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Abstract

Prediction of virus-host protein-protein interactions (PPI) is a broad research area where

various machine-learning-based classifiers are developed. Transforming biological data into

machine-usable features is a preliminary step in constructing these virus-host PPI prediction

tools. In this study, we have adopted a virus-host PPI dataset and a reduced amino acids

alphabet to create tripeptide features and introduced a correlation coefficient-based feature

selection. We applied feature selection across several correlation coefficient metrics and

statistically tested their relevance in a structural context. We compared the performance of

feature-selection models against that of the baseline virus-host PPI prediction models cre-

ated using different classification algorithms without the feature selection. We also tested

the performance of these baseline models against the previously available tools to ensure

their predictive power is acceptable. Here, the Pearson coefficient provides the best perfor-

mance with respect to the baseline model as measured by AUPR; a drop of 0.003 in AUPR

while achieving a 73.3% (from 686 to 183) reduction in the number of tripeptides features for

random forest. The results suggest our correlation coefficient-based feature selection

approach, while decreasing the computation time and space complexity, has a limited

impact on the prediction performance of virus-host PPI prediction tools.

Introduction

Viruses are among the most common causes of infectious diseases worldwide leading to a sub-

stantial burden on human health and the global economy. The complex set of virus-host cell

interactions comprises the initial recognition and binding of the virion to the host, cellular

entry, dissemination, and finally a productive or a latent infection; all of which need to be elu-

cidated for a comprehensive understanding of viral diseases. To this end, the protein-protein

interactions (PPIs), occurring as the first physical contact between the viral protein and the

host receptor(s), have been a hot topic of investigation in medical, biological, and in silico
research [1, 2].
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Taking the cost and labor intensiveness of wet-lab techniques to assess PPIs, efforts have

been driven towards computational methods including machine-learning algorithms for

intra-species and inter-species PPI prediction. However, tools developed specifically for pre-

dicting intra-species PPIs cannot effectively distinguish interactions taking place between pro-

teins of an organism from those taking place between the proteins of that organism and a

pathogen [3]. For this reason, these general PPI predictors are not appropriate for inter-species

PPIs which involves an additional difficulty [4]. Briefly, the prediction of PPIs between a virus

and host is different from the prediction of PPIs within the same organism primarily due to

the pace of evolution and conservation of interacting counterparts. Viruses tend to evolve at a

higher rate and a peculiarity of viral domains is their tendency to evolve by convergence, mim-

icking host interfaces and allowing their proteins to target and compete for host factors usually

involved in crucial cellular processes [5].

There is an armamentarium of computational methods for PPI identification. These

include approaches based on protein co-evolution [6], sequence similarity, and domain-

domain interaction patterns devised to, for example, predict genome-scale host-pathogen PPIs

[7], structural annotation and modeling [8] and self-adjustable Gaussian Network Model to

determine binding pockets for small peptides or molecules, which is particularly useful in the

discovery of PPI-inhibitory pharmaceutical compounds [9]. Among the computational meth-

ods, machine learning-based virus-host PPI prediction approaches handle PPI identification

as a binary classification problem. Such a machine-learning approach involves first collecting a

set of known positive (interacting) and negative (non-interacting) protein pairs in order to

construct training and test dataset(s). Next, a feature vector is gathered from such PPI samples

for which a plethora of feature extraction techniques have been developed including structure-

based [10–12], sequence-based [3, 13, 14], and domain-based [11, 15, 16] techniques. There

are also techniques that consider ontology [17, 18], gene expression [19], and evolutionary

profiles [20, 21] of proteins. Eventually, the feature vector serves during the training and test-

ing of machine-learning-based virus-host PPI prediction models to distinguish between posi-

tive and negative PPIs.

Several machine-learning-based virus-host PPI prediction tools have been previously docu-

mented and used different algorithms such as support vector machines (SVM) [3, 22, 23], ran-

dom forest (RF) [24], and gradient boosting machine (XGBoost) [13, 25].

