
Current and future prospective for
battery controllers of solar PV
integrated battery energy storage
systems

Mustafa Hasan1* and H. Serra Altinoluk1,2

1Electrical & Electronics Engineering, Mugla Sıtkı Kocman University, Mugla, Turkey, 2The Center for Solar
Energy Research and Applications (GUNAM), Ankara, Turkey

Solar photovoltaic (PV) microgrids have gained popularity in recent years as a way
to improve the stability of intermittent renewable energy generation in systems,
both off-grid and on-grid, and to meet the needs of emergency settings during
natural catastrophes. Over the last several decades, researchers have been
interested in improving the efficiency of photovoltaic (PV) systems. Solar-
battery charge controllers based on various algorithms are continuously and
intensively employed to improve energy transfer efficiency and reduce
charging time. This paper presents state-of-the-art solar photovoltaic (PV)
integrated battery energy storage systems (BESS). An overview of and
motivations for PV-battery systems is initially introduced, followed by the
survey methodology and its contributions. In addition, this study classifies
residential solar PV systems and battery charge controllers with their
corresponding references in the review structure, which also provides details
on battery charger topologies. Subsequently, an analytical review of the PV-
Battery charge controller and the failure probability of such systems is
discussed to determine the system components that mostly fail and their
importance in the system. Finally, recommendation amendments to the
existing charge controller that potentially contribute to increasing the system
efficiency, reducing the failure probabilities, and reducing the cost are presented
as future design concepts for the entire system.
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1 Introduction

In recent years, photovoltaic (PV)microgrids have gained attention as a potential solution for
enhancing the reliability of intermittent renewable energy generation in systems, off-grid stand-
alone or on-grid, and during unexpected emergencies resulting from natural disasters. Due to the
severe energy crisis and environmental pollution in recent years, solar energy has received major
consideration. One of the most popular sources of electrical energy today is photovoltaic
technology, which converts solar radiation directly into electricity. They can be utilized in
stand-alone mode to supply some islanded loads or in grid-connected mode to support the
network. Because weather circumstances (such clouds and fog) have a substantial impact on the
solar energy received by a PV array, the PV alone cannot serve loads in stand-alone mode.
Batteries and other energy storage devices are so necessary. The batteries and PV array are both
DC sources, thus they are joined to the DC bus by DC-DC converters.
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Over the last several decades, photovoltaic (PV) systems and
their efficiency improvements have become a core research field. In
addition to efficiency improvement, it is very important to be able to
transfer and store energy correctly and effectively. Continuous and
intensive efforts have been made to productively manage energy
transfer. One of the most crucial actions is to reduce the charging
time using solar-battery charging controllers based on different
algorithms. A key aspect of PV-powered microgrids is the energy
conversion efficiency during the daytime by maintaining the local
charging voltage, which is highly influenced by load and generation
fluctuations. The charge controller plays a vital role in controlling
the voltage to charge the battery to an appropriate voltage level
equivalent to its full state of charge (SOC). It also prevents reverse
current flow when solar power is not available, and overcharging
when the PV energy exceeds the electrical load demand.

Designing a supervisory controller that can increase battery
lifespan, reduce self-discharge rate, and produce high energy
concentration is one of the key difficulties for battery energy
storage systems. A regulatory State of Charge (SOC) calculation
based on PV-Battery Management System (BMS) that best handles
these problems (Yonis Buswig et al., 2020). A standalone PV
integrated battery system has a number of significant concerns
including the output voltage quality, system price, system on/off
mode, battery charge and discharge pattern, battery lifetime, system
weight, suitable protection strategy, MPPT capacity, controllability,
efficiency, etc. These characteristics are influenced by the control
strategy, energy management system, configuration, DC-DC
converter type, battery and PV array size, control strategy, and
MPPT algorithm. Therefore, adjusting and choosing the
aforementioned parameters correctly is the most important duty
for designers of PV systems; hence, PV charge controller (Sabry
et al., 2015; Bogno et al., 2017; Salman et al., 2018; Al-Quraan and
Al-Qaisi, 2021; Kumar et al., 2021; Sabry and Hussein, 2021;
Aboagye et al., 2022).

The high initial cost of the system is the main barrier to deploying
battery integrated PV technology in the residential sector. However, if
the system’s design analysis is carried out in terms of the system’s
components, failure probability, and longevity, it could ultimately prove
to be a useful solution. PV electricity utilization is still in its infancy in
developing nations. People may be persuaded to support the
development of this technology in the nation by the right design
and user-friendly provision of photovoltaic electricity. Under order
to provide the necessary electrical energy for a small residential dwelling
in the climatic conditions, this research concentrates on the design
topologies analysis and failure probability for an off-grid and on-grid
PV system.

