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Simple Summary: Nitric oxide (NO) plays an important role in every biological system as a gaseous
hormone. NO is generated from arginine by NO synthase (NOS). NOS is inhibited by several arginine
analogs, including NG-nitro-L-arginine methyl ester (L-NAME). NO is an important regulator of
feeding behavior by suppressing feed intake (FI) as a result of modulating the appetite center through
intracerebroventricular and intraperitoneal applications of NOS inhibitors. Feeding behavior can
be regulated by peripheral systems. However, the effects of dietary NO donors and inhibitors
on feeding behavior and performance are unknown. In this study, the aim was to evaluate the
effects of dietary supplementation of sodium nitroprusside (SNP), an NO donor, and L-NAME,
an NOS inhibitor, on performance and immunity. SNP suppressed FI and body weight gain in a
dose-dependent manner throughout the study, especially in the initial period, and worsened the
feed conversion ratio (FCR). L-NAME (100 mg/kg) increased FI and suppressed antibody titers, and
L-NAME (25 mg/kg) improved the FCR in the initial period. Therefore, when formulating broiler
starter diets, it is important to consider how diet composition will affect the NO metabolism, which is
thought to have important effects on performance and immunity.

Abstract: This study was conducted to determine the effects of dietary supplementation of sodium
nitroprusside (SNP), a nitric oxide (NO) donor, and NG-nitro-L-arginine methyl ester (L-NAME), an
NO synthase inhibitor, on growth performance, organ development, and immunity in broilers. A
total of 560 one-day-old mixed-gender broiler chickens (ROSS 308) were divided into one control and
seven experimental groups. The experimental groups were fed a basal diet supplemented with 25,
50, 100, and 200 ppm SNP, and 25, 50, and 100 ppm L-NAME in the starter and grower diets. Body
weight gain increased in groups receiving 25–100 ppm L-NAME on day 21 and 100 ppm L-NAME
on days 0–42. Feed intake increased in the group receiving 100 ppm L-NAME on all days. The
feed conversion ratio improved in the group receiving 25 ppm L-NAME on days 0–21, whereas it
worsened in groups with 100 and 200 ppm SNP on days 0–42. Serum antibody titers decreased in the
100 ppm L-NAME group on day 21. In conclusion, the supplementation of the NO synthase inhibitor
L-NAME to the broilers’ diet had a positive effect on the performance parameters, whereas the NO
donor SNP worsened these parameters, especially on days 0–21.

Keywords: broiler; growth performance; nitric oxide; SNP; L-NAME

1. Introduction

Nitric oxide (NO) is synthesized endogenously from arginine by an enzyme with isoforms
identified as neuronal, endothelial, and inducible NO synthases (nNOS/eNOS/iNOS) [1]. The
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NOS enzyme belongs to the cytochrome P450 protein family and is inhibited by many
arginine analogs, including NG-nitro-L-arginine methyl ester [2]. NO is an intermediary
molecule that functions like a gaseous hormone and acts on nearly every system in the body.
It is believed that NO is a physiological modulator of feed intake [3]. As a signal messenger,
NO plays a role in the control of feeding in many species, including mice [4], rats [5], and
chickens [6,7]. It is also a central component in neuropeptide regulation of appetite [8].
Blocking NOS in the central nervous system reduces adiposity in high-fat-induced obese
mice [9], and obese rats [10]. Leptin is a hormone produced by adipocytes that inhibits
NO synthesis in the hypothalamus and reduces feed intake [11,12]. Intracerebroventricular
(ICV) injection of L-NAME in poultry increased feed intake in laying chickens, while
its intraperitoneal (IP) administration decreased feed intake in both broilers and laying
chickens [6]. Moreover, it has been determined that peripherally administered L-NAME
inhibits the increase in feed intake caused by a neuropeptide (Neuropeptide Y) responsible
for feed intake, and NOS inhibitors may be beneficial in obesity management [13]. On the
other hand, it was determined that IP administration of sodium nitroprusside (SNP), which
is the exogenous source of NO, prevents feed intake in laying chickens in a dose-dependent
manner [14].

