, and at
the same time, the Dropout Layer is used in fully connected layers. Compared to popular
methods, it is a CNN model that is considered to have a high computational load due to its
large parameters.

DenseNet is a recently proposed custom convolutional neural network model where
the current layer connects with all previous layers [23]. The structure has some advantages
over existing structures, such as mitigating the disappearing gradient problem, enhancing
feature propagation, promoting feature reuse, and reducing the number of parameters. A
deep DenseNet is defined as a series of DenseNets (called dense blocks) sequentially con-
nected by additional convolution and pooling operations between consecutive dense blocks.
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We can create a deep neural network flexible enough to represent complex transformations
with such a structure. An example of deep DenseNet is shown in Figure 1.
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Figure 1. Three-Block DenseNet Architecture.

3.2. Methods and Materials

Some changes were made in the modified CNN model, taking into account the short-
comings of other models. As a result of the examination of the VGG16 Net architectural
structure, it was observed that the VGG16 Net convolutional layers positively affected the
success rate in areas where health data are not used. For this reason, it was decided to
use convolutional layers in the model created. Afterward, the DenseNet architecture was
examined. Thanks to the dense layers of this architectural structure, it was determined that
a more detailed search was carried out in the MRI images. For this reason, convolutional
networks were built with a more intense working principle in the model created. Finally, a
decrease in the success rate was detected due to the low number of layers in the analysis
of the CNN’s simple architectural structure. For this reason, the number of layers was
increased. In this way, searches of the image were made more detailed. The adjustments
made in the created model and the increase in the number of layers affected the classifica-
tion rates and increased the success rate. The Figure 2 explain the components of modified
CNN networks.
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After the model was created, two different paths were chosen for training and testing.
First, the data set was trained in a classical way and separated as a test. Then, the training
data were used during deep learning. Afterward, the test data and the success rates of
the model were examined. The K-fold cross-validation method was chosen as a second
method, and K was determined as 3. The reason for choosing this method was to verify the
model’s reliability by creating independent data sets and to prove that the model will show
the same success in all kinds of data sets.

During the material selection stage, research was carried out from many sources. As
a result of the research, more than 7000 images shared as open source on Kaggle and
intended for use in brain tumor image processing studies were obtained. These images
consist of 4 different classes in total, classified as three different types of brain tumors and
images of healthy individuals. Later, these data were divided to be used in the training
and testing phases. The purpose of this was to not use the data used in the training phase
in the testing phase. Such a distinction has been made because reclassifying the data the
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model has seen before during machine learning would affect the accuracy rate. Afterward,
studies using the same data set on Kaggle were examined. The reason for these studies
was to identify the deficiencies in other studies and to eliminate these deficiencies in our
study. Three popular studies were examined. Two of them are models that have been
trained by machines before and are expected to have a high success rate. Finally, a simple
CNN architecture was examined. This review aims to measure the success of the CNN
architecture, which is generally used in image processing in the health field, and then to
determine how contributions should be made to the modified CNN architecture.

3.2.1. K-Fold Cross Validation

An extra k-fold cross-validation method was added to test the model’s accuracy and
examine the results. This method was added to retrain and test the model with independent
data sets other than manually separated data sets.

Cross-validation is a model validation technique that tests how a statistical analysis
will yield an independent data set. Its primary use is to predict with what accuracy a
prediction system will work in practice. In a prediction problem, the model is usually
trained on a set of “known data” (“training set”) and tested against a set of “unknown data”
(“validation set” or “test set”). This test aims to measure the trained model’s generalization
ability to new data and to detect overfitting or selection bias problems. Simple approach:
Set aside 75% for training and 25% for testing. However, while the data are fragmented,
some biases and errors may occur in the training and testing of the model, depending on
the distribution of the data. Here, k-fold cross-validation divides the data into equal parts
according to a determined k number, ensuring that each part is used for both training and
testing, thus minimizing deviations and errors caused by dispersion and fragmentation.
The K value is usually chosen as 3 or 5. This value can be selected as 10 or 15, but this will
cause a costly calculation and time loss.