2 Survey methodology

Several studies have been conducted for purposes similar to
those proposed in this study. Each approximation and advance are
unique. When conducting an effective survey on a research topic, it
is critical to begin by adopting a precise approach. Some techniques
have been proposed in the literature to conclude meaningful
systematic conditions of art (Denyer and Tranfield, 2009; Kluge
et al., 2019). The approach used to create the state-of-the-art solar
PV-integrated Battery Energy Storage system (BESS) is described in

the next section. The search was limited to online published items
such as research articles, review papers, conference proceedings,
scientific books, and standards. To complete this review, databases
such as Scopus, IEEE Explore, Science Direct, Springer, Taylor &
Francis, and Wiley publishers were thoroughly searched. Keywords
and scientific terms used in the search stage include “power system
blackout,” “power outages,” “power system emergencies,”
“cascading events,” and “methods for blackouts and cascading
events”. Studies published in ISI and Q1, Q2, and Q3 journals
have been investigated in detail to avoid missing any useful and
helpful data. In addition to the aforementioned sources, IEEE
conference materials were combined for helpful information, and
IEEE standards and reports from other countries’ energy sectors
were scrutinized. Several studies have reported similar results. A
meticulous simplification process was performed to avoid repetition.
As a result of detailed research, the most related content was

FIGURE 1
Methodology flowchart for reviewing process.
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examined and thoroughly analyzed by a group of subject matter
specialists. A summary of the PV-integrated BESS is presented in the
flowchart in Figure 1.

As stated in the above methodology flowchart and review
process, the selection criteria for publications are based on

keywords, publication type, and content from high-quality
database publishers. A particular recent period was specified,
depending on the number of extracted publications subject to
content duplication. Publications were also subjected to another
filter on their compatibility with review goals. Finally, publications
were classified into major PV-Storage systems, research gaps, and
modeling.

As stated above, different types of publications were reviewed,
and a summary is presented in (Table 1). Considering the number of
studies shown here, journal articles covered the majority of the
reviewed research, while only 44 conference papers were considered
informative.

This study includes documents published online between
2005 and 2022. It should be noted that the topic of the papers
was limited, and we focused on reviewing the major PV-integrated
BESS. Furthermore, the research aims to provide insight into Solar
PV integrated BESS and topologies. During the research, it was
found that there is a lot of interest in the prospects of PV-
integrated BESS.

TABLE 1 Literature survey references classification.

Publication type Number Percentage

Research articles 174 77.67

Conference paper 44 19.64

Website 1 0.446

Books or chapters 5 2.232

FIGURE 2
Classification of residential solar PV systems (Pennstate, 2022).

FIGURE 3
Common types of solar charge controllers.
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3 Contributions

This paper’s major contributions can be summarized as
follows.

• A general overview of the principles for solar PV-integrated
BESS and its characteristics, as well as knowledge of extreme
weather occurrences and their devastating consequences.

• Discussion of the differences in the efficiency calculation of
solar PV-integrated BESS.

• A PV-integrated battery energy-storage framework provides a
general understanding of such systems.

• An important contribution is to present a comprehensive
assessment of current research on proactive solar PV
integrated battery energy storage enhancement measures.
The use of the voltage-balancing concept for strengthening
the solar PV-integrated BESS is one of these solutions, which
has been fully discussed in this study.

• A brief discussion on failure probability statistics for
the system components of solar PV-integrated BESS

TABLE 2 Compilation study of PV system classifications in the literature.

PV system types References

Without Storage system Elkholy et al. (2016); Hammoud et al. (2016); Halabi and Mekhilef, (2018); Regis et al. (2019); Singh et al. (2019);
Karuniawan et al. (2020); Abobakr et al. (2021)

With Storage system Chen andWu, (2008); Bortolini et al. (2014); Khoury et al. (2015); Khoury et al. (2016a), Khoury et al. (2016b); Jacob et al.
(2017); Khamis et al. (2018); Modi and Singh, (2020); Najafi Ashtiani et al. (2020)

Direct-Coupled system (Merino et al. (2008); Almaktoof et al. (2015); Tsuanyo et al. (2015); Janghorban Esfahani and Yoo, (2016); Townsend,
(2016); Chahartaghi and Hedayatpour Jaloodar, (2019); Mohamed, (2020)

DC system self-Regulating Gibson and Kelly, (2010); Elgammal and Sharaf, (2012); Xu et al. (2015)

AC system with charge controller for battery and
load

Fahmi et al. (2014); Mohanty and Muneer, (2014); Soh and Tiew, (2015); Ghafoor and Munir, (2015); Sharma et al.
(2016); Ameur et al. (2017); Aziz et al. (2018); Premkumar et al. (2018); Bello et al. (2021); Chtita et al. (2021); Dash and
Sarojini, (2021)

With wind turbines Ngan and Tan, (2012); Baneshi and Hadianfard, (2016); Hosseinalizadeh et al. (2016); Jahangir et al. (2020); Kartite and
Cherkaoui, (2020); Khan and Javaid, (2020)

With hydro turbines Mahmoudimehr and Shabani (2018), Ming et al. (2018), Shabani and Mahmoudimehr (2018), 2019; Elgammal and
Boodoo (2021)

With diesel turbines Nfah et al. (2007), Lau et al. (2010), Khatib et al. (2011), Girma (2013), Ismail et al. (2013), Jeyaprabha and Selvakumar
(2015), Ghenai et al. (2017), Halabi et al. (2017), Ibrahim and Ghandour (2018), Mahmoudi et al. (2018), Shezan (2019),
Wichert and Lawrance (2020)

With fuel cell and other sources Alam and Gao (2007), Thounthong et al. (2013), Saravanan and Thangavel (2014), Fathabadi, 2017b (2017a), Dursun and
Aykut (2019), Padmanaban et al. (2019), Benlahbib et al. (2020), Ghenai et al. (2020), Singh et al. (2020)

FIGURE 4
The core fields focused on by different research groups.
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including failure rates per unit hour of the PV-battery
systems.