The immune system, intestinal contractions, and eating habits are all regulated by
NO in hens [6,7,15,16]. By increasing iNOS activity, pathogens, such as Marek’s disease
virus [17], Salmonella spp. [18], and coccidial infections [19], induce NO production. Injec-
tions of lipopolysaccharide (LPS) increased the serum NO levels in chickens [20], whereas
NOS inhibition decreased LPS-induced fevers [21]. Hence, NO is likely to be created
in instances of chicken infection. According to reports, the fact that all tissues and cells
have the enzymes necessary for NO generation explains why it has such a wide range of
impacts [1,7]. Previous studies have evaluated the effects of NO donors and inhibitors
with ICV [6] and with IP injections peripherally [6,14]. On the other hand, it has been
determined that dietary NOS donors and inhibitors affect ovarian folliculogenesis (with
the diet containing 50 and 200 mg/kg of SNP and L-NAME) in quails [22], and change
the NOS expression in the jejunum (with the diet containing 25, 50, 100 and 200 mg/kg
SNP, and 25, 50 or 100 mg/kg L-NAME) in chickens [15]. The gastrointestinal tract (GIT)
provides the biological environment for digestion and absorption of nutrients as well as
protection against pathogens and toxins. The rapid growth of broilers is due to the high
absorption capacity of intestinal epithelia and the efficient conversion of nutrients to muscle.
Physiologically, reactive oxygen species and reactive nitrogen species (RNS) are generated
by GIT epithelial cells either from oxygen metabolism or by enteric commensal bacteria
and regulated gut health. The RNS, by-products of NOS, are expressed in selected cells
of the intestinal mucosa and submucosal regions. However, the overproduction of NO
radicals damages the intestinal mucosa and impairs nutrient utilization [23]. In this context,
it can be hypothesized that inhibition of NO by basal level L-NAME may be beneficial in
terms of performance parameters. However, to the authors’ knowledge, there have been
no reports concerning dietary supplementation of exogenous NO donors and inhibitors
on performance and immune parameters. Therefore, the present study was designed
to evaluate the effects of dietary SNP and L-NAME supplementation to broiler diets on
growth performance and immunity.

2. Materials and Methods
2.1. Animals and Experimental Protocols

A total of 560 one-day-old Ross 308 hybrid mixed-gender broiler chickens were used.
The chickens were randomly allocated to one control group and seven experimental groups,
each containing 70 chickens. Each group was randomly divided into five replicates (pen),
comprising 14 chickens in each group (7 males and 7 females). The chickens were housed
in sawdust bedding, and the chicken density was 12 animals/m2. The house temperature
was maintained at approximately 32 ◦C from 1 to 7 days of age, 29 ◦C from 8 to 14 days
of age, 26 ◦C from 15 to 21 days of age, and 21 ◦C thereafter. During the experiment, the
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relative humidity was between 45% and 65%. For the first four days following placement,
light (fluorescent, 30 lux) was provided for 23 h, and it was gradually reduced (1 h per
day) to 20 h on day 7 (fluorescent, 10 lux). Feed and water were provided ad libitum.
A vaccination program for broilers was designed as the following: day 0 with inactive
Infectious Bursal Disease (IBD) + Newcastle Disease (ND) vaccine (Gumbopest, Merial
RTA, subcutaneously), day 7 with live ND vaccine (Nobilis ND Lasota, Intervet, in drinking
water) and infectious bronchitis vaccine (Nobilis, Intervet, in drinking water), day 14 with
live IBD vaccine (Bursine Plus, Ford Dodge-Refarm, in drinking water), and day 21 with
live ND vaccine (Nobilis ND Lasota, Intervet, in drinking water).

All broilers were fed corn, wheat, corn gluten, soybean meal, sunflower meal, full-fat
soybean and a blood meal-basal diet that contained the critical nutrients recommended
by the NRC (1994) without added antibiotics, coccidiostats or growth promoters for up
to 42 days. From 0 to 21 days of age, they received a starter diet (22.07% crude protein;
3200 kcal/kg metabolizable energy), and from 22 to 42 days of age, they received a grower
diet (19.86% crude protein; 3200 kcal/kg metabolizable energy), as shown in Table 1.
The nutrient composition of the basal diets, including dry matter, crude protein, crude
fat, crude fiber, and crude ash contents, was determined according to the AOAC (2000).
Metabolizable energy, including calcium, phosphorus, arginine, lysine, methionine, cysteine
and methionine contents, were determined as described by Jurgens [24].