In the SVM-based model, called DeNovo, amino acid sequence similarity-based features

have been used [3]. The authors used a feature extraction scheme originally developed by Shen

et al. [23]. This scheme incorporates clustering of amino acids, uses clusters to encode residues,

and calculates the frequencies of such encoded residues in triplets, also called tripeptides.

DeNovo also employs a sequence similarity-based strategy for sampling the negative virus-

host PPI data set for SVM training. The XGBoost classifier named HOPITOR [13] also uses

the negative sampling strategy described by DeNovo and, similarly, relies on the feature extrac-

tion scheme of Shen et al. [23].

SVM-based tool VirusHostPPI [4] also applies the same feature extraction scheme and

incorporated the relative frequency of amino acid triplets (RFAT) constituting 686 elements

for each pair of host and virus proteins into their feature vector which was supplemented by

further aspects of protein sequence-based features: the frequency difference of amino acid trip-

lets (FDAT) between virus and host proteins; amino acid composition (AC) in each pair of

host and virus proteins; as well as composition, transition and distribution of amino acid

groups as explained in the study of You and colleagues [26]. In the RF-based classifier Inter-

SPPI-HVPPI [24], the protein sequences were embedded using the doc2vec model where a

corpus of sequence information is used for training a model to compute protein sequence-spe-

cific features.
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When developing a machine-learning-based classification model, the process of selecting a

subset of original features, i.e. feature selection, is used to reduce the dataset by removing irrel-

evant and redundant features, leading to improved data quality. While reducing computation

time and space complexity, feature selection potentially increases the accuracy of models [27].

Although several virus-host PPI prediction tools use tripeptide frequencies as features,

none of them considered whether it is possible to achieve similar or better performances with

smaller feature vector sizes. Here, we applied correlation coefficient thresholds to glean the tri-

peptides to effectively select a minimal set of features for PPI prediction. Correlation was previ-

ously used in in silico research. Such that, the correlation between protein sequences to

determine interaction partners [28], and between protein domains to capture co-evolution sig-

nals in predicting intra-species PPIs [29].

In this study, we 1) adapted a previously curated virus-host PPI dataset; 2) extracted fea-

tures depending on normalized tripeptide frequencies based on the 7-letter reduced alphabet

of amino acids proposed by Shen et al. [23] to create protein sequence-based feature vectors;

3) applied different correlation coefficient metrics with various thresholds to select subsets

from such features; 4) built machine-learning-based PPI prediction models to assess the effec-

tiveness of our feature selection approach to test whether it is still yielding a reasonable perfor-

mance comparable to the previously available methods. Thus, we aim to highlight the value of

feature selection which allows us to reduce the computation time and space complexity of

virus-host PPI prediction.

Materials and methods

Dataset preparation

In this study, we used virus-host protein pairs compiled by Yang and colleagues, accessible

through the official tool website of InterSPPI-HVPPI (http://zzdlab.com/hvppi/). For this data-

set, they used the manually curated PPI data from Host-Pathogen Interaction Database

(HPIDB; version 3.0) [30] to obtain the positive (interacting) host-pathogen protein pairs

wherein 22,653 human-virus PPIs were selected after filtering out the redundant PPIs (based

on sequence identity threshold <0.5), non-physical interactions, and any interactions involv-

ing a protein size of<30 or >5,000 amino acids. Further, they downloaded protein data avail-

able in SwissProt [31] and produced the negative data set using Dissimilarity Based Negative

Sampling method. Eventually, their dataset has a positive to negative ratio of 1:10. The entire

dataset was handled in 3 random partitions of equal size both for training and three test sets to

reduce sampling bias each of which was further also split into 80% training and 20% test set.