4 Review structure

4.1 Classification of residential solar pv
system

A good classification study is shown in (Figure 2)for
residential solar PV systems, as conducted by (Pennstate,
2022), which is the most cited article related to this concept.
In this regards (Table 2), in the present study is a compilation of
PV system classifications discussed in previous literature on the
topic. Grid-connected and stand-alone PV systems are two
types of PV systems used. Grid-connected PV Systems and
Stand-alone PV Systems are the two subcategories of PV
systems. Those grid-connected PV systems that are Directly
Connected to the Utility and those that are Categorized as
Bimodal PV Systems can be further divided into two groups.
Systems that are classed as Bimodal PV Systems do have storage

systems, but systems that are Directly Connected to the Utility
do not. Without battery, with battery, and hybrid PV systems
are the three subcategories of stand-alone PV systems. Direct-
coupled systems are systems without batteries, while self-
regulating DC systems or AC systems with a charge
controller for the battery and load can be systems with
batteries. Systems featuring wind turbines, hydroelectric
turbines, and solar panels can all be included in hybrid PV
systems.

Grid-connected PV systems are further divided into two types:
direct utility connections and bidirectional PV systems (Melath
et al., 2020). Directly connected to utility networks do not have
storage; however, bimodal PV systems do.With or without a battery,
hybrid PV systems are the three types of standalone PV system.
Direct-coupled systems do not have batteries, whereas self-
regulating DC or AC systems with a charge controller for the
battery and load contain batteries. Wind turbines, hydro
turbines, diesel generators, fuel cells, and other sources can all be
included in hybrid photovoltaic (PV) systems. Most studies
presented in the classification study are explained in detail in the
following section.

TABLE 3 The reference table according to the classification of PV-battery charge controller systems.

Charge controller Number of references

series Lokeshreddy et al. (2017)

shunt Lokeshreddy et al. (2017)

series and shunt Lokeshreddy et al. (2017); Maithili and Kanakaraj, (2019))

DC-DC converters (zeta) Andrade et al., 2015a; Andrade et al. (2015b); Mahendran and Ramabadran, (2016); Venmathi and Ramaprabha, (2016);
Ananda-Rao et al. (2020b); Ananda-Rao et al. (2020a); Chandran et al., 2021; Chaudhary et al. (2021)

Fractional short circuit current (Sher et al., 2015a; Sher et al., 2015b; Shebani et al. (2016); Keerthana et al. (2018); Owusu-Nyarko et al. (2019); Albatran and
Assad, (2020); Claude Bertin Nzoundja Fapi et al. (2021); Nadeem et al. (2021); Nzoundja Fapi et al. (2021)

Fractional open circuit voltage (Jafer et al. (2016); Shebani and Iqbal, (2017); Bandyopadhyay and Parui, (2018); Rajendran et al. (2019); Atri et al. (2020); Atri
et al. (2021); Benlahbib et al., 2020; Abdul-Razzaq, Fahim Sakr and Rashid, (2021); Olzhabay et al. (2021a); Olzhabay et al. (2021b)

Ripple correlation control Ferdous et al. (2018); Hammami et al. (2019); Shim et al. (2019); Al Kader Hammoud and Bazzi, (2020); Ricco et al. (2020); Sahu
and Dey, (2021); Sahu et al. (2021)

MPPT (perturb and observe based) Zaouche et al. (2017); Rezkallah et al. (2018); Chtouki et al. (2019); Situmorang et al. (2019); Padmagirisan and Sankaranarayanan,
(2019); Rokonuzzaman et al. (2020); Tan et al. (2020); Almutairi et al. (2021); Dey, (2021); Gil-Velasco and Aguilar-Castillo,
(2021); İnci, (2021); Mallal et al. (2021); Mohammadinodoushan et al. (2021); Mukhi, (2021); Mandourarakis et al. (2022)

MPPT (Fuzzy logic) Zaouche et al. (2017); Kiswantono et al. (2019); Pathak and Yadav, (2019); Tripathi et al. (2020); Zerouali et al. (2020); Marhraoui
et al. (2020c); Nagaiah and Sekhar, (2020); Pan et al. (2020); Baramadeh et al. (2021); Lagudu et al. (2021); Rkik et al. (2021); Seguel
and Seleme, (2021); Sudiharto et al. (2021)

DC-DC (buck converter) López et al. (2016); Chakraborty et al. (2018); Premkumar et al. (2018); Venkatramanan and John, (2019); Sharma et al. (2019);
Marhraoui et al. (2020a); Obukhov et al. (2020); Chtita et al. (2021); YAYLACI, (2021); Messaoud and Haddi, (2021); Nazar Ali
et al. (2021); Shufian et al. (2021)

MPPT (incremental conductance (INC)) Zakzouk et al. (2016); Ammar et al. (2019); Anowar and Roy, (2019); Necaibia et al. (2019); Sener et al. (2020); Mirza et al. (2020);
Pilakkat and Kanthalakshmi, (2020); Gupta et al. (2021); Kawde and Muley, (2021); Ahmad et al. (2022a); Ahmed et al. (2022b);
Isknan et al. (2022)

MPPT (Neural network) Messalti et al. (2017); Hidayat et al. (2019); Yonis Buswig et al. (2020); Kapoor and Sharma, (2020); Masoumi et al. (2020); Qays
et al. (2020); Ezzitouni et al. (2021); Villegas-Mier et al. (2021); Roy et al. (2021); Saeed et al. (2021); Saidi et al. (2021); Syed and
Khalid, (2021)

