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ABSTRACT
A numerical method for solving one-dimensional (1D) parabolic convection–diffusion equation
is provided. We consider the finite difference formulas with five points to obtain a numerical
method. The proposed method converts the given equation, domain, and time interval into a
discrete form. The numerical values of the solution are approximated by solving algebraic equa-
tions containing finite differences and values at these discrete points. The consistency, stability
and convergence are investigated. On the other hand, some numerical examples illustrate the
validity and applicability of the method. Finally, the numerical results are compared with the
finite difference scheme’s three points.
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1. Introduction

The convection–diffusion-reaction has three phases [1].
In the first phase, convection and materials move from
one region to another. In the second phase, diffusion
and materials flow from a high-concentration region to
a low-concentration region. The last phase is a reac-
tion and in this phase occurs the decay, absorption, and
reaction of substances with other components.

One-dimensional parabolic convection–diffusion
equation is a partial differential equation that is chal-
lenging to model in many scientific areas problems
such as biology, physics and engineering [2–8]. There-
fore, some researchers have embarked on obtaining the
numerical solutions to those problems using different
numerical methods:

In [4], Gürbüz proposed a Laguerre collocation
method to solve the 1D parabolic convection equation.
In this scheme, thegiven equation and conditions trans-
form a matrix-vector equation. Then, using collocation
points, the solution of this matrix-vector equation pro-
duces the Laguerre coefficients.

In [9], a finite difference method was presented
for linear and nonlinear convection–diffusion-reaction
models to obtain numerical results by Lima et al. The
authors focus on analyzing the convergence, utilizing
errors and the accuracy of the method.

In [10], the authors introduced an optimal q-homo
topy analysis method to arise the approximate solu-
tion of the convection–diffusion equation. This study

uses the homotopy perturbation method and optimal
q-homotopy analysis.

Also, several methods have been proposed to solve
the convection–diffusion-reaction, such as the homo-
topy perturbation method [11], finite element method
[12], Runga Kutta method [13], Bessel collocation
method [14], the weighted finite difference [15], a
hybrid approximation scheme [16], the uniform conver-
gent numerical method [17].

We consider the 1D parabolic convection–diffusion
equation as follows:

∂u

∂t
= ∂2u

∂x2
+ A(x)

∂u

∂x
+ B(x)u + f (x, t) (1)

with the initial conditions

u(x, 0) = g(x) (2)

and the boundary conditions

u(0, t) = g0(t) (3)

u(l, t) = g1(t) (4)

where 0 ≤ x ≤ l, 0 ≤ t ≤ T and 0 ≤ t ≤ l ≤ T . In this
paper, we seek the numerical solutions of Equation (1)
with the initial or boundary conditions Eqs.(2)-(4) by
finite difference method. The finite difference method
approximates the derivative of a known function. The
forward and central difference approximation is basic
difference equationwith twopoints.Moreover,wehave
a finite difference equation with four points [18]. Those
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equations are obtained by using the Taylor series. By
using the Taylor series, we have [18]

f ′(x) = 8f (x + h) − 8f (x − h) − f (x + 2h) + f (x − 2h)
12h

+ O(h4) (5)

for a known function f with four points. The finite dif-
ference method (FDM) is a suitable solver for ordinary
and partial differential equations. It has been applied to
many more problems in applied sciences, such as the
Poisson equation [19], sixth-order boundary valueprob-
lems [20], bi-harmonic interface problems [21], blend-
ing denoising models [22], fractional boundary value
problems [23], quasilinear parabolic partial differential
equation [24], some special problems [25].

This article is systematized: the basic finite-difference
formulation of Equation (1) and the numerical scheme
are presented in a discrete form with the uniformmesh
points in Section 2. The consistency, stability, and con-
vergence are investigated in Section 3. In Section 4, the
presented method is performed in several examples to
show the practicality and proficiency of the process.
Finally, a conclusion is added in Section 5.