3.2.2. Dataset

An open-source brain tumor dataset was used to analyze and evaluate our model,
which was developed using different CNN architectures, as shown in Figure 3. This dataset
was obtained by combining three datasets (figshare, SARTAJ dataset, Br35H) [24]. There are
four classes in total in the data set. These are: brain MRI images from glioma, meningioma,
oituitary, and healthy individuals. There are 1623 images for glioma, 1627 images for
meningioma, 1769 images for pituitary, and 2002 images for healthy individuals. A total of
7021 MRI images were used. The dataset is open-sourced in the Kaggle application. Each
file is a 512 × 512 JPEG file with a label indicating the type of brain tumor. This data set
was used as input data for each model.

Figure 3. Classes of the Dataset.

For classifying and defining the brain tumor using the MRI images of the brain
tumor dataset, three different models were first processed; then, the model created with
these models was compared. Examined models included: standard CNN architecture,
VGG16Net architecture, and DenseNet architecture. These models were compared with the
later modified model.
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4. Results and Discussion and Evaluation of Parameters

The effectiveness of the proposed brain tumor classification and detection system is
evaluated by calculating the four main outcome-based evaluation metrics used to test the
classifier: true positives (TP), false positives (FP), true negatives (TN), and false negatives
(FN). The performance of the proposed system is evaluated using the following parameters,
as can be seen in Table 2.

Table 2. Confusion matrix definition.

Class Statement Formula

True Positive Images that belong to a patient who is sick and
correctly known by the model TP

True Negative Images that belong to a patient who is healthy
and correctly known by the model TN

False Positive Images that belong to a patient who is healthy
but diagnosed as sick by the model FP

False Negative Images that belong to a patient who is sick but
diagnosed as healthy by the model FN

Accuracy determines the ability to accurately distinguish brain tumor types. To
estimate the accuracy of a test, we calculate the ratio of true positive and true negative for
all evaluated cases calculated by the following relationships:

Accuracy =
TP + FN

TP + TN + FP + FN

On the other hand, recall is a metric that shows how many of the operations we need
to estimate as positive are positive.

Recall =
TP

TP + FN

Precision, on the other hand, shows how many of the values we estimated as positive
are actually positive:

Precision =
TP

TP + FP
The F1 Score value shows us the harmonic mean of Precision and Recall values. The

reason why it is a harmonic mean instead of a simple mean is that we should not ignore
the extreme cases. If it were a simple average calculation, a model with a Precision value of
1 and a Recall value of 0 would have an F1 Score of 0.5, which would mislead us:

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall

4.1. Training Parameters

The training options and hyperparameter networks assigned for training are listed in
Table 3. Here, the same training options are used to compare the performance of different
architectures. Networks are trained at a learning rate of 1010 for 100 epochs. The data set
was divided into two training and testing. A total of 5650 data points were used in the
training phase, and 1371 data points were used in the testing phase. The model was trained
for 100 epochs. The horizontal axis refers to the number of epochs, and the vertical axis
refers to the error rate.
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Table 3. Hyperparameters.

Parameters Value

Momentum 0.9
Initial learning rate 10−4

Maximum number of epochs 100
Validation Split 0.1

4.2. Training Phase

As a result of the research carried out on Kaggle, three different networks were selected
to be examined. These networks are Basic CNN, VGG16Net, and DenseNet. Then, the data
percentage to be used in the training phase was determined on the chosen data set: 80% of
the data is reserved for use during the training phase and 20% for the testing phase. During
the training phase, the accuracy rates of architectural structures, validation accuracy rates,
and changes in loss functions were examined and tabulated at each step. These changes
were examined separately for each model. It was learned that the same errors occurred
in certain classes during the classification in the previously trained models. In the simple
CNN network, classification errors arose due to deficiencies in the layers. These errors
were reduced to minimum levels in the modified CNN network, and high accuracy rates
were obtained during the training phase.