In our study, we combined these three random partitions of the training dataset and test

dataset separately and removed duplicated records. Also, the records that intersect between

training and test sets were removed from the training dataset. Eventually, we had a combined

training set with 14,283 interacting (+) pairs and 262,731 non-interacting (-) pairs and a com-

bined test set with 8,375 interacting (+) pairs and 114,563 non-interacting (-) pairs. As these

source datasets only provide the accession identifiers, corresponding protein sequences were

obtained from UniProtKB (https://www.uniprot.org/) [31]. This dataset represents proteins

from a diverse set of viral taxa (n > 10) an illustration of which is depicted in Fig 1. In both

training and test sets,Herpesviridae was the most prevalent family with a ratio of about 35%,

and the distribution of families was comparable.

Feature extraction for virus-host PPI prediction

In the available virus-host PPI prediction tools (DeNovo [3], HOPITOR [13], VirusHostPPI

[4]), a common approach for extracting features was the use of the frequencies of amino acids
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in units of three adjacent residues (i.e. tripeptide) where each residue is encoded with a num-

ber. Due to its commonality, we have also utilized the same approach to extract protein-

sequence-based features. Briefly, this feature extraction scheme described by Shen et al. [23]

encompasses the following: first, 20 amino acids were divided into seven clusters encoded with

numbers from 1 to 7, in the given order, from 1 to 7, in the given order, {A, V, G}, {I, L,F, P},
{Y, M, T, S}, {H, N, Q, W}, {R, K}, {D, E}, and {C} based on similarities of physicochemical

properties known to drive most PPIs (dipoles and volumes of side chains). Amino acids in

each protein of the PPI pair, one from the host and one from the virus, are mapped to the cor-

responding cluster numbers. Next, the frequency of each tripeptide is calculated in both virus

and host proteins, generating a (7^3 = 343 dimensional) feature vector. The feature vectors are

then normalized using the min-max approach over [0, 1] for each protein independently.

These two normalized vectors of a protein pair (interacting or non-interacting) are

concatenated into a single feature vector.

We adopted exactly the same feature extraction method as described above and thus for

each of the protein sequences constituting a virus-host pair in our combined sets we ended up

with a feature vector at a size of 2 × 343 features.

Correlation-based feature selection

Here we utilized correlations between features which are the normalized frequencies of virus

tripeptides on one side and host tripeptides on the other side. To select the most correlated fea-

tures, we first generated a correlation coefficient matrix using one of the following correlation

coefficient metrics; Pearson (PS), Spearman’s rank (SM), and Kendall’s τ (KT). In each one of

these matrices, each virus-host protein pair -in the positive training dataset- is represented

based on the respective feature vectors (i.e. normalized frequencies of all possible tripeptides).

The correlation coefficient, though expected to be low due to taxa and protein diversity we

included in the dataset, herein is used as a metric to identify the relation between interacting

virus and their host peptides. The correlation coefficients were calculated using pearsonr,

spearmanr, and kendalltau which are provided by the SciPy Python library [32].

In each of the calculated correlation matrices, different thresholds were applied to filter out

the correlating host and virus features starting from 0 with increments of 0.01 as long as at

least one feature per virus or host protein is selected. At each correlated instance, (i.e. the cor-

relation metric is above the threshold) the corresponding host feature and the corresponding

viral feature, which stands for an encoded tripeptide, were included in the selected host feature

set and the selected viral feature set, respectively. Features were added in a unique fashion. A

depiction of the complete process of the feature selection is provided in Fig 2.

Virus–host PPI prediction model construction

To measure the impact of feature selection on model performance, we first constructed base-

line virus-host PPI prediction models based on random forest (RF), support vector machine

(SVM), and multi-layer perceptron (MLP) algorithms using the full feature vector

(686-dimensional) without any feature selection. For these models, we used default parameters

of respective algorithms (for RF: n_estimators = 100, criterion = gini, and

max_features = auto, for SVM: kernel = rbf, C = 1, and gamma = ‘scale’, for MLP: hidden_-

layer_sizes = (100,), activation = relu, solver = ‘adam’, alpha = 0.0001, and learning_rate =

Fig 1. Distribution of viral families in the datasets. (A) shows the distribution of viral families in the training dataset

and (B) shows the distribution of viral families in test datasets.

https://doi.org/10.1371/journal.pone.0285168.g001
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‘constant’). In order to deal with the class imbalance towards the negative class in our dataset,

we employed random undersampling during the training process of the models.