2. Solutionmethod

This section introduces the basic ideas for the numer-
ical solution of the time-fractional diffusion equation
Equation (1) by implicit finite differences and meth-
ods. The domain [0, l] × [0, T] is divided into on N × M
mesh with h = l

M and Δt = T
M , respectively xi = ih for

i = 1, 2, . . . ,N is the ith node. The uniform step sizeΔt is
used; thus, tj = jΔt is the time level for the jth step. The
quantity u(xi, tj) represents the exact solution at (xi, tj)

while uji represents the numerical solution at (xi, tj).
The finite difference approximation for thederivative

can be stated as follows respectively

∂u

∂t
= uj+1

i − uji
�t

+ O(�t) (6)

∂u

∂x
= uji−2 − 8uji−1 + 8uji+1 − uji+2

12h
+ O(h4) (7)

∂2u

∂x2
= −uji−2 + 16uji−1 − 30uji + 16uji+1 − uji+2

12h2

+ O(h4) (8)

Substituting (6), (7), and (8) into (1) for (j + 1)th step,
we obtain

uj+1
i − uji =

�t

12h
A(x)(uj+1

i−2 − 8uj+1
i−1 + 8uj+1

i+1 − uj+1
i+2)

+ kB(x)uj+1
i

+ �t

12h2
(−uj+1

i−2 + 16uj+1
i−1 − 30uj+1

i

+ 16uj+1
i+1 − uj+1

i+2) (9)

Equation (9) requires, at each time step, solving a trian-
gular system of linear equations where the right-hand
side utilizes the computed solution’s history up to that
time.

3. Convergence analysis for numerical scheme

In this section, we shall give the convergence of the
given numerical scheme. For this purpose, the Neu-
mann stability analysis and consistency analysis are
investigated. Finally, at the end of this section, the con-
vergence is hold by Lax Equivalence Theorem.

3.1. Neumann stability analysis

Let’s assume that uji = uqp. Then, we apply the von Neu-
mann stability analysis to find the stability region. Also,
we take that the solution is of the form uqp := Gqeiβph.
Substitution of the above expression into Equation (9)
yields

Gq+1eiβph − Gqeiβph

= �t

12h
A(x)(Gq+1eiβ(p−2)h − 8Gq+1eiβ(p−1)h

+ 8Gq+1eiβ(p+1)h − Gq+1eiβ(p+2)h)

+ �tB(x)Gq+1eiβph + �t

12h2
(−Gq+1eiβ(p−2)h

+ 16Gq+1eiβ(p−1)h

− 30Gq+1eiβph + 16Gq+1eiβ(p+1)h

− Gq+1eiβ(p+2)h) (10)

After simplifying equation Equation (10), we have

G − 1 = �t

12h
A(x)G(e−2iβh − 8e−iβh + 8eiβh − e2iβh)

+ �t

12h2
G(−e−2iβh + 16e−iβh

− 30 + 16eiβh − e2iβh)

and

G − 1 = �t

12h
A(x)G(16i sin(βh)

− 2i sin(2βh)) + G�tB(x)

+ �t

12h2
G(−2 + 4sin2(βh)

+ 32 − 64sin2(βh/2) − 30)

Thus

G

[
1 + �t

12h
A(x)G(16i sin(βh)

−2i sin(2βh)) + G�tB(x)

− �t

12h2
(−2 + 4sin2(βh)

+32 − 64sin2(βh/2) − 30
] = 1
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From the above equation, we have

G = 1/

⎛
⎜⎜⎝

[
1 + �t

12hA(x)G(16i sin(βh)
−2i sin(2βh)) + G�tB(x)
− �t

12h2
(−2 + 4sin2(βh)

+32 − 64sin2(βh/2) − 30
]

⎞
⎟⎟⎠

So for all �t
12h2

> 0, we have |G| ≤ 1. Then the given
numerical method for Equation (1) is unconditionally
stable for all �t

12h2
> 0.

3.2. Consistency analysis

Consistency requires that the original equation can
recover from the algebraic equations [20]. We expand
every term of Equation (9) using Taylors series expan-
sion:

Uj+1
i = Uj

i + �t
∂u

∂t
+ (�t)2

2!
∂2u

∂t2
+ . . . (11)

Uj+1
i+1 = Uj

i + (�x
∂u

∂x
+ �t

∂u

∂t
)

+ 1
2!