4.2.1. Basic CNN Architecture

During the literature research phase of the study, the models in other studies were
examined. As a result of this research, it was concluded that the popularities of the classical
CNN model, VGG16Net, and DenseNet models in the studies were high, so it was decided
to examine studies of these models. In the classical CNN architecture, firstly, the structure
of the layers was examined. There is only one convolutional layer and a pooling layer
in this structure. Then, classification is performed by passing information to the classical
neural network. In the proposed approach, convolutional and pooling layers have been
developed and inserted into the classical neural network after multiple preprocessing steps.

As a result of the research carried out on Kaggle, it was decided that the first structure
to be examined would be a simple CNN architecture. The purpose of choosing this
architectural structure is to observe how successful the CNN architecture will be without
changing the layers. As a result of these observations, it was decided how changes should
be made in the layers. The system was operated with a total of 10 epochs, and the resulting
values were examined. These values are shown in Table 4.

Table 4. Simple CNN Architecture Training Stage Accuracy Values.

Number of Epochs Loss Function Accuracy Rate Validation Loss
Function

Validation
Accuracy Rate

1 1.2098 0.6435 1.8210 0.6485
2 0.5977 0.7582 0.5531 0.7680
3 0.4806 0.7959 0.6529 0.7680
4 0.4826 0.8154 0.4741 0.8629
5 0.3804 0.8502 0.5892 0.7856
6 0.3072 0.8685 0.4932 0.8084
7 0.2291 0.8969 0.3390 0.9086
8 0.2102 0.9099 0.3310 0.9174
9 0.1953 0.9166 0.3505 0.9033

10 0.1732 0.9232 0.3290 0.9192

As can be seen from the graphics, the accuracy of the system is up to 92%. However, to
test the reliability of the system, an application was made using the test data set. The reason
for this is that even if the success rates of the created models are high during the training
phase, their inadequacy in the testing phase has been observed before. As a result of this
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application, and as can be seen in Figure 4, an error matrix was created, and Precision,
Sensitivity, and F1 Scores were examined over this error matrix.
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As can be seen from the error matrix in Figure 4, the simple CNN model works well
for two classes (Healthy Individual and Pituitary). However, the success rate in other
classes was less than expected. Even if the success rate in other classes is sufficient as a
result of a normal examination, a success rate of 89–90% is not sufficient in a study on
cancer in the field of health. For this reason, this model is not a model that can achieve
the necessary success in real life. The weak points of this model were examined, and it
was determined which parts were missing. Even though the success rate in MRI images of
healthy individuals and patients with the pituitary disease was at the expected rate, the
success rates in MRI images in the glioma and meninglioma tumor classes were below the
expected levels.

In order to examine the reliability of the model in detail, the values of each tumor class
at the test stage were examined separately. In this way, it has become easier to detect the
model’s weak points. As we have previously examined in the error matrix, although the
success rate in healthy individuals and patients with a pituitary brain tumor was 97–98%,
the success rate in meninglioma and glioma tumor types remained below 90%, as shown
in Table 5. This ratio is not sufficient for application in the field of health. The reason for
this low success rate is the equation we use to calculate the F1 score. While calculating the
F1 score, the value that affects the ratio the most is the “False Positive” value. This value
occurs when people’s test results are negative, but they have a disease, and it is the most
important value in medical applications. This is the weakest point of this system since this
value is too high in the case of meninglioma.

Table 5. Performance of the CNN model by class.

Brain Tumor Classes Precision Recall F1 Score

0 0.89 0.90 0.89
1 0.97 0.98 0.97
2 0.88 0.85 0. 86
3 0.95 097 0.96
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4.2.2. VGG16Net Architecture

The VGG16Net architectural structure uses convolutional layers in groups of two or
three, and it is different from CNN model structures. At the same time, the VGG16Net
architecture functions as a previously trained model. The reason for making a comparison
between VGG16Net and the proposed model is that the complexity in the former’s network
structure is higher than the proposed model. We also want to see how much a pre-trained
model will affect the success rate.