DC-DC (Buck-Boost converter) Triki et al. (2018); Zulkifli et al. (2019); Chen et al. (2019); Goud and Gupta, (2019); Goud and Gupta, (2020); Mohapatra et al.
(2019); Bagherwal and Badoni, (2020); Chandrasekar et al. (2020); Veeramallu et al. (2020); Mustafa et al. (2022); Viswanatha and
Venkata Siva, 2018

DC-DC (Boost converter) (Sansare et al. (2018); Bjaoui et al. (2019); El-Shahat and Sumaiya, (2019); Bagherwal and Badoni, (2020); Marhraoui et al. (2020b);
Al-Quraan and Al-Qaisi, (2021); Rajanna and Kumar, (2021); Sabzehgar and Ghali, (2021); Sabzehgar et al. (2022); Zizoui et al.
(2022)
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4.2 Classification of battery charge
controllers

Maximum power point tracking (MPPT) is a common approach
in both PV controllers (battery charger and inverter) to maintain the
adjustment of the impedance faced by the PV and maintain a system
operating very close to the peak power value of the PV array under
varying conditions. The conditions are represented mainly by the
solar irradiance (Irr), cell temperature (T), and load. Applications of
predictable, continuous, and small-sized loads can be configured to

operate without using a battery charge controller (Harrington, 1992;
Abu Eldahab et al., 2016). The classification of common charge
controller methods is shown in (Figure 3).

The evolution of a handful of PV-Battery charge controller
systems has been studied in the literature, particularly in recent
years. The focus of this topic is inspired by the ever-increasing
demand for trusted charge controller techniques (Othman, 2020;
Tan et al., 2020; Chtita et al., 2021). As a result of that, the
performance of all contemporary charge controller technologies
proposed in the literature is observantly evaluated in this section.

TABLE 4 Comparison table of the previously conducted studies in literature.

Ref. Method Applications Significant results Research gap

Ahsan et al.
(2020)

Optimization model as a mixed integer
linear programming problem with
optimization studio and CPLEX solver

Residential 43% annual profits Only simulation

No details on: memory, system
components, and controlling the PV-
Battery charging system

Liu et al.
(2020)

Both single-criterion and multi-criterion
optimizations based on decision-making
strategies

low-energy buildings Can achieve increasing of 15.0% and
48.6% with standard deviation of net grid
power, battery cycling aging, and
CO2 emission is reduced by 3.4%, 78.5%
and 34.7% respectively

Just a framework of optimization

No details on: the hardware, memory,
and system components

Mariaud et al.
(2017)

A Technology Selection and Operation
(TSO) optimization model of
decentralized PV and battery energy
systems

Commercial buildings 30% of energy used on-site can be
supplied by PVs while achieving a carbon
reduction of 26%

Just as a framework for assessing
technology investments

No details on: integrating PV system
with battery storage

Memory, and system components

Slama et al.
(2021)

A management scheme based on a
system behavioral approach with a
power flow management strategy

grid-PV system Absolute control of power electric path,
and precise adaptation without
compromising consumer’s comfort

Only simulation model

No details on: system cost

PV-Battery charging system

Kapoor and
Sharma
(2020)

Using a data obtained from short-term
load, weather, solar forecasting, and time
of-use tariff using random forest (RF)
technique

Residential The optimal battery scheduling algorithm
can increase the net saving in the
electricity bill

Only simulation model
No details on; electronic hardware
components/proposed
implementation cost and memory

Schmid and
Behrendt
(2021)

Numerical power flow simulation and
multi-objective optimization with the
objective functions Power-Cut-Offs, and
Levelized Cost of Electricity

Solar Home Systems Costs saving for MPPT reduced PV peak
power (by 31.2%–38.6%) and battery
capacity (by 2.8%–8.8%)

Only simulation model

Comparing and analyzing only the off-
grid case

No details on; memory and system
components

Yi et al. (2018) A control and power management
system for PV-battery systems

hybrid microgrids (both
grid-connected and
islanded modes)

Successful in regulating the voltage on
both DC and buses, transferring between
grid-connected and islanded operating
modes smoothly

No daily energy transfer efficiency

No details on memory and system
components

Although it stimulates both grid-
connected and islanded modes, it
provides just island experimental
verifications

Lv et al.
(2021)

A control strategy based on the SOC of
the BESS.

Distributed power
generation

The fluctuation range of the DC bus
voltage is controlled by 4.5%

No dependency on daily energy
transfer

Only a simulation model

No details on memory and system
components

Deal with only the case of Isolated DC
Microgrid
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Specifically, this study divided advanced battery charge controller
approaches into 14 groups. Based on this methodology, each
technique controls the power flow from the PV to the
battery(Table 3).and the wheel chart illustrated in (Figure 4)
depict the full region of inquiry in terms of PV battery
methodologies.

It is observed in this figure that the charge controller technology
with Perturb and Observe technique was the most common MPPT
algorithm considered in the past studies as a battery charge controller,
which is followed by Incremental Conductance based and the Ripple
correlation control. In contrast, the series-based, shunt-based, and the
combination between them are the methods that are less used in the
previous presented topologies. This result was not surprisingly due to
the advances in digital electronics and the corresponding efficiencies of
these technologies. However, the digital controllers are less sensitive and
lower reliability due to their complexity.

Each technique is thoroughly examined in the following
subsections, which also include a summary of several research
papers in each category. The wheel chart summarizes the limited
number of studies that have mainly considered shunts, series, and
their combinations to transfer solar PV energy to batteries. A
comparison of the significant results and research gaps is
presented in (Table 4).