After that, using our feature selection approach described in the section entitled Correla-

tion-Based Feature Selection, we developed different prediction models using these 3

machine-learning algorithms (RF, SVM, MLP) employing a distinct reduced set of features

based on 3 different correlation coefficient metrics (PS, SM, KT) at different threshold levels.

We implemented a 5-fold cross validation (CV) where each virus family taxon is proportion-

ally represented in each validation fold instead of forming completely random validation folds

where virus families are not necessarily represented proportionally. In other words, the stratifi-

cation in cross validation not only factored in positive to negative ratio but also the representa-

tion of virus families in each fold. This CV strategy helped conservation of virus family specific

tripeptide patterns those are critical to our feature selection approach. The results are pre-

sented in S1 Table. The prediction models have been implemented using the Scikit-Learn

library [33] for the Python programming language.

Performance evaluation metrics for virus-host PPI prediction models

To measure the impact of feature selection compared against the baseline, we used the follow-

ing performance metrics: true positive rate (TPR), true negative rate (TNR), accuracy (ACC),

Fig 2. Overview of feature selection. Computation of correlated instances and selection based on correlation

coefficient threshold is shown. In this case, host protein feature #2 (second tripeptide’s normalized frequency) and

virus protein feature #3 has a computed correlation above the threshold. Likewise, host protein feature #15 and virus

protein feature #101.

https://doi.org/10.1371/journal.pone.0285168.g002
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F-score (F1), Matthew’s correlation coefficient (MCC), area under curve (AUC), and area

under precision-recall curve (AUPR). These measures are defined as follows:

TPR ¼ Sensitivity ¼ Recall ¼ 1 � FNR
TP

TP þ FN
ð1Þ

TNR ¼ Specificity ¼ 1 � FPR ¼
TN

TN þ FP
ð2Þ

Precision ¼
TP

TP þ FP
ð3Þ

FDR ¼ 1 � PPV ¼
FP

FPþ TN
ð4Þ

Accuracy ¼
TP þ TN

TPþ TN þ FPþ FN
ð5Þ

F� Score ¼
2∗Precision∗Recall
Precisionþ Recall

ð6Þ

AUC ¼
Z 1

x¼0

TPRðFPR� 1ðxÞÞdx ð7Þ

MCC ¼
TP∗TN � FP∗FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞ

p ð8Þ

AUPR ¼
Z 1

x¼0

PrecisionðRecall� 1ðxÞÞdx ð9Þ

TP (true positive) is the number of anticipated positive PPIs that really interact. FP (false

positive) is the number of expected positive PPIs that are really negative. TN (true negative) is

the number of PPIs projected negatively that is actually negative, whereas FN (false negative) is

the number of PPIs predicted negatively that are actually positive. Accuracy is the degree to

which a measured value is near to the real (true) value. The F1 is a metric for determining how

accurate a model is on a given dataset. It’s used to assess binary classification systems that

divide examples into ’positive’ and ’negative’ classes. The area under the receiver operating

characteristics (ROC) curve, also known as AUC, is one of the most essential assessment met-

rics for evaluating the effectiveness of any classification model. It indicates how well the model

can discriminate between different classes where a value of 0.5 is equivalent to a predictive

power of flip coin, and 1.0 stands for the highest achievable predictive power. MCC is a corre-

lation coefficient between observed and expected outcomes that are used to assess the quality

of binary classification. AUPR is an alternative to AUC particularly appropriate for evaluating

the performance of models built on imbalanced datasets where a baseline value of P/(P+N)

depends on the class distribution [34].