The control group was fed the basal diet throughout the experiment, whereas the
experimental groups were fed the basal diet supplemented with 25, 50, 100, and 200 mg/kg
SNP (S0501; Sigma-Aldrich Chemical Co., St. Louis, MO, USA), and 25, 50, and 100 mg/kg
of L-NAME (S5501; Sigma).

Table 1. Ingredients and chemical composition of the basal diets (g/kg).

Starter (0–21 Days) Grower (22–42 Days)

Ingredients
Corn 497.54 493.59

Wheat 100.00 150.00
Corn gluten 120.00 107.33

Soybean meal 147.13 95.06
Sunflower meal 26.83 53.64
Full-fat soybean 21.02 22.30

Blood meal 30.00 20.00
Vegetable oil 30.00 30.00

Limestone 6.15 9.58
Dicalcium phosphate 9.97 6.92

Salt 2.70 2.82
DL-Methionine 0.20 -

L-Lysine hydrochloride 2.71 3.01
Sodium bicarbonate 2.25 2.25

Vitamin premix a 2.50 2.50
Mineral premix b 1.00 1.00

Analysis results
Dry matter 918.60 917.50

Crude protein 220.70 198.60
Crude fat 67.70 66.40

Crude fibre 28.30 31.30
Crude ash 54.00 50.20

Calculation results c

Calcium 10.00 9.00
Available phosphorus 4.50 3.50

Arginine 12.50 11.00
Lysine 11.00 10.00

Methionine 5.00 4.50



Animals 2023, 13, 1361 4 of 11

Table 1. Cont.

Starter (0–21 Days) Grower (22–42 Days)

Methionine+cysteine 9.15 8.34
Metabolizable energy, kcal × kg−1 3200 3200

a Provides per kg diet: Trans-retinol 12,000 IU, cholecalciferol 1500 IU, α-tocopherol acetate 75 mg, thiamin 3 mg,
riboflavin 6 mg, pyridoxine 5 mg, cobalamin 0.03 mg, nicotineamide 40 mg, panthotenic acid 10 mg, folic acid
0.75 mg, choline 375 mg, and biotin 0.075 mg; b Provides per kg diet: Mn 80 mg, Fe 40 mg, Zn 60 mg, Cu 5 mg,
I 0.5 mg, Co 0.2 mg, and Se 0.15 mg; c Calculated by using values in the table [24].

2.2. Growth Performance

The body weight (BW) of each animal was recorded per floor pen on days 1, 21, and
42. Feed intake and BW gain of birds in each pen were recorded for days 0–21 and 22–42.
The feed conversion ratio (FCR) was calculated by dividing the cumulative feed intake per
floor pen by the body mass per pen at the end of the measurements after 21 and 42 days.
Mortality was recorded daily, and feed intake was corrected afterwards.

2.3. Organ Development

At the end of days 21 and 42, 10 birds (different genders, two birds per replicate)
from each group that were closest to the mean body weight of the group average were
selected, and these 160 birds were sacrificed. The heart, liver, bursa of Fabricius, spleen,
proventriculus, and gizzard were removed. The ratio 100 × (organ weights (g)/BW (g))
was used to calculate the relative organ weights.

2.4. Immune Response Parameters

At the end of the starter and grower periods, blood samples were taken from wing
veins into sterile tubes with or without anticoagulant (heparin) from 10 birds randomly
selected from the groups (two birds per replicate). After clotting at room temperature
for 1 h and centrifugation (3000 rpm, 15 min), the serum was carefully harvested. The
infectious bursal disease (IBD) antibody titer was determined by ELISA with a commercial
test kit (IBD ELISA kit, Bio-check Company, Reeuwijk, The Netherlands) according to
the manufacturer’s instructions in an ELISA reader. The heterophil/lymphocyte (H/L)
ratio was calculated from 100 cells per slide and classified using oil immersion microscopy
at 100×objective. WBC counts were done by hemocytometer, using a quantity of blood
samples mixed with the diluent (Natt-Herricks Solution) [24].