As the second model, it was decided to examine the VGG16Net architectural structure.
A new model was created using the VGG16 transfer learning method. The purpose of this
model is to increase its reliability by applying training with large datasets. This model was
run at the same epoch number with the simple CNN architecture, and its values during the
training phase are given in Table 6.

Table 6. VGG16 Architecture Training Phase Accuracy Values.

Number of Epochs Loss Function Accuracy Validation Loss
Function

Validation
Accuracy Rate

1 8.3011 0.5701 4.1341 0.7255
2 2.8375 0.7731 2.8020 0.7824
3 1.9171 0.8286 2.1238 0.8023
4 1.4598 0.8527 1.7471 0.8222
5 1.1312 0.8698 1.6981 0.8293
6 0.9522 0.8785 1.6033 0.8222
7 0.7834 0.8905 1.2539 0.8478
8 0.6701 0.9013 1.1761 0.8592
9 0.5615 0.9051 0.9738 0.8720

10 0.4940 0.9103 0.9641 0.8663

As seen in Table 6, the accuracy rate of the model regularly increases throughout
the training phase. However, during the validation stage, that is, the pre-test phase, the
accuracy values could not meet the expected values and did not show a regular increase.
The validation accuracy decreased again in some epochs. Afterward, the trained model
was tested, and an error matrix was created. A table was created to examine this matrix
in detail and to see the “Sensitivity,” “Precision,” and “F1 Score” values. As seen on the
confusion matrix, the VGG 16 Model worked with a lower success rate than the simple
CNN model, and the success rate decreased in the same classes. The model that made
many mistakes in the glioma brain tumor class was determined as a model that is unlikely
to be used in the health field as a success rate.

Later, when we examined the performance of Table 7 according to their classes, it made
too many mistakes and examined the deficiencies in meninglioma and glioma tumor types
similar to the previous model. It did not achieve the expected success in distinguishing
tumor classes at the classification stage, as shown in Figure 5.

Table 7. VGG16 Model Performance Table by Classes.

Brain Tumor Classes Precision Recall F1 Score

0 0.80 0.89 0.84
1 0.93 0.96 0.94
2 0.85 0.67 0.75
3 0.83 0.94 0.90
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4.2.3. DenseNet Architectural Structure

The reason for examining the DenseNet architecture is that in DenseNet, each layer
receives inputs from the previous layers and transfers all feature maps to the next layers.
The aim here is to compare the CNN architectural structure and the DenseNet architectural
structure, which transfers collective information. This way, the operation of feature maps
will be compared, and the differences between the models will be examined.

Finally, a different transfer learning model was examined based on the VGG16 transfer
learning model. The reason for choosing the DenseNet architecture is that it can better
learn the details in the inputs and outputs by using dense layers. The DenseNet model
is also a model that has been previously trained with different data sets. It was run on
the same data set, with the same number of epochs as the other models. The values at the
training stage are given in Table 8.

Table 8. DenseNet Architectural Structure Education Phase Values.

Number of Epochs Loss Function Accuracy Rate Validation Loss
Function

Validation
Accuracy Rate

1 0.5760 0.7787 0.3221 0.8766
2 0.4070 0.8427 0.3887 0.8574
3 0.3460 0.8634 0.4153 0.8574
4 0.3095 0.8855 0.3364 0.8775
5 0.3030 0.8879 0.3355 0.8836
6 0.2894 0.8828 0.3757 0.8688
7 0.2783 0.8993 0.3116 0.8889
8 0.2747 0.8958 0.3682 0.8329
9 0.2507 0.9068 0.2559 0.9064

10 0.2504 0.9030 0.3787 0.8608

Like the VGG16 model, the DenseNet model showed a regular increase in accuracy
during the training phase. However, also like the VGG16 model, there is a tide in the
accuracy rates in the pre-test phase, causing a loss of confidence. After some epochs, there
were decreases. In order to examine the success rates in the test phase, a table showing the
“Sensitivity”, “Precision,” and “F1 Score” values was created.
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As can be seen in Table 9, unlike the VGG16 architecture, DenseNet’s architecture
failed to detect meninglioma and glioma tumors, although the Sensitivity ratio was high in
healthy individuals and pituitary tumor patients. Likewise, the apparent insufficiency in
F1 scores is due to the high number of “False Positives.”