PLOS ONE A correlation coefficient-based feature selection for virus-host PPI prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0285168 May 2, 2023 7 / 15

https://doi.org/10.1371/journal.pone.0285168


Investigation of selected tripeptide features in virus–host PPI structural

context

In order to make a comparison with the available protein structure data to help interpretation

of our correlation-based feature selection, we have used the experimentally verified protein

structure data retrieved from RSCB Protein Databank (PDB) [35]. First, we downloaded the

PDB files containing a viral protein and a host protein together (interacting) from our positive

training and test datasets. Thus, we downloaded 211 PDB files, illustrating both in conjunc-

tion, out of which organism attribution was lacking for viral or host protein chains in 22 files

and only 130 had a reported resolution value. Out of these 130 structures, PDB ID:4YSI has

the highest (resolution (app. 1.0 Å) and contains Kaposi sarcoma herpesvirus (KSHV) vIRF1

protein with human ubiquitin-specific protease 7 (USP7). We filtered the entries which have a

resolution up to 3.0 Å. Thus, we ended up with 94 PDB entries. See S3 Table for a complete list

of PDB entries.

For these entries, we used Bio.PDB.PDBParser.PDBParser module of Biopython package

[36] in Python to figure out the protein-protein contacts applying a threshold of< 5 Å dis-

tance between the alpha carbon (Cα) atoms along the chains of peptides as described by

Viloria et al. [37]. Accordingly, to identify such amino acids which are the most important for

the interaction, for each protein structure file, we traversed all residues along the viral peptide

chain using a sliding window (at a size of 3 amino acids) and calculated the distance from its

Cα atom to the Cα atom of the host peptide chain. In this way, we picked up the PDB-based

virus tripeptides. We did the same calculation traversing the host peptide chain and calculating

the distance to the virus we picked up the PDB-based host tripeptides. Using the same encod-

ing scheme based on the reduced 7-letter amino acid alphabet as we used while selecting our

correlation-based set of features, we have also converted these tripeptides and hereafter

referred to them as contact tripeptides.

We conducted a quantitative and a qualitative analysis of selected tripeptide features in the

structural context of virus-host PPIs. For quantitative analysis of the selected tripeptide fea-

tures and contact tripeptides derived from PDB structures, we first checked for their intersec-

tion. Here, the intersection infers those tripeptides co-occurring in both sets. We searched

whether our feature selection is favoring contact tripeptides using Fisher’s exact test at a signif-

icance level of p< 0.05. Our null hypothesis is that the proportion of intersection is higher

among the tripeptides selected by the correlation-based approach in comparison to the pro-

portion of intersection among the non-selected tripeptides. The Fisher’s exact test was con-

ducted using the stats module under SciPy Python library (version 1.9.3) in Python [32].

Results and discussion

Assessment of correlation-based feature selection on virus–host PPI

prediction performance

We tested the performance of our PPI prediction models (RF, SMV, MLP) constructed with-

out any feature selection (686 features) trained using a training set, and tested using the test set

as described in Section Virus–host PPI Prediction Model Construction. The performances of

our baseline models, as well as the performance of other available tools (DeNovo [3], HOPI-

TOR [13], InterSPPI-HVPPI [24]) when tested on the test set, are given in Table 1. We could

not use VirusHostPPI [4] as their model is only available online which precludes us from run-

ning an excessive number of predictions required for our test set.

As tabulated results indicate, our baseline RF model performed slightly better than SVM

and both had a better performance compared to MLP based on AUC and AUPR metrics. As
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our intention here is not to prefer a specific PPI prediction model over the other models but to

compare the influence of our feature selection approach across the machine-learning algo-

rithms, we did not opt for a single model. Instead, we assessed the impact on all models. When

compared to existing PPI prediction tools, while InterSPPI-HVPPI seems to be the most suc-

cessful predictor, this may partly be attributable to our dataset creation which is derived from

Inter-SPPI-HVPPI’s compilation. Our predictors without feature selection, regardless of the

algorithm used, displayed a comparable, if not better, prediction performance.