2.5. Serum Biochemistry Parameters

Serum NO concentrations were determined according to the procedure of Miranda [25].
Nitrate was reduced to nitrite with vanadium (III) and the nitrite level was measured by
using Griess reagents. The serial dilutions 0.5–200 µM of sodium nitrate (Merck, Darmstadt,
Germany) were used as standards. The results were expressed as µM. Serum total protein,
alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase
(AST), creatinine, and urea were measured with an auto-analyzer (Tokyo Boeki Prestige 24i,
Kyobashi, Japan).

2.6. Statistical Analyses

The SPSS for Windows General Linear Models procedure was used to analyze the
data from treatment means in a completely randomized design. For performance data,
pen means served as the experimental unit for statistical analysis. All data were tested for
normality using the Shapiro–Wilk test and Levene’s test to examine the homogeneity of
variance. When differences (p < 0.05) among means were found, means were separated
using Tukey’s studentized range test. Linear and nonlinear SNP and L-NAME dose-
response curves were plotted using the GLM procedure of SPSS. The differences were
considered significant at p < 0.05.
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3. Results
3.1. Growth Performance

The effects of SNP and L-NAME on growth performance in broilers are presented in
Table 2. SNP supplementation had a linear effect on BW gain, FCR (on days 0–21, 22–42,
and 0–42), and feed intake (on days 0–21 and 0–42). However, L-NAME in the diet created
a nonlinear effect on BW gain (on days 0–21) and feed intake (on days 0–21, 22–42, and
0–42), as well as a nonlinear effect on feed intake and the FCR (on day 0–21). BW gain
decreased in groups that were fed the diet containing 50, 100, and 200 ppm SNP on days
0–21 (p < 0.001) and 22–42 (p < 0.01), and in the group receiving 100 and 200 ppm SNP on
day 0–42 (p < 0.01). BW gain increased in groups that were fed the diet containing 25, 50,
and 100 ppm L-NAME on day 21 (p < 0.001) and 100 ppm L-NAME on days 0–42 (p < 0.01).
Feed intake decreased in the group that was fed the diet containing 100 and 200 ppm SNP
on days 0–21 (p < 0.001), and 200 ppm SNP on days 0–42 (p < 0.01). However, it increased
in dietary L-NAME by 100 ppm on days 0–21 (p < 0.001), 50 ppm on days 22–42 (p < 0.01),
and 100 ppm on days 0–42 (p < 0.01). FCR improved in the group that was fed the diet
containing 25 ppm L-NAME (p < 0.001) on days 0–21, whereas it worsened in the diet
supplemented with 100 and 200 ppm SNP on days 0–21 (p < 0.001), 22–42 (p < 0.01) and
0–42 (p < 0.001).

Table 2. Effect of dietary sodium nitroprusside (SNP) and NG-nitro-L-arginine methyl ester (L-NAME)
supplementation on body weight gain, feed intake, and feed conversion ratio on days 0–21, 22–42,
and 0–42 days.

Body Weight Gain (g) Feed Intake (g) Feed Conversion Ratio

0–21
Days

22–42
Days

0–42
Days

0–21
Days

22–42
Days

0–42
Days

0–21
Days

22–42
Days

0–42
Days

Control 889.1 b 1746 ab 2635 bc 1372 b 3463 bc 4836 bc 1.544 cd 1.984 c 1.835 cd

SNP25 862.3 bc 1691 bc 2554 bc 1323 bc 3502 abc 4826 bc 1.535 cd 2.074 bc 1.891 cd