Table 9. DenseNet Architectural Structure Performance Values by Class.

Brain Tumor Classes Precision Recall F1 Score

0 0.75 0.99 0.85
1 0.91 0.99 0.95
2 0.93 0.83 0.88
3 0.92 0.58 0.71

4.2.4. Modified CNN Architecture

As a result of the examination of the three models, deficiencies in each model were
determined. Afterward, a CNN model was created in order to eliminate these deficiencies.
In this model, unlike the simple CNN model, a more advanced network is created, and
images are analyzed in more detail in this network. The values of the model operated in
the form of 20 epochs during the training phase are given in Table 10.

Table 10. Modified Model Training Stage Values.

Number of Epochs Loss Function Accuracy Rate Validation Loss
Function

Validation
Accuracy Rate

1 0.7699 0.7271 1.1123 0.6538
2 0.4267 0.8429 0.6523 0.7522
3 0.3269 0.8773 0.7634 0.7135
4 0.2142 0.9228 0.3145 0.8981
5 0.1867 0.9310 4.2310 0.6520
6 0.1422 0.9496 0.5562 0.8418
7 0.0750 0.9742 0.2394 0.9262
8 0.0599 0.9797 0.5438 0.8453
9 0.0493 0.9850 0.1974 0.9455

10 0.0472 0.9855 0.1936 0.9438
11 0.0404 0.9877 0.2002 0.9438
12 0.0383 0.9877 0.1982 0.9525
13 0.0317 0.9922 0.2054 0.9438
14 0.0342 0.9887 0.2039 0.9455
15 0.0342 0.9914 0.2040 0.9473
16 0.0336 0.9910 0.2056 0.9438
17 0.0312 0.9910 0.2050 0.9438
18 0.0323 0.9910 0.2045 0.9455
19 0.0390 0.9895 0.2048 0.9455
20 0.0304 0.9914 0.2046 0.9455

As can be seen in Table 10, a 99% success rate was achieved in the training phase,
unlike other models. In the pre-test phase, this rate increased to 95%. In order to test
this model and examine in which parts it makes mistakes, an error matrix, followed by a
“Sensitivity”, “Precision”, and “F1 Score” table, was created.

As a result of the examinations on the error matrix, all MR images were correctly
classified, except for 23 images in total. A “False Positive”, which is the most important for
us, was only made in three images. In the developed model, many of the deficiencies of
the other models were eliminated, and the F1 score was examined to check the model’s
reliability, as shown in Figure 6. In Table 11, additional evaluation metrics are provided
for each class. These metrics convey useful information regarding the modified model’
predictive power for each class.
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Table 11. Performance Values by Modified Model Classes.

Brain Tumor Classes Precision Recall F1 Score

0 0.96 0.97 0.97
1 0.97 0.98 0.98
2 0.96 0.91 0.94
3 0.95 0.99 0.97

In order to prove this increase and to ensure the reliability of the model, a K-fold
cross-validation method was also added, and the results of this method were examined.
As a result of the cross-validation process, it has been proven that the model’s work
with independent data sets does not reduce its success rate, and it works better than
other models.

In the K-fold cross-validation, K was determined as 10. In the first stage, K was
determined as five, and the results were examined. After the K-fold application, an increase
in the success rate was observed. The reason why five-fold cross-validation was chosen first
is to determine how it would affect the operation of the system. Later, due to the increase in
the success rate, K was determined as ten and run again. The reason for this was to observe
whether there would be an increase in the success rate as a result of 10-fold cross-validation.
However, success rates continued to rise between 97 and 95. It was decided to use Google
Colab during the operations. This is because the model that is running on Jupyter has
been shown to have a very long processing time. The fast transaction service provided
via Google Colab was utilized. The comparative results for the brain tumor databases are
depicted in Table 12.