It can be seen that the control problems of energy transfer for the
PV microgrid and the mismatching sags of the DC grid voltage are

rarely highlighted. All published studies compete on the fast tracking
of MPPs rather than evaluating systems by the efficiency factor of
the energy conversion/transfer over an entire day. The difficulty lies
in using a high sampling frequency to obtain the MPP values. This
issue is crucial for MPPT in grid-tied PV systems without batteries
that require high-speed processors and memory. These high
switching frequencies can increase the stress on power modules
and reduce their operating lifetimes (Jia et al., 2018). Therefore,
switching with a relatively lower frequency and DC voltage balance
plays a crucial role in power quality and reliability.

4.3 Battery charger topologies

A general topology diagram for a buck-boost converter-based
charge controller is shown in (Figure 5A) (Lokeshreddy et al., 2017;
Maithili and Kanakaraj, 2019).

Owing to its characteristics, the lead acid battery was chosen for
charging and discharging the series and shunt charge controllers.
The authors employed MOSFETs for switching to reduce switching
losses. The proposed charge controller was created in MATLAB and
the charging and discharging processes of the constructed charge
controller were tested (Lokeshreddy et al., 2017).

An energy management system (EMS) algorithm for a PV grid-
linked system integrated with a storage system was presented in

FIGURE 5
General-topology diagram for (A) buck-boost converter-based charge controller.(B) Energy dispatch scheduling of grid-connected solar PV system
with battery storage (Jing et al., 2022). (C) Ideal charging and discharging schedule for a hybrid PV-battery system (Kapoor and Sharma, 2020).
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(Slama et al., 2021) to reduce PV component redundancy, which
affects grid stability. The PV and energy storage systems were
connected to the same DC bus in the simulation model, and the
EMS provided control over the power flow from the PV generator to
the grid, based on a predetermined PV power level. When the PV
power falls below a predetermined threshold, energy is saved in the
batteries, which can be used during peak energy demand (PED)
periods. Otherwise, it continued to supply the main grid. The system
topology is shown in (Figure 5B).

An ideal charging and discharging schedule for a hybrid PV-
battery system installed on a residential customer’s premises was
proposed in (Kapoor and Sharma, 2020). The scheduling method
was designed to reduce customers’ electricity bills. Short-term load,
weather, and solar forecasting data were used in the proposed
approach. This utility is expected to establish a time-of-use rate
plan. This method was applied to a test with a real-world household
load and solar-generation situation. The topology used in this study
is illustrated in (Figure 5C).

A hybrid electric car with a solar PV battery and powertrain
controller (HEV) was considered in (Padmagirisan and
Sankaranarayanan, 2019), as shown in (Figure 6A). The major
goal of the proposed controller is to improve battery
management, load regulation, and maximum power extraction
from the PV panels whenever possible. A powertrain controller
can be divided into two levels: lower-level controllers and high-
level control algorithms. Individual tasks such as MPPT, battery
charging, and load regulation are performed using lower-level
controllers.

Reference (Tan et al., 2020) presented a buck topology and
Perturb and Observe (P&O)MPPT circuitry modeling for a solar PV
integrated lead acid battery charge controller for the standalone

scheme in a MATLAB environment. The charge controller charges
the batteries using a 3-stage charging approach, including MPPT
bulk charge with a float charge stage and constant voltage absorption
charge. The results showed that the MPPT can track the PV panel
maximum point within 0.5 s with an overall average efficiency of
98.3%. The topology is illustrated in (Figure 6B). A PID controller
with a DC-DC buck converter battery charge controller was
presented in (Chakraborty et al., 2018) to charge lead-acid
batteries in a solar PV array, as shown in (Figure 6C).

The experimental and simulation results confirmed that the
dynamic response of this circuit was improved by considering a
higher charging current and the capability to charge the battery at
low irradiance, high stability, and low cost. However, the efficiency
of the system was not calculated in this study.

In (Rokonuzzaman et al., 2020), an Internet of Things (IoT)-
based P&O-based, MPPT, and buck-boost converter PV-battery
charge controller sent vital data to the cloud for remote control and
monitoring functions. The results showed that the attained
efficiency approached 99.74% during 1 month of performance
testing duration. The circuit diagram is shown in (Figure 6D).

Because of temperature and irradiance variations, there are
difficulties with non-linearity and power fluctuations in the PV
panel coupled storage system and grid. To overcome this problem,
three aspects of control were combined in (Marhraoui et al., 2020a),
as illustrated in (Figure 7A). The first section is devoted to devising
an algorithm to minimize non-linearity to achieve MPPT by
controlling the duty cycle of the DC/DC boost converter. Next,
two algorithms were combined: Fuzzy Logic and Integral
Backstepping (Fuzzy Logic-Integral Backstepping Controller).
Then, the Integral Backstepping approach to construct the law
control based on the Lyapunov theory to improve the PV-

FIGURE 6
PV-Battery charge controller for (A) Hybrid electric and powertrain controller (Padmagirisan and Sankaranarayanan, 2019). (B) DC-DC buck
topology and Perturb and Observe MPPT circuitry modeling for the standalone scheme (Tan et al., 2020). (C) PID controller with DC-DC buck converter
(Chakraborty et al., 2018). (D) IoT-based P&O-based, MPPT, and buck-boost converter (Rokonuzzaman et al., 2020).
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connected storage system and the grid’s robustness and stability
were considered.