SNP50 832.9 c 1628 cd 2461 cd 1333 b 3387 c 4720 cd 1.601 bc 2.082 bc 1.918 bc

SNP100 779.3 d 1579 d 2359 d 1273 cd 3432 c 4706 cd 1.637 b 2.187 ab 2.003 b

SNP200 717.0 e 1476 e 2193 e 1236 d 3409 c 4646 d 1.725 a 2.309 a 2.118 a

LN25 924.5 a 1802 a 2727 a 1338 b 3562 ab 4901 ab 1.448 e 1.976 c 1.797 d

L-N50 926.8 a 1720 abc 2647 ab 1357 b 3587 a 4945 ab 1.465 de 2.08 bc 1.869 cd

L-N100 928.8 a 1756 ab 2685 ab 1449 a 3584 a 5033 a 1.561 bc 2.043 bc 1.876 cd

Pooled
SEM 12.17 19.32 27.30 10.30 17.86 24.69 0.01 0.02 0.02

p< 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.01 0.001
* 0.001 0.001 0.001 0.001 - 0.01 0.001 0.001 0.001
** 0.05 - - 0.01 0.05 0.01 - - -
*** - - - - - - - - -
**** - - - 0.01 - - 0.01 - -

a,b,c,d,e Mean values within the same row sharing a common superscript letter are not statistically different at
p < 0.05; *: Linear effect in SNP groups; **: Linear effect in L-NAME groups; ***: Nonlinear effect in SNP groups;
****: Nonlinear effect in L-NAME groups.

3.2. Organ Traits

It was detected that the relative weight of bursa of Fabricius showed a linear effect in
the SNP groups and a nonlinear effect in the L-NAME groups. The relative weight of bursa
of Fabricius increased in groups that were fed the diet containing 25, 100, and 200 ppm
SNP on day 21, whereas it decreased in the 100 ppm L-NAME group (p < 0.05; Table 3).
The relative weights of the heart, liver, spleen, proventriculus, and gizzard did not show
any significant difference between groups (Table 3).
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Table 3. Effect of dietary sodium nitroprusside (SNP) and NG-nitro-L-arginine methyl ester (L-NAME)
supplementation on relative organ weights (%) on days 0–21 and 22–42.

SNP, mg/kg L-NAME, mg/kg Pooled
SEM p< Linear Nonlinear

Item Days Control 25 50 100 200 25 50 100 * ** *** ****

Heart
21 0.98 1.09 0.93 0.94 1.01 0.94 0.95 0.94 0.019 - - - - -
42 0.81 0.86 0.74 0.88 0.75 0.91 0.87 0.81 0.016 - - - - -

Liver
21 3.09 3.18 3.12 3.18 3.28 3.24 3.23 3.33 0.059 - - - - -
42 2.76 2.60 2.84 2.45 2.65 2.56 2.95 2.47 0.076 - - - - -

Bursa of
Fabricius

21 0.20 b 0.25 a 0.22 ab 0.22 ab 0.22 ab 0.23 ab 0.19 ab 0.15 c 0.007 0.004 0.042 - - 0.038
42 0.15 0.20 0.20 0.17 0.17 0.19 0.18 0.13 0.028 - - - - -

Spleen 21 0.10 0.099 0.09 0.09 0.097 0.096 0.10 0.11 0.003 - - - - -
42 0.13 0.15 0.12 0.14 0.17 0.14 0.13 0.15 0.006 - - - - -

Proventriculus
21 0.80 0.81 0.83 0.79 0.81 0.78 0.75 0.76 0.01 - - - - -
42 0.40 0.48 0.527 0.50 0.47 0.43 0.43 0.48 0.001 - - - - -

Gizzard
21 3.17 2.94 3.29 3.65 3.56 2.71 3.21 3.18 0.08 - - - - -
42 2.04 2.03 2.21 2.20 2.15 1.71 1.92 2.09 0.05 - - - - -

a,b,c Mean values within the same row sharing a common superscript letter are not statistically different at p < 0.05;
*: Linear effect in SNP groups; **: Linear effect in L-NAME groups; ***: Nonlinear effect in SNP groups; ****:
Nonlinear effect in L-NAME groups.

3.3. Immune Response Parameters

It was observed that the IBD antibody titer decreased in the group that was fed the
diet containing 100 ppm L-NAME on day 21 (p < 0.01). On day 21, the H/L ratio increased
in the group that was fed the diet containing 200 ppm SNP (p < 0.05). The WBC ratio did
not differ significantly between periods (Table 4).