Using the selected set of features based on various correlation coefficient thresholds, we

developed 42 different PPI prediction models using the same machine-learning algorithms

(RF, SVM, MLP) and 3 different correlation coefficient metrics (PS, SM, KT) at different

threshold levels. We evaluated the impact of feature selection in virus-host PPI prediction in

comparison to the baseline model (i.e. without feature selection). The respective performance

results are listed in S2 Table.

Out of all models we have constructed, the best performers based on the AUPR with a sub-

stantially reduced number of features are listed in Table 2.

Fig 3 provides a visual comparison of the impact of several correlation coefficient metrics

along with the resulting feature vector sizes (number of selected virus and host tripeptides) on

the performances of PPI prediction models.

As mentioned in the Section Dataset Preparation, the test dataset used in this study is

heavily imbalanced with a far higher number of negative pairs (114,563) compared to positive

Table 1. Model (RF, SMV, MLP) performance metrics without feature selection and comparison with available PPI prediction models.

PPI Prediction Model TPR TNR ACC F1 MCC AUC AUPR

RFa (w/o feature selection) 0.845 0.816 0.818 0.388 0.397 0.904 0.499

SVMa (w/o feature selection) 0.821 0.816 0.816 0.378 0.383 0.894 0.458

MLPa (w/o feature selection) 0.845 0.796 0.799 0.364 0.374 0.892 0.414

DeNovo 0.968 0.052 0.114 0.130 0.023 0.553 0.078

HOPITOR 0.603 0.528 0.533 0.150 0.066 0.607 0.162

InterSPPI-HVPPI 0.897 0.956 0.952 0.718 0.710 0.978 0.897

aAbbreviations: RF: random forest, SVM: support vector machine, MLP: multi-layer perceptron

https://doi.org/10.1371/journal.pone.0285168.t001

Table 2. Selected performances of virus–host PPI prediction models with and without (grey highlighted) feature selection.

Model Host Feature # Virus Feature # TPR TNR ACC F1 MCC AUC AUPR

RFa (w/o feature selection) 343 343 0.845 0.816 0.818 0.388 0.397 0.904 0.499

RF (PSa, threshold = 0.05) 95 88 0.840 0.824 0.825 0.396 0.403 0.904 0.496

RF (SMa, threshold = 0.05) 109 120 0.835 0.834 0.834 0.406 0.412 0.907 0.502

RF (KTa, threshold = 0.04) 86 95 0.835 0.825 0.826 0.395 0.402 0.903 0.497

SVMa (w/o feature selection) 343 343 0.821 0.816 0.816 0.378 0.383 0.894 0.458

SVM (PS, threshold = 0.04) 195 195 0.821 0.814 0.814 0.376 0.380 0.891 0.453

SVM (SM, threshold = 0.04) 311 309 0.825 0.811 0.817 0.377 0.380 0.891 0.448

SVM (KT, threshold = 0.03) 243 246 0.820 0.810 0.811 0.371 0.376 0.892 0.446

MLPa (w/o feature selection) 343 343 0.845 0.796 0.799 0.364 0.374 0.892 0.414

MLP (PS, threshold = 0.03) 195 195 0.831 0.779 0.778 0.346 0.360 0.892 0.406

MLP (SM, threshold = 0.03) 311 309 0.838 0.805 0.807 0.372 0.380 0.891 0.419

MLP (KT, threshold = 0.03) 243 246 0.812 0.811 0.811 0.369 0.372 0.883 0.408

aAbbreviations: RF: random forest, SVM: support vector machine, MLP: multi-layer perceptron; PS: Pearson, SM: Spearman’s rank, KT: Kendall’s τ

https://doi.org/10.1371/journal.pone.0285168.t002
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pairs (8,375). The performance metrics MCC, F1, and AUPR, though seemingly low, are actu-

ally not necessarily a sign of unfavourable performance. In terms of the metric AUPR, the

baseline AUPR for a test dataset of size 122,938 with 8,375 positives corresponds to 0.068 while

the AUPR of the RF models is around 0.5; an obviously better value. Likewise, reported F1 val-

ues rely on the positive class label which refers to the minority class. In this particular case,

unlike intrahost PPI prediction, the F1 value in negative class prediction (i.e. virus protein and

host protein are not interacting) is as important as the F1 value for the positive class because

this is indicative of the potential that the virus is not capable of infecting a host. So, a weighted

F1 as an alternative could have been used for this domain which has a value of>0.85 for our

models (data not shown). Finally, although MCC is reported to be unsuitable for classification

accuracy measurement on imbalanced datasets, as assessed in similar studies by Zhu [38], we

reported it as standard practice employed widely in applications of machine learning

methodologies.