The cited paper (Kiswantono et al., 2019) presented a
comparative performance between the MPPT-based Fuzzy
Sugeno (FS) and MPPT-fuzzy Mamdani (MPPT-FM) methods
on a PV battery system connected to 3-phase three-wire
distribution network. This study stated that MPPT-FM can
provide better performance in terms of the percentage of load
voltage than MPPT-FS. The battery storage system is illustrated
in (Figure 7B).

A P&O-based MPPT triggered by Pulse Width Modulation
(PWM) with an Arduino board ATMega 328 microcontroller
and MOSFET was used (Situmorang et al., 2019). Although the
input voltage fluctuated slightly, the tracking output voltage was
higher than the input voltage value and practically constant. The use
of MPPT in the battery charging process resulted in a charging time
of 8 h without MPPT, and 3 h and 20 min after utilizing MPPT. The
battery storage system is illustrated in (Figure 7C).

A three-stage (bulk, absorption, and float) MPPT Buck
Converter PV-Battery charge controller for improving charging/

discharging was proposed in (Abdul Rahman et al., 2020). The
results demonstrate that the time required to fully charge the battery
decreases with the application of MPPT in the bulk stage. The circuit
diagram used in this study is shown in (Figure 8A).

A P&O-based MPPT-based Zeta converter was used in
(Ananda-Rao et al., 2020a) to drive a lead-acid battery as a load,
as shown in (Figure 8B).

In (Seguel and Seleme, 2021), a buck converter and two fuzzy
logic controller (FLCs) MPPT PV-Battery charge controllers were
proposed. The proposed control strategy has the advantage of
obtaining the most energy from the PV panel while avoiding
battery damage caused by fluctuating MPPT voltages, thereby
extending the battery lifetime. It also eliminates the disadvantages
of traditional solar chargers, which become slow or inaccurate when
weather conditions suddenly change. This technique was
implemented using a low-cost Arduino AT91SAM3X8E
microcontroller, as shown in (Figure 8C).

In (Shufian et al., 2021), a smart irrigation system was
introduced to improve the production efficiency of an automatic
irrigation control system with sensors, solar panels, fast chargers,

FIGURE 7
PV-Battertopology diagram for (A) a control management algorithm on the DC/DC side using VSIC as a charge controller for the stability of the grid
parameter (Marhraoui et al., 2020b). (B) MPPT-based FS and MPPT-FM methods connected to 3-phase three-wire distribution network (Kiswantono
et al., 2019).(C) P&O-based MPPT triggered by PWM system (Situmorang et al., 2019).
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and batteries. These sensors detect moving water, both above and
below the ground. An Arduino microcontroller was used for this
setup. The ESP8266 online Wi-Fi module was used to control the
automated online monitoring and receive sensor responses. A fast
charger was used as backup. The entire circuit is more efficient, and
can be operated both automatically and manually. The block
diagram of the system is shown in (Figure 9A).

In (Chtita et al., 2021), an improved power balance control
strategy based solely on two proportional and integral (PI)
compensators was proposed, which can effectively balance the
PV power flow delivered to the DC load and battery, allowing
the PV power to be effectively utilized and the battery to be properly
charged. To simplify the design of the PI compensators, the
complete system was modeled using a linear PV array model as
the starting point. In addition, four operating modes were developed
to address the aforementioned concerns regarding the weather and
load demand variations. The results showed that the proposed
control approach performed well in power balancing and MPPT
control under a variety of atmospheric conditions, particularly in
terms of efficiency (99.79%). A block diagram of the system is shown
in (Figure 9B).

Using a PWM-based voltage-controlled boost converter and
MATLAB, an example of this work in reference (Sansare et al., 2018)
offered a design arrangement with the fewest components to
produce an efficient standalone solar energy battery charger for a
40Ah, 48 V lead acid battery system. To create the boost topology in
a PWM power converter, we employ a power MOSFET as a

switching device, which is controlled in a switching-on and
switching-off manner to manage the duty cycle of the power
MOSFET. With an increased converter switching frequency,
PWM power converters solve the low-efficiency issue of
traditionally used linear power converters. A block diagram of
the system is shown in (Figure 9C).

The design and implementation of an MPPT-based boost
converter for a stand-alone PV-Battery system are presented in
(Bjaoui et al., 2019). The control scheme was a combination of the
adaptive P&O fuzzy logic controller (P&O-FLC) MPPT and
backstepping sliding mode control (BS-SMC) technique. The
results showed that this system provides near-perfect tracking in
terms of dynamic response, steady-state error, and overshoot and
offers greater stability and robustness than a traditional PI
controller. A block diagram of the proposed scheme is shown in
(Figure 9D).

In (Nagaiah and Sekhar, 2020), a topology for fuzzy-based
battery energy management in a hybrid solar and wind
renewable system was presented. The system includes a
unidirectional boost converter and battery storage with a
bidirectional DC-DC converter. The system topology is shown in
(Figure 10A).

A previous study (Sudiharto et al., 2021) presented a PV-Battery
charge controller topology using Pulse Width Modulation (PWM)
for fast battery charging. The duty cycle value was modified using
fuzzy control to ensure that the converter output matched the
setpoint. Based on the simulation results, the study’s control

FIGURE 8
Schematic diagram for pv-battery charge controller based on (A) A three stages (bulk, absorption, and float) mppt buck converter (Abdul Rahman
et al., 2020). (B) P&O-based MPPT-based Zeta converter (Ananda-Rao et al., 2020b). (C) Buck converter, two FLCs MPPT (Seguel and Seleme, 2021).
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obtained an output current of 12 A with an erroneous ripple current
of 8.3%. After 45 min, the battery’s SOC climbed by 75.74%. The
system diagram is shown in (Figure 10B).