Table 4. Effect of dietary sodium nitroprusside (SNP) and NG-nitro-L-arginine methyl ester (L-NAME)
supplementation on some immune response parameters.

SNP, mg/kg L-NAME, mg/kg Pooled
SEM p< Linear Nonlinear

Item Days Control 25 50 100 200 25 50 100 * ** *** ****

IBD mean titer
d 21 624.12 a 526.00 a 644.87 a 542.50 a 588.00 a 596.62 a 583.37 a 350.12 b 19.77 0.01 - - 0.01 0.08
d 42 8500 9567 9179 9565 8735 9461 9796 9054 156.09 - - - - -

WBC 103/mL
d 21 1806 1766 1785 1776 1685 1730 1782 1715 17.16 - - - - -
d 42 1651 1636 1631 1677 1612 1686 1601 1642 15.43 - - - - -

H/L
d 21 0.606 b 0.553 b 0.595 b 0.582 b 0.723 a 0.603 b 0.561 b 0.544 b 0.01 0.05 0.05 0.01 - -
d 42 0.613 0.639 0.654 0.650 0.683 0.613 0.631 0.581 0.01 - - - - -

IBD: Infectious bursal disease, WBC: White blood cell, H/L: Ratio of heterophils and lymphocytes; a,b Mean
values within the same row sharing a common superscript letter are not statistically different at p < 0.05; *: Linear
effect in SNP groups; **: Linear effect in L-NAME groups; ***: Nonlinear effect in SNP groups; ****: Nonlinear
effect in L-NAME groups.

3.4. Serum Biochemistry Parameters

In the current study, serum NOx level increased with dietary 50, 100, and 200 ppm SNP
on day 21 and 200 ppm SNP on day 42, whereas 50 and 100 ppm L-NAME supplementation
caused a decrease in serum NOx level (p < 0.01). Serum total protein, ALP, ALT, AST,
creatinine, and urea were not affected by supplementation with SNP or L-NAME (p > 0.05;
Table 5).
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Table 5. Effect of dietary sodium nitroprusside (SNP) and NG-nitro-L-arginine methyl ester (L-NAME)
supplementation on some serum biochemistry parameters.

SNP, mg/kg L-NAME, mg/kg Pooled
SEM p< Linear Nonlinear

Item Days Control 25 50 100 200 25 50 100 * ** *** ****

NOx, µM 21 14.12 c 16.73 bc 20.61 ab 22.84 a 25.68 a 11.03 c 13.51 c 12.80 c 0.98 0.01 - - - -
42 12.91 b 13.71 b 13.55 b 13.80 b 17.05 a 12.62 bc 8.77 c 10.40 c 0.495 0.01 - - - -

T. Prot,
g/dL

21 3.493 3.306 3.518 3.548 3.225 3.666 3.363 3.252 0.053 - - - - -
42 3.448 3.705 3.513 3.403 3.402 3.575 3.391 3.421 0.048 - - - - -

ALP, U/L 21 1291 1288 1434 1428 1369 1427 1385 1434 20.95 - - - - -
42 1386 1469 1503 1502 1446 1401 1435 1437 22.32 - - - - -

ALT, U/L 21 4.250 4.50 4.250 5.125 4.125 4.750 4.750 4.500 0.188 - - - - -
42 4.125 4.25 4.125 3.625 4.875 4.250 4.000 4.500 0.186 - - - - -

AST, U/L 21 210.42 215.00 237.75 239.37 266.00 213.75 268.25 255.75 7.47 - - - - -
42 181.50 197.00 230.75 188.37 185.85 186.25 172.75 172.25 5.40 - - - - -

Cre, mg/dL 21 0.052 0.061 0.057 0.080 0.072 0.072 0.056 0.067 0.002 - - - - -
42 0.054 0.040 0.055 0.045 0.052 0.042 0.055 0.053 0.001 - - - - -

Urea,
mg/dL

21 3.413 3.707 3.267 3.505 3.217 3.300 3.271 3.145 0.08 - - - - -
42 2.447 2.888 3.050 2.871 2.828 2.370 2.128 2.265 0.09 - - - - -

NOx—Nitrite plus nitrate, T. Prot—Total protein, ALP—Alkaline phosphatase, ALT—Alanine transaminase, AST—
Aspartate transaminase, Cre—creatinine; a,b,c Mean values within the same row sharing a common superscript
letter are not statistically different at p < 0.05; *: Linear effect in SNP groups; **: Linear effect in L-NAME groups;
***: Nonlinear effect in SNP groups; ****: Nonlinear effect in L-NAME groups.