Overall, the performance of PPI prediction models was not compromised by feature selec-

tion. In particular, RF model with the PS correlation coefficient seems to provide a greater fea-

ture reduction ratio from 686 to 56 features (%91.8 at threshold level 0.06) while sustaining the

prediction performance in terms of both AUC (reduced by 0.003) and AUPR (reduced by

0.007). In other words, using less than 10% of the originally extracted feature set, we achieved

almost similar prediction performance. Of note, the lower threshold values we observed dur-

ing this study are likely arising from the high diversity of taxa in our PPI dataset.

Investigation of selected tripeptide features in virus-host PPI structural

context

Fisher’s exact test results indicate a significantly higher proportion of intersection (i.e. tripep-

tides existing both in correlation and structure-based selection) for PS, at all thresholds and for

SM except for threshold 0.06. But for the KT correlation coefficient, although the proportion

of intersection is higher at thresholds 0.03 and 0.04, the differences are statistically not signifi-

cant. We provided all Fisher’s exact test details in S4 Table. While PS demonstrates the best

results, overall, the results suggest that the choice of correlation coefficient metric has an effect

on the detection of the host-virus tripeptides with relevant structural context (i.e. potential

contact tripeptides). The significance of structurally-relevant selection is encouraging regard-

ing the use of the correlation coefficient-based feature selection.

To implement an exemplary qualitative analysis, we picked the PDB entry (PDB ID: 4YSI)

with the highest resolution. On the human side tripeptides SNF, FMA, NFM, MAW, AWS,

WSE, SEV, and on the KSHV side tripeptides EGP, PSG, PGE, SPG, GEG, GPS were identified

as the contact tripeptides. Altogether, host tripeptides resulted in 7 distinct tripeptides and like-

wise, viral tripeptides resulted in 6 distinct tripeptides when encoded in a reduced alphabet.

We compared whether these contact tripeptides exist among the correlation coefficient-

based selected tripeptides. At least one component of both the viral and host contact tripeptide

sets was co-occurring in our selected tripeptides up until the threshold of 0.04 for PS, 0.05 for

SM, and 0.03 for KT correlation coefficient, respectively.

In Table 3 we have presented the intersection of tripeptides occurring both in the contact

tripeptide set and in the correlation coefficient-based selected tripeptide set.

Fig 3. Impact of feature selection on PPI prediction models based on (a) Pearson (b) Spearman and (c) Kendall Tau

correlation coefficient. X-axis shows different thresholds used for correlation coefficients. Bars indicate the number of

virus (blue) and host (yellow) features. Y-axis on the left shows the Area Under Curve and the one on the right side

shows the number of features. Lines indicate the RF (green), MLP (purple), and SVM (orange) model.

https://doi.org/10.1371/journal.pone.0285168.g003
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Independent of the correlation coefficient metric, in the majority of the cases the contact

tripeptides are selected in decreasing numbers by the threshold, as expected. The capability of

picking up the same tripeptides by our correlation-based selection as those calculated through

protein structure data is promising.

The intersection between tripeptides selected through our correlation coefficient-based

approach and distance calculation based on protein structures suggests the co-evolution of

respective peptides in virus and host can potentially be identified using correlation metrics,

though with low thresholds, even in a high level of taxa diversity.

We anticipate that the higher the availability of high-quality virus and host protein complex

structures reaches, the more means we will have to validate this hypothesis.