The modeling of an intelligent combined MPPT and lead acid
battery charger controller for freestanding solar PV systems was
presented by the study cited in (Rkik et al., 2021). It entails
controlling a DC/DC buck converter via a control unit that
incorporates two cascaded FLC that modify the converter’s
required duty cycle based on the SOC and the three-stage lead
acid battery charging system. The first FLC (FLC1) is an MPPT
controller that extracts the maximum power from the PV array,
whereas the second FLC (FLC2) is responsible for controlling the
voltage across the battery to ensure the three-stage charging
technique. A diagram of the system is shown in (Figure 10C).

A multiport DC-DC power converter was proposed to deal with
the intermittent nature and delayed reaction of renewable energy
applications (Almutairi et al., 2021). In addition to the energy
storage unit, the proposed converter incorporates a DC-DC
converter and a DC-AC inverter, and the proposed circuit

incorporates several renewable energy sources. The impact of
intermittency can be significantly reduced by combining
renewable energy sources with a statistical tendency to offset
each other. This combination improved the overall dependability
and usability of system. A diagram of the system is shown in
(Figure 10D).

5 Solar-battery charge controller

Generally, PV systems have two main problems: energy
conversion efficiency when the generated power is low, and the
effects of weather conditions on the generated power. Furthermore,
the non-linear characteristics of the I-V and P-V relationships of a
PV system cause its output power to change continuously with
surrounding conditions. To overcome this issue, MPPT and
alternative techniques are required. The reason for this is to
ensure that the optimal employment of PV cells is achieved. The
major obstacle to the inability of optimal employment is the

FIGURE 9
A PV-Battery charging system as (A) introduced within a smart irrigation system to improve production efficiency (Shufian et al., 2021). (B) based on
PI controller (Chtita et al., 2021). (C) Implemented by a DC-DC boost converter in a PWM signal (Sansare et al., 2018). (D) MPPT-based boost converter
with a combination of the adaptive P&O fuzzy logic controller MPPT and (BS-SMC) technique (Sansare et al., 2018).
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FIGURE 10
PV-Battery charge controller topology using (A) Fuzzy-based battery energymanagement in a hybrid solar andwind renewable system (Nagaiah and
Sekhar, 2020). (B) A PWM for fast battery charging (Mehmood et al., 2016). (C) incorporates two cascaded FLC (Rkik et al., 2021). (D) A multi-port DC-DC
power converter (Almutairi et al., 2021).

FIGURE 11
Efficiency vs. power at different Vbat for a Conventional Shunt charger topology.
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possibility of a mismatch between the load characteristics and MPPs
of the PV system. In this study, techniques such as the incremental
(INC) Algorithm, P&O, and FOCV were assessed for comparison
with the proposed approach (Rezk and Eltamaly, 2015). The
characteristic equations of a PV array (Saadeh et al., 2018) can
be demonstrated as follows: the short-circuit point, slope at the
short-circuit point, slope at the open-circuit point, PV current at the
MPP, and Imp

Vmp
relation derived at zP

zV = 0 are given sequentially by

Isc � Iph − I0 e
IscRs( )
nVt

( ) − 1( ) − IscRs

Rsh
( ) (1)

1
Rsh

− 1
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+ I0
nVt

e
IscRs( )
nVt

( ) � 0 (2)
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For any point (Ii, Vi), the following relations can be written:
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where Ii, Iph, I0, and I denote the current in each output, PV, reverse
saturation current, and the load, respectively. VPV, and Vt denote
the PV and thermal voltage, respectively. PPV denotes PV power.
Rsh, and Rs are the series and shunt resistance, respectively. n is the
diode factor. Irr, Isc denote the light irradiance and short-circuit
current of the PV array, respectively.

The theoretical MPP values used to evaluate the simulation
and experimental results are obtained from (4) and (5), where the
MPP points are obtained from the relation Pmp = Imp*Vmp. The
relation between the battery charging power and that delivered
from the PV array represents the converter efficiency (ηconv) and
is given by

TABLE 5 Failure rate per unit hour of PV-Battery systems (Abdon et al., 2020).

Component sub-component F.R. (failure/unit-h)*10–6 References

PV array

Mounting Struct. (per string) 0.845 Gallardo-Saavedra et al. (2019)

Mounting Structure 0.101 Oozeki et al. (2007)

PV Module 0.065 (Gallardo-Saavedra et al. (2019))

PV Module 0.0152 Oozeki et al. (2007)

PV Module 0.025 Baschel et al. (2018)

PV Module 0.035 Baschel et al. (2018)

PV Module 0.04 Baschel et al. (2018)

PV Module Connector 0.0056 Baschel et al. (2018)

PV String cabling 0.845 Gallardo-Saavedra et al. (2019))

PV String cabling 0.002 Baschel et al. (2018)

Fuses 2.28 Gallardo-Saavedra et al. (2019))

Fuses 0.063 Baschel et al. (2018)

Breaker 6.075 Baschel et al. (2018)

Inverter

Generic – 3 kW 16.3 Gallardo-Saavedra et al. (2019)