4. Discussion

Sodium nitroprusside is widely used as an exogenous NO donor, especially to in-
vestigate the efficacy of NO in in vitro and in vivo studies [14,22]. Although NO can be
measured in many direct and indirect ways, the short half-life of NO reduces the practical-
ity of these methods for the evaluation of in vivo biological samples. It is also stated that
these procedures are generally not suitable for clinical laboratories due to instrumentation
requirements and inconvenience in handling large numbers of samples. Therefore, the
difficulties in determining the amount of NO are eliminated by measuring the stable end
products, especially nitrite (NO2) and nitrate (NO3) [25]. In this study, NO metabolism was
determined by the serum NOx levels. It was observed that serum NOx levels increased
(p < 0.01) when SNP was added to the diet at levels of 50 mg/kg and above on days 0–21
and 200 mg/kg on days 22–42. L-arginine analogs such as L-NAME act as NOS inhibitors
because of their displacement in one or both of the terminal guanidino (G or w) nitrogen
atoms [25]. In contrast to SNP, the supplementation of L-NAME to the diets at levels of 50
and 100 mg/kg decreased (p < 0.01) the serum NOx level numerically at the beginning of
the study (days 0–21) and statistically throughout the study (Table 5).

In this study, it was determined that SNP added to the diet suppressed BW gain and
feed intake in all periods, especially on days 0–21 (p < 0.001; Table 2). It is known that
the ICV injection of NO donors suppresses feed intake and shows this effect by mediating
the release of neuropeptides, which are involved in the regulation of the appetite and
satiety centers in the hypothalamus [6]. On the other hand, the efficiency of the appetite
and satiety centers can also be regulated by peripheral signals. Indeed, peripheral signals
perform actions through the afferent neuron and brainstem, which will indirectly affect the
hypothalamus. Mechanoreceptors and/or chemoreceptors also contribute to the control of
the appetite [26,27]. In fact, the suppression of intestinal contractions reduces feed intake
by suppressing the stimulation of the appetite center [28]. In our previous research [15], we
showed that the expression of nNOS, which is responsible for the release of NO and inhibits
contractions in the intestinal tissue, increased with the supplementation of 50–200 ppm
SNP to the diet, whereas it was suppressed by 100 ppm L-NAME. Again, we found
that L-arginine, an endogenous donor, and SNP, an exogenous donor of NO, inhibit the
contractions of the small and large intestines in vivo and in vitro [15,16]. In the current
study, unlike SNP, we demonstrated that L-NAME, an NOS inhibitor, increased feed intake
in all periods, especially on days 0–21, and it also increased BW gain in the initial period
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and throughout the study. It can be assumed that the decreased intestinal contraction in
the SNP groups suppressed the appetite center peripherally and then decreased the feed
intake. This finding supports the previous observations that IP administration of SNP to
chickens [14] and quails [29] decreases feed intake in a dose-dependent manner.

The results clearly showed that the supplementation of 100 and 200 mg/kg of SNP to
the diet worsened the FCR on days 0–21 (p < 0.001), 22–42 (p < 0.01), and 0–42 (p < 0.001),
whereas the FCR improved in the group in which the diet contained 25 mg/kg L-NAME
on days 0–21 (p < 0.001; Table 2). NO is responsible for the regulation of absorption,
secretion, and motility in the gastrointestinal tract [15,30]. Absorption and smooth muscle
activity of the small intestine are the main factors that promote and regulate the transport
and absorption of nutrients [31]. In this context, the worsening of the FCR by SNP may
be due to impaired intestinal contractions, secretion, and/or absorption after increased
NOS enzyme activity. On the other hand, the supplementation of 25 mg/kg L-NAME
to the diet, which causes inhibition of the NOS enzyme responsible for the release of a
molecule that is functional in the digestive tract such as NO, the whole body had a positive
effect on the FCR (p < 0.001; Table 2). It is quite difficult to explain this situation with the
parameters examined in the research. However, NO is also a free radical and increases
lipid peroxidation because it carries an unpaired electron in its free orbit. Therefore, it is
considered that a partial decrease in the amount of NO may lead to an improvement in the
FCR (Table 5).