The developed CNN architectural structure showed a higher success than other archi-
tectural structures. The classical CNN architectural structure could not reach the desired
success rate due to the low number of layers. In the examination of the model, it was
observed that there were some deficiencies in feature extraction due to the number of layers,
and for this reason, the success rate decreased in some classes.
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Table 12. Ten-fold cross-validation performance rates (%).

Fold Number
N Training Accuracy Test Accuracy

1 0.96 0.94
2 0.95 0.93
3 0.96 0.94
4 0.95 0.9256
5 0.97 0.94
6 0.96 0.93
7 0.95 0.94
8 0.97 0.94
9 0.97 0.95
10 0.96 0.94

In the VGG16Net architectural structure, it has been observed how to measure the
success rate of pre-trained models and how increasing the number of convolutional layers
will affect the success rate. It was concluded that the previously trained models had a low
overshoot rate on health data. For this reason, the margin of error is high in the classification
stage of such architectural structures.

Finally, the reason for examining the DenseNet architectural structure is to observe
how the use of denser layers in the transfer learning method and the collective knowledge
transfer will yield results. Although dense layers are more effective than the VGG16Net
architectural structure, the error rate was high in some classes due to the transfer learn-
ing method.

The conclusion that is understood as a result of these examinations is that the layers
should be used intensively and that the training phase should be carried out without using
transfer learning methods. For this reason, an intensive CNN model was created in the
proposed method, in which 80% of the data was used in the training phase and the model
was self-trained without using transfer learning methods.

Table 13 was created to compare and examine the average values of precision, sensitiv-
ity, and F1 Scores of all models

Table 13. Comparison Table of Models.

Model Name Number of Epochs Avg. Precision Avg. Recall Avg. F1 Score

Basic CNN 10 0.9225 0.9 0.92
VGG16 Net 10 0.8625 0.8625 0.8575
DenseNet 10 0.8775 0.8775 0.8475

Modified CNN 10 0.96 0.96 0.9650

Table 14 gives average evaluation metrics (F1 Score, Precision, and Recall) for a
comparison of the results having the same dataset as the state-of-the-art studies.

Table 14. Comparison Table of Models with other papers.

Raza
et al. [9]

Deepak &
Ameer [25]

Alqudah
et al. [26]

Saleh et al.
[27]

Ghassemi
et al. [28] Our study

F1 Score 99.66 95.34 98.91 99.75 95.09 96.00
Precision 99.60 94.70 98.98 - 95.28 96.00

Recall 100 96.00 98.85 - 94.91 96.50

When the table is examined, it can be observed that our research is in close proximity
with the studies that reach high accuracy among modern studies. There is also some
consistency between all three scales. Detailed interventions that can be carried out in the
data preparation and cleaning stages can raise the values a little higher.
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5. Conclusions