Generic – 30 kW 65.1 (Gallardo-Saavedra et al. (2019))

Generic – 100 kW 217 (Gallardo-Saavedra et al. (2019))

Generic – 26 kW 11.2 Oozeki et al. (2007)

Generic – Central Type 74 Baschel et al. (2018)

Generic – Central Type 130 Baschel et al. (2018)

Generic – String Type 15.1 Baschel et al. (2018)

Capacitor 17.8 Baschel et al. (2018)

Capacitor 41.5 Baschel et al. (2018)

Capacitor 8.31 (Gallardo-Saavedra et al. (2019))

Ctrl & Communication board 26.7 Baschel et al. (2018)

Ctrl & Communication board 63.7 (Gallardo-Saavedra et al. (2019))

Cooling fan 26.7 Baschel et al. (2018)

IGBT module 16.6 (Gallardo-Saavedra et al. (2019))

IGBT module 8.9 Baschel et al. (2018)

Relays 2.77 (Gallardo-Saavedra et al. (2019))

Transformer 17.8 Baschel et al. (2018)
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ηconv �
Pbat

PPV
(8)

Referring to most PV-battery topologies, this work conducted an
experiment showing the effect of source-load voltage balancing to
reduce the conversion losses is evaluated by measuring the efficiency
versus output power at different battery voltages ranging from 72 V
to 264V, which represents 6–22 units of the 12 V battery. This result
is shown in (Figure 11).

The result shows that the circuit performs a lower efficiency at a
lower level of battery voltages, which is agreed with the findings of
(Siraj and Khan, 2020). Therefore, higher potential difference,
between the source and battery, lower energy transfer that
enhances the proposed voltage-matching concept.

6 Failure probability statistics of PV-
battery systems

In this paper, we briefly discuss the failure probability statistics
of a solar PV-integrated BESS, which is essential for the design and
implementation of solar PV systems. Although advances in power
electronics and commercially widespread devices with lowered
prices play a significant role in the design and PV system
applications, the failure probability and lifespan of these
components remain major unsolved problems. It is worth
mentioning that power conversion devices from DC to AC,
represented by inverters, are more complicated and have more
electronics in their design than AC-DC rectifier circuits. In the
same context, the DC-DC converters of the PV-Battery charge
controllers are more complex than linear DC-DC converters. In
addition, the various techniques of using MPPT algorithms also
contribute to adding complexity and, therefore, increasing the
failure probability of PV systems.

Several studies have discussed the issue of failure probabilities
in solar PV system components (Abed and Mhalla, 2021; Ghaedi
and Gorginpour, 2021; Ostovar et al., 2021; Shashavali and
Sankar, 2021; Firouzi et al., 2022). (Table 5) lists the failure
rates per unit hour of the PV-battery systems (Abdon et al.,
2020). The results show that the DC-AC power inverters had the
highest failure rate per unit hour of the PV-Batter systems, as
expected.

7 Conclusion

To reduce the number of power conversion stages and the cost of
power modules, and to meet the maximum energy transfer
efficiency, it is necessary to enhance the flexibility and efficiency
of energy transfer. Moreover, research efforts are required to
eliminate losses owing to high-frequency switching devices and
the complexity of using multiple hardware. In addition, the
presented work validates the effectiveness of the proposed
concept by evaluating the energy transfer efficiency through
simulations and experimental measurements over the entire day.
The functionality of a PV-battery controller topology can provide
the following benefits: 1) cost-effectiveness and high reliability
owing to fewer electronic components, 2) resilience improvement

of renewable-powered systems, and 3) lower barriers toward more
deployments of PV-powered microgrid systems. Future
developments in this field may be suitable for standalone and
grid-tied PV systems with battery storage. The topological
characteristics of a future charge controller are summarized as
follows.

1) Maintaining PV-battery voltage matching will provide
features for more control flexibility and enhanced
reliability. Batteries with different SOC and capacity
conditions can be connected to different solar PVs based
on balancing the DC bus voltage, and the MPP is
maintained further by controlling the temperature of the
PV modules. Compared with a conventional charger that
requires power-switching modules with a high operating
frequency, only a low-frequency switching power module is
required to drive cooling fans.

2) Compared with the conventional charge controller, the DC-DC
conversion stage can be removed not only from the stage between
the PV and battery but also from the battery-load stage. This
configuration leads to a reduction in hardware costs and
improvements in system efficiency.

3) This review presented a brief discussion on failure probability
statistics for the system components of solar PV-integrated BESS
including failure rates per unit hour of the PV-battery systems.
The statistical results demonstrated that the DC-AC power
inverters had the highest failure rate per unit hour of the PV-
Batter systems.

4) As a future solar PV integrated battery energy storage system, to
reduce the number of power conversion stages and obtain
maximum energy transfer efficiency, a fundamentals-based
algorithm and topology, without the integration of DC-DC
converter, is proposed. Moreover, the voltage control issue in
the DC microgrid is treated as an optimization problem to
minimize the hardware complexity and the losses of high-
frequency switching devices. The presented work validates the
effectiveness of the proposed concept via the evaluation of the
energy transfer efficiency in simulations and experimental
measurements over a full daytime. The functionality of the
proposed topology can provide benefits such as 1) cost-
effective and high reliability due to lower electronic
components, 2) resilience improvement of renewable-powered
systems and 3) lower barriers toward more deployments of PV-
powered microgrid systems.
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