While performance parameters worsened in the SNP groups, there was no difference
in mortality rates between the groups, hence the need to evaluate liver and kidney enzyme
levels (Table 5). In mammals and poultry, the enzymes ALP, ALT and AST change during
liver damage, while kidney damage leads to changes in creatine. However, there was no
difference in the liver and kidney enzyme levels in the control and experimental groups
of this study. Therefore, it is determined that the supplementation of SNP and L-NAME
does not cause liver or kidney damage. There was also no change in serum protein levels
in this study. The reason for the increase in the protein concentration in the serum is
related to protein degeneration, dietary protein intake, or the metabolism of orally ingested
protein in the liver, while its decrease is associated with the diet as well as liver and kidney
damage [32]. This showed that the decrease in performance was not due to organ and/or
tissue damage.

Nitric oxide donors are involved in the regulation of immunity as well as performance
due to their capacity to act as a substrate for NO [20]. Studies have shown that blood
NO level and NOS expiration change as a result of various viral, bacterial, and protozoan
diseases in poultry [18,20]. In this study, the effects of the dietary supplementation of
donors and inhibitors on NO metabolism were evaluated by measuring the lymphoid
tissue weight, WBC count, and IBD titers after vaccination. It is known that the shape
and size of the lymphoid organs are associated with animal’s health status [33]. The bursa
of Fabricius is a primary lymphoid organ in birds that plays an important role for the
maturation of B cells. It has a distinctive anatomical structure and regulates the total
number of leukocytes and lymphocytes through differentiation and proliferation of B
cells [33,34]. In studies conducted in broilers [35–37], it has been reported that insufficiency
of L-arginine, an NO donor, decreases the relative weight of the bursa of Fabricius. However,
the diet supplemented with arginine above the level described in the NRC did not affect
the relative weight of bursa of Fabricius [38,39]. In the present study, the relative weight
of bursa of Fabricius increased in SNP groups on days 0–21, whereas it decreased in the
100 ppm L-NAME group (p < 0.05; Table 3). The relative weights of the heart, liver, spleen,
proventriculus, and gizzard in broilers were not affected by the levels of SNP or L-NAME
in the diets (Table 3).

Stress can be defined as an adaptive response to threats that threaten a bird’s homeosta-
sis [40]. Stress factors include light, temperature, air quality, environmental pollutants, feed
composition, and physio-pathological changes [41]. The increase in the percentage of het-
erophiles with unchanged WBC in the blood represents stress in chickens and quails [42,43].
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In this study, the decrease in growth performance, especially with the supplementation of
200 mg/kg SNP to the diet, suggests that stress may have an additional effect as well on
feed intake.

In this study, it was observed that the serum IBD antibody titer at day 21 was lower in
the group supplemented with 100 mg/kg L-NAME (p < 0.01; Table 4). In addition, it was
observed that the H/L ratio decreased in this group and other L-NAME groups, although
it was not statistically significant (p > 0.05). Considering that nitric oxide modulates the
circulating lymphocyte subpopulation and inflammatory cytokine expression in chick-
ens [44,45], the reduction in IBD titer suggests that L-NAME may suppress IBD titer by
affecting lymphoid tissues or inhibiting lymphocytes.

5. Conclusions

As a result, it was observed that the increase in NO metabolism, especially on days
0–21, had a negative effect on growth performance by decreasing feed intake and suppress-
ing BW gain. On the other hand, although the inhibition of NOS enzyme seems to improve
the FCR in a dose-dependent manner, it is considered that there is a need for detailed
studies on the immune system. Therefore, the effects of the composition of the diets on
NO metabolism, which has important effects on performance and immunity, should be
considered, especially when preparing broiler starter diets.
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