((�x)2
∂2u

∂x2
− 2�x�t

∂2u

∂x∂t
+ (�t)2

∂2u

∂t2
)

+ . . . (12)

Uj+1
i−1 = Uj

i + (−�x
∂u

∂x
+ �t

∂u

∂t
)

+ 1
2!

((�x)2
∂2u

∂x2
− 2�x�t

∂2u

∂x∂t
+ (�t)2

∂2u

∂t2
)

+ . . . (13)

Uj+1
i+2 = Uj

i + (2�x
∂u

∂x
+ �t

∂u

∂t
)

+ 1
2!

((2�x)2
∂2u

∂x2
+ 4�x�t

∂2u

∂x∂t
+ (�t)2

∂2u

∂t2
)

+ . . . (14)

Uj+1
i−2 = Uj

i + (−2�x
∂u

∂x
+ �t

∂u

∂t
)

+ 1
2!

((2�x)2
∂2u

∂x2
− 4�x�t

∂2u

∂x∂t
+ (�t)2

∂2u

∂t2
)

+ . . . (15)

Substituting Eqs.(11)-(15) into implicit scheme
Equation (9), simplifying and collecting like terms
together

�t
∂u

∂t
+ (�t)2

2!
∂2u

∂t2

= �t

[
−A(x)

3
∂u

∂x
+ B(x)u + 4

3
∂2u

∂x2

]

+ (�t)2
[
−A(x)

3
∂2u

∂x∂t
− 7

12�x

∂u

∂t
+ B(x)

∂u

∂t

+�tB(x)

2
∂2u

∂t2
+ 1

6(�x)2
∂u

∂t
+ �t

12(�x)2
∂2u

∂t2

]
(16)

Dividing Equation (16) by Δt and reordering, we get

∂u

∂t
+ A(x)

3
∂u

∂x
− B(x)u − 4

3
∂2u

∂x2

= �t

[
−A(x)

3
∂2u

∂x∂t
− 7

12�x

∂u

∂t
+ B(x)

∂u

∂t

+�tB(x)

2
∂2u

∂t2
+ 1

6(�x)2
∂u

∂t
+ �t

12(�x)2
∂2u

∂t2

+1
2

∂2u

∂t2

]
(17)

It is noticed that the first four terms in Equation (17)
are for the recovered partial differential equation, that is
parabolic convection diffusion equation, and the other
terms are the truncation error since the parabolic con-
vection–diffusion equation has been recovered from
the algebraic equation of the implicit scheme devel-
oped and so, we conclude that the method is “consis-
tent”.

3.3. Convergence analysis

We obtain the stability and consistency analysis of the
proposedmethod in this section. In Sections 3.1 and 3.2,
weproved the consistency and stability of theproposed
method. Moreover, the following theorem assures the
convergence of the method.

Theorem 3.1: (Lax Equivalence Theorem) The finite dif-
ference scheme, which is consistent and stable, is equiva-
lent to convergence.

Proof: [19]. �

4. Algorithm

1. Input the time step �t and space step (h).
2. Compute grid points xi for i = 0, 1, . . . ,N and ti for

j = 0, 1, . . . , T .
3. Compute u0i for all mesh points by Equation (9).
4. Compute the right-hand side of Equation (9) for

all mesh points.For each fixed i = 0, . . . ,N and j =
0, . . . , T compute uji and uj−1

i by using Equation
(9).For each fixed i = 0, . . . ,N and j = 0, . . . , T com-
pute f ji .

5. Compute the boundary conditions uji for i = 0,
. . . ,N and j = 0, . . . , T .

6. Calculate uj+1
i by using the given scheme

Equations (6)-(9).
7. Evaluate absolute errors.

5. Examples

In this section, we give some examples to confirm the
method. All numerical values are obtained by using
codes by Maple. To confirm the versatility and accuracy
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Figure 1. 3D Graph of absolute errors in Example1 for h = 1/10,Δt = 1/10000, 0 ≤ x ≤ 1, 0 ≤ t ≤ 0.0005.