Conclusions

In this study, we presented a correlation-coefficient-based approach to select tripeptide fea-

tures extracted from interacting virus and host proteins; a crucial preliminary step for the crea-

tion of virus-host PPI prediction tools. We demonstrated that our approach is able to

substantially decrease the feature space without sacrificing the predictive power. PS -regardless

of the machine-learning algorithm used in the virus-host PPI prediction model- provides the

best performance with respect to the baseline model. In particular, the performance of RF

model with PS correlation coefficient (threshold 0.05) as measured by AUPR dropped by

0.003 and AUC stayed the same while achieving a 73.3% (from 686 to 183) reduction in the

number of tripeptide features.

We also explored potential biological foundations of feature selection by investigating the

structural context of selected tripeptides. Correlation-coefficient-based feature selection meth-

odology gave promising results. Qualitatively, it enables the selection of individual contact tri-

peptides as features. Quantitatively, it favors the selection of a significantly higher number of

structurally relevant (contact) tripeptides. We also believe correlation-coefficient-based feature

selection may be revealing potential co-evolution patterns among virus-host proteins.

Table 3. Contact tripeptides selected by correlation coefficient-based approach.

C.C.a Metric C.C. Threshold Host Tripeptides Virus Tripeptides

PSa 0.0 SNF-FMA-NFM-MAW-AWS-WSE-SEV EGP-PSG-PGE-SPG-GEG-GPS

PS 0.01 SNF-FMA-NFM-MAW-AWS-WSE-SEV EGP-PSG-PGE-SPG-GEG-GPS

PS 0.02 SNF-FMA-NFM-MAW-AWS-WSE-SEV EGP-PSG-PGE-SPG-GEG-GPS

PS 0.03 SNF-FMA-NFM-MAW-AWS-WSE-SEV EGP-PSG-PGE-SPG-GEG-GPS

PS 0.04 SNF-AWS-WSE-NFM-SEV EGP-PSG-PGE-SPG-GPS

SMa 0.0 SNF-FMA-NFM-MAW-AWS-WSE-SEV EGP-PSG-PGE-SPG-GEG-GPS

SM 0.01 SNF-FMA-NFM-MAW-AWS-WSE-SEV EGP-PSG-PGE-SPG-GEG-GPS

SM 0.02 SNF-FMA-NFM-MAW-AWS-WSE-SEV EGP-PSG-PGE-SPG-GEG-GPS

SM 0.03 SNF-FMA-NFM-MAW-AWS-WSE-SEV EGP-PSG-PGE-SPG-GEG-GPS

SM 0.04 SNF-AWS-WSE-NFM-SEV PSG-PGE-SPG-GEG-GPS

SM 0.05 WSE-SEV PGE

KTa 0.0 SNF-FMA-NFM-MAW-AWS-WSE-SEV EGP-PSG-PGE-SPG-GEG-GPS

KT 0.01 SNF-FMA-NFM-MAW-AWS-WSE-SEV EGP-PSG-PGE-SPG-GEG-GPS

KT 0.02 SNF-FMA-NFM-MAW-AWS-WSE-SEV EGP-PSG-PGE-SPG-GEG-GPS

KT 0.03 SNF-AWS-WSE-NFM-SEV PSG-PGE-SPG-GEG-GPS

aAbbreviations: C.C.: Correlation Coefficient; PS: Pearson, SM: Spearman’s rank, KT: Kendall’s τ.

https://doi.org/10.1371/journal.pone.0285168.t003
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In general, this correlation-coefficient-based feature selection approach can be used for any

virus-host PPI prediction tool relying on a tripeptide (or any n-peptide) frequency-based fea-

ture extraction scheme. Hence, we believe our approach will bring new perspectives to help

the development of new or improvement of existing virus-host PPI prediction tools.
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Methodology: Ahmed Hassan Ibrahim, Onur Can Karabulut, Betül Asiye Karpuzcu, Erdem

Türk, Barış Ethem Süzek.
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