In our study, researchers determined weak points by examining many image pro-
cessing methods. These studies were conducted to examine the missing parts of previous
studies and eliminate these deficiencies. First, the simple structure of the CNN architecture
was examined, and some tests were carried out using our study’s dataset. As a result of
these tests, it has been determined that there are some deficiencies in classification due
to the small number of layers. Afterward, the VGG16Net and DenseNet architectural
structures were examined. These models were examined to determine how the transfer
learning method would affect their success rates and to observe how the use of dense layers
will contribute to them. It has been observed that the transfer learning method does not
affect the health field’s success rate, even if the success rate is high in other areas. For this
reason, it was decided not to use the transfer learning method in the model created in this
study. Afterward, DenseNet analysis was carried out. Although it affected the success rate
positively in dense layers, the success rate did not increase to the expected level due to
transfer learning. For this reason, it was decided that a structure with dense layers should
be created, and the training phase should be completed in person. A CNN architecture
was used in the created model, and the density of the layers in the preprocessing stage
was kept at a high rate. In this way, the rate of obtaining information from the data has
increased. Since it was decided not to use the transfer learning method, it was concluded
that more data were needed. For this reason, as a result of the research, a dataset published
as open source on Kaggle was found. In this dataset, there are four classes, namely, Glioma,
Meninglioma, Pituitary, and No Tumor, and these classes contain more than 7000 images
in total. The dataset is divided into 80% training and 20% testing phases. The expected
success rate was achieved due to the large amount of data in the training phase and the
fact that the proposed model was created with dense layers. This way, a successful training
phase was achieved thanks to the dense layers without using transfer learning methods,
and a success rate of 94–97% was achieved. In future studies, it is aimed to improve the
weak points of our model. The most important weakness of the proposed model is the
long processing time. The reason for the late response is that the model was created using
both dense and convolutional networks. Afterward, we would like to add segmentation
areas with tumors. This way, after the tumor classification is complete, it will be possible
to calculate in which part of the brain the tumor is located and its size. If these goals are
completed, a system will be created that will help people working in the field of health to
lighten their burdens.
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preparation, O.İ.B., O.Ö., H.G. and F.K.; writing—review and editing, O.İ.B., O.Ö., H.G., F.K., J.K.,
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8. Khan, F.; Tarimer, I.; Alwageed, H.S.; Karadağ, B.C.; Fayaz, M.; Abdusalomov, A.B.; Cho, Y.I. Effect of Feature Selection on the
Accuracy of Music Popularity Classification Using Machine Learning Algorithms. Electronics 2022, 11, 3518. [CrossRef]

9. Raza, A.; Ayub, H.; Khan, J.A.; Ahmad, I.; Salama, A.S.; Daradkeh, Y.I.; Javeed, D.; Rehman, A.U.; Hamam, H. A Hybrid Deep
Learning-Based Approach for Brain Tumor Classification. Electronics 2022, 11, 1146. [CrossRef]

10. Lakshmi, M.J.; Rao, S.N. Brain tumor magnetic resonance image classification: A deep learning approach. Soft Comput. 2022, 26,
6245–6253. [CrossRef]

11. Ge, C.; Gu, I.Y.-H.; Jakola, A.S.; Ya, J. Enlarged Training Dataset by Pairwise GANs for Molecular-Based Brain Tumor Classification.
IEEE Access 2020, 8, 22560–22570. [CrossRef]

12. Işın, A.; Direkoğlu, C.; Şah, M. Review of MRI-based Brain Tumor Image Segmentation Using Deep Learning Methods. Procedia
Comput. Sci. 2016, 102, 317–324. [CrossRef]

13. Kurup, R.V.; Vishvanathan, S.; Kp, S. Effect of Data Pre-processing on Brain Tumor Classification Using Capsulenet. In Proceedings
of the International Conference on Intelligent Computing and Communication Technologies, Hyderabad, India, 9–11 January
2019; pp. 110–119.

14. Siar, M.; Teshnehlab, M. Brain Tumor Detection Using Deep Neural Network and Machine Learning Algorithm. In Proceedings
of the 9th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 24–25 October 2019.

15. Maharjan, S.; Alsadoon, A.; Prasad, P.W.C.; Al-Dalain, T.; Alsadoon, O.H. A novel enhanced softmax loss function for brain
tumour detection using deep learning. J Neurosci Methods 2020, 330, 108520. [CrossRef] [PubMed]

16. Arı, A.; Hanbay, D. Deep learning-based brain tumor classification and detection system. Turk. J. Electr. Eng. Comput. Sci. 2018,
26, 5.

17. Boustani, A.E.; Aatila, M.; Bachari, E.E.; Oirrak, A.E. MRI Brain Images Classification Using Convolutional Neural Networks. In
Proceedings of the Advanced Intelligent Systems for Sustainable Development (AI2SD’2019), Marrakech, Morocco, 8–11 July
2019; pp. 308–320.