Figure 2. 3D Graph of numerical values in Example1 for h =
1/10,Δt = 1/10000 0 ≤ x ≤ 1, 0 ≤ t ≤ 0.0005.

of the proposed method, we perform the error sources
L2 and L∞, where

L2 = ||ue − u||2 =
√√√√h

N∑
i=0

|(ue)ji − uji|
2
and L∞

= ||ue − u||∞ = max
i

|(ue)ji − uji|.

Figure 3. Contour Graph of numerical values in Example1 for
h = 1/10,Δt = 1/10000 0 ≤ x ≤ 1, 0 ≤ t ≤ 0.0005.

Example 5.1: Let us consider the following 1-D parabo
lic convection–diffusion equation

∂u(x, t)
∂t

− ∂2u(x, t)
∂x2

− (2x + 1)
∂u(x, t)

∂x
− x2u(x, t)

= ex+t

ε
(18)

Table 1. Absolute errors for Equation (18) with h = 1/10,Δt = 1/10000 at different time step.

t = 0.0003 t = 0.0005 t = 0.0009

X Given FDM 3 points FDM Given FDM 3 points FDM Given FDM 3 points FDM

1/10 2.98963e-4 3.71414e-3 5.38136e-4 6.14732e-3 1.10135e-3 1.09172e-2
1/5 2.80555e-4 4.61091e-3 4.62630e-4 7.68925e-3 6.16142e-3 1.38535e-2
3/10 2.93697e-3 5.62524e-3 4.90477e-3 9.38311e-3 8.85745e-3 1.69171e-2
2/5 3.51942e-3 6.84570e-3 5.86477e-3 1.14193e-2 1.05543e-2 2.05900e-2
1
2 4.16183e-3 8.31029e-3 6.93506e-3 1.38628e-2 1.24783e-2 2.49978e-2
3/5 4.84535e-3 1.00621e-3 8.07401e-3 1.67857e-2 1.45276e-2 3.02704e-2
7/10 5.56659e-3 1.46249e-2 9.27624e-3 2.02707e-2 1.66923e-2 3.65536e-2
4/5 6.32202e-3 1.46249e-2 1.05345e-2 2.43808e-2 1.89451e-2 4.38752e-2
9/10 6.80973e-3 1.70626e-2 1.01122e-2 2.28053e-2 1.97633e-2 4.91708e-2
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Table 2. Numerical, exact solutions and absolute errors for
Equation (18) with h = 1/20,Δt = 1/10000 at different spatial
step.

X Numerical Solution Exact Solution Error

1/20 7.8410404 7.8423451 1.30472e-3
1/5 7.8405201 7.8431293 2.60920e-3
3/10 7.8400002 7.8439137 3.91345e-3
2/5 7.8394807 7.8446981 5.21747e-3
1/2 7.8389614 7.8454826 6.52125e-3
3/5 7.8379237 7.8462672 7.82482e-3
7/10 7.8374054 7.8470519 9.12815e-3
4/5 7.8368873 7.8478366 1.04312e-2
9/10 7.8363696 7.8486215 1.17341e-2

Figure 4. 3D Graph of absolute errors in Example 2 for h =
1/10,Δt = 1/100 0 ≤ x ≤ 1, 0 ≤ t ≤ 0.05.

where (x, t) ∈ [0, 1] × [0, T]. The exact solution to this
problem is u(x, t) = ex+t

ε
. The initial and boundary con-

ditions are calculated using the exact solution. We
takeε = 0.2. Our numerical results are tabulated in
Tables 1 and 2 for different values h at different time
steps. A comparison of the error values between the 3
and 5 points difference scheme of Equation (18) is pre-
sented in Table 1. Those results are compared in Figures
1–3. Moreover, errors are shown in the counter form in
Figure 3.Ournumerical results areobserved tobebetter
than the classical FDM. Our results are the same surface
with the exact solution.

Example 5.2: Let us consider the following diffusion
equation

∂u(x, t)
∂t

− ∂2u(x, t)
∂x2

+ ∂u(x, t)
∂x

= −u(x, t) (19)

Figure 5. 3DGraph of numerical solutions in Example 2 for h =
1/10,Δt = 1/100 0 ≤ x ≤ 1, 0 ≤ t ≤ 0.05.

