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Abstract. We analyse football (soccer) player performance data with mixed
type variables from the 2014-15 season of eight European major leagues. We
cluster these data based on a tailor-made dissimilarity measure.

In order to decide between the many available clustering methods and to
choose an appropriate number of clusters, we use the approach by Akhanli and
Hennig (2020). This is based on several validation criteria that refer to different
desirable characteristics of a clustering. These characteristics are chosen based
on the aim of clustering, and this allows to define a suitable validation index
as weighted average of calibrated individual indexes measuring the desirable
features.

We derive two different clusterings. The first one is a partition of the data
set into major groups of essentially different players, which can be used for
the analysis of a team’s composition. The second one divides the data set
into many small clusters (with 10 players on average), which can be used for
finding players with a very similar profile to a given player. It is discussed in
depth what characteristics are desirable for these clusterings. Weighting the
criteria for the second clustering is informed by a survey of football experts.

Cluster analysis, clustering validity indexes, football data, calibrated indexes,
large number of clusters

1. Introduction

Nowadays, a large amount of performance data of professional football (soccer)
players is routinely collected. The analysis of such data is of great commercial in-
terest. Here we cluster complex player performance data with mixed type variables
from the 2014-15 season of eight European major leagues.

Sports have embraced statistics in assisting player recruitment and playing strate-
gies. Different statistical methodologies have been applied to various types of sports

E-mail addresses: serhatakhanli@mu.edu.tr, christian.hennig@unibo.it.
1

ar
X

iv
:2

20
4.

09
79

3v
1 

 [
st

at
.A

P]
  2

0 
A

pr
 2

02
2



Clustering of football players performance data Akhanli and Hennig

data. Cluster analysis has been used for aggregating similar types of players in sev-
eral applications. Ogles and Masters (2003) suggested that by using cluster analysis
(Ward’s method), marathon runners can be categorised into five groups in terms of
their motives for running. Gaudreau and Blondin (2004) examined coping strate-
gies used by groups of athletes based on a hierarchical cluster analysis using Ward’s
method. Wang et al. (2009) observed coaching behaviour among basketball players,
and showed that three distinct groups could be identified by using an agglomerative
hierarchical clustering method. Yingying et al. (2010) applied different clustering
techniques to athletes’ physiological data, and proposed a new hierarchical cluster-
ing approach. Kosmidis and Karlis (2016) used NBA players’ data to form groups
of players in terms of their performance using copula-based finite mixture mod-
els. Dutta et al. (2020) adopted model based clustering for data of defensive NFL
players.

There is also connected work on football data. Bialkowski et al. (2014) adopted
k-means clustering and minimum entropy data partitioning to identify a team’s
structure. Feuerhake (2016) used the Levenstein distance and then k-means and
DBSCAN clustering to analyse sequences of movements in a soccer game. Hobbs
et al. (2018) applied spatio-temporal trajectory clustering that could automatically
identify counter-attacks and counter-pressing without requiring unreliable human
annotations. Decroos and Davis (2020) created a “player vector” that characterizes
a player’s playing style using methods such as clustering and nearest neighbour.

A key contribution of the present work is the assessment of the quality of differ-
ent clusterings, which allows us to select from a wide range of clustering solutions
for the analysed data set coming from different clustering approaches and numbers
of clusters. Hennig (2015b,a) have argued that there is no single “true” clustering
for a given data set, and that the quality of different clusterings depends on the
requirements of the specific application, and in particular on what characteristics
make a clustering desirable for how the clusters are later used and interpreted.
Different uses can be imagined for clusterings of football players according to per-
formance data, and we aim at measuring clustering quality with such uses in mind.
We propose two different such measurements for different aims of clustering. The
first one is to give a rough representation of the structure in the data in terms of a
low number of clusters corresponding to easily interpretable types of players. This
can be used for example to analyse team compositions and positioning in terms of
these clusters, and to relate it to success. The second one is to have small clusters
of very similar players that can be used for finding potential replacements for a
player, and to analyse similarities between teams on a finer scale. The second aim
requires a much larger number of clusters than the first one. Arguably, none of the
existing standard methods for determining the number of clusters in the literature
(see Section 4.1) is reliable when comparing very small (around 4, say) with very
large (more than 100) numbers of clusters based on the data alone. In fact, on most
data sets, these will not directly compete. Rather it depends on the clustering aim
whether a rather small or a rather large number of clusters is required.

We will take the approach proposed by Hennig (2019) and elaborated in Akhanli
and Hennig (2020), which is based on a set of indexes that