18. Arif, M.; Ajesh, F.; Shamsudheen, S.; Geman, O.; Izdrui, D.; Vicoveanu, D. Brain Tumor Detection and Classification by MRI
Using Biologically Inspired Orthogonal Wavelet Transform and Deep Learning Techniques. J. Healthc. Eng. 2022, 2022, 2693621.
[CrossRef]

19. Budati, A.K.; Katta, R.B. An automated brain tumor detection and classification from MRI images using machine learning
techniques with IoT. Environ. Dev. Sustain. 2022, 24, 10570–10584. [CrossRef]

20. Dehkordi, A.A.; Hashemi, M.; Neshat, M.; Mirjalili, S.; Sadiq, A.S. Brain Tumor Detection and Classification Using a New
Evolutionary Convolutional Neural Network. arXiv 2022, arXiv:2204.12297. [CrossRef]

21. Biratu, E.S.; Schwenker, F.; Debelee, T.G.; Kebede, S.R.; Negera, W.G.; Molla, H.T. Enhanced Region Growing for Brain Tumor MR
Image Segmentation. J. Imaging 2021, 7, 22. [CrossRef]

22. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

23. Abirami, M.; Vennila, B.; Suganthi, K.; Kawatra, S.; Vaishnava, A. Detection of Choroidal Neovascularization (CNV) in Retina
OCT Images Using VGG16 and DenseNet CNN. Wirel. Pers. Commun. 2022, 127, 2569–2583. [CrossRef]

24. Nickparvar, M. Brain Tumor MRI Dataset. 2021. Available online: https://doi.org/10.34740/KAGGLE/DSV/2645886 (accessed
on 24 April 2022).

25. Deepak, S.; Ameer, P.M. Brain tumor classification using deep CNN features via transfer learning. Comput. Biol. Med. 2019,
111, 103345. [CrossRef] [PubMed]

26. Alqudah, A.M.; Alquraan, H.; Qasmieh, I.A.; Alqudah, A.; Al-Sharu, W. Brain tumor classification using deep learning technique–a
comparison between cropped, uncropped, and segmented lesion images with different sizes. arXiv 2020, arXiv:2001.08844.

27. Saleh, A.; Sukaik, R.; Abu-Naser, S.S. Brain tumor classification using deep learning. In Proceedings of the 2020 International
Conference on Assistive and Rehabilitation Technologies (iCareTech), Gaza, Palestinec, 28–29 August 2020; pp. 131–136.

28. Ghassemi, N.; Shoeibi, A.; Rouhani, M. Deep neural network with generative adversarial networks pre-training for brain tumor
classification based on MR images. Biomed. Signal Process. Control 2020, 57, 101678. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/electronics11213518
http://doi.org/10.3390/electronics11071146
http://doi.org/10.1007/s00500-022-07163-z
http://doi.org/10.1109/ACCESS.2020.2969805
http://doi.org/10.1016/j.procs.2016.09.407
http://doi.org/10.1016/j.jneumeth.2019.108520
http://www.ncbi.nlm.nih.gov/pubmed/31734325
http://doi.org/10.1155/2022/2693621
http://doi.org/10.1007/s10668-021-01861-8
http://doi.org/10.2139/ssrn.4292650
http://doi.org/10.3390/jimaging7020022
http://doi.org/10.1007/s11263-015-0816-y
http://doi.org/10.1007/s11277-021-09086-8
https://doi.org/10.34740/KAGGLE/DSV/2645886
http://doi.org/10.1016/j.compbiomed.2019.103345
http://www.ncbi.nlm.nih.gov/pubmed/31279167
http://doi.org/10.1016/j.bspc.2019.101678

	Introduction 
	Materials and Methods 
	Methodology 
	Overview 
	Methods and Materials 
	K-Fold Cross Validation 
	Dataset 


	Results and Discussion and Evaluation of Parameters 
	Training Parameters 
	Training Phase 
	Basic CNN Architecture 
	VGG16Net Architecture 
	DenseNet Architectural Structure 
	Modified CNN Architecture 


	Conclusions 
	References