Figure 6. Contour Graph of absolute errors in Example 2 for
h = 1/10,Δt = 1/100 0 ≤ x ≤ 1, 0 ≤ t ≤ 0.05.

where (x, t) ∈ [0, 1] × [0, T]. The exact solution to this
problem is u(x, t) = e−x+t . Absolute errors are reported
in Tables 3–5 for different spatial steps. Numerical
results are plotted in Figures 4–6. These results confirm
that the proposed technique is correct in solving this
problem.

Table 3. Absolute errors for Equation (19) with two methods with h = 1/10,Δt = 1/10000 at different spatial step.

t = 0.0003 t = 0.0005 t = 0.0009

x Given FDM 3 points FDM Given FDM 3 points FDM Given FDM 3 points FDM

1/10 8.17362e-4 7.31942e-3 1.16122e-3 1.23011e-2 2.38568e-3 2.25072e-2
1/5 7.64511e-4 6.47695e-3 1.52905e-3 1.07637e-2 2.29305e-3 1.92536e-2
3/10 6.91140e-4 5.86301e-3 1.38201e-3 9.74796e-3 2.07266e-3 1.74619e-2
2/5 6.25327e-4 5.30503e-3 1.25032e-3 8.82015e-3 1.87498e-3 1.57989e-2
1/2 5.65819e-4 4.80019e-3 1.11313e-3 7.98080e-3 1.69655e-3 1.42955e-2
3/5 5.11974e-4 4.34339e-3 1.02367e-3 7.22133e-3 1.53510e-3 1.29351e-2
7/10 4.63266e-4 3.93005e-3 9.26313e-4 6.53407e-3 1.38915e-3 1.17037e-2
4/5 4.19397e-4 3.55519e-3 8.38711e-4 5.90926e-3 1.25775e-3 1.05760e-2
9/10 3.70746e-4 3.16232e-3 7.33801e-4 5.21159e-3 1.08953e-3 9.16991e-3
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Table 4. Numerical, exact solutions and absolute errors for
Equation (19) with i = N − 1, h = 1/30, Δt = 1/10000 at dif-
ferent time step.

t Numerical Solution Exact Solution Error

0.0001 0.3797645 .3803867934 .6222814e-3
0.0002 .3792305754 .3804248339 .11942585e-2
0.0003 .3787386587 .3804628783 .17242196e-2
0.0004 .3782821766 .3805009265 .22187499e-2
0.0005 .3778558556 .3805389785 .26831229e-2
0.0006 .3774554397 .3805770343 .31215946e-2
0.0007 .3770774664 .3806150939 .35376275e-2
0.0008 .3767190967 .3806531573 .39340606e-2
0.0009 .3763779841 .3806912245 .43132404e-2

Table 5. L∞ and L2errors for Equation (19) with j = 3, Δt =
1/10000 at different N values.

N L∞ L2

10 1.21753e-3 8.51237e-3
20 3.06604e-3 2.13226e-3
30 4.95519e-4 3.40926e-4
40 6.79582e-5 4.68042e-5

6. Conclusion

The FDM scheme is the prime, essential, and most
applied numerical method to solve ODEs and PDEs. The
central difference and forward difference schemes with
three points in literature are usually developed. This
paper presented an efficient numerical scheme using
the finite difference method with five points for solv-
ing the 1D parabolic convection–diffusion equation.
First, the proposed method reduced the main prob-
lem into a discrete equation form. Then, the equation
was converted to a triangular system of linear equa-
tions to find desired numerical values. Neumann sta-
bility analysis for the regular domain and convergence
of the method was investigated. We examined several
examples to compare the absolute errors and existing
method results. Our results and comparisons are tabu-
lated and plotted. Our numerical results are better than
three points scheme from Tables 1 and 3. Moreover, our
errors areO(h4),while the three-point schemehasO(h2).
In the proposed method, to warrant the required accu-
racy, the calculations are mainly run by a sufficiently
high precision calculation, but the size of the digit num-
ber is naturally limited. All computations are performed
in Maple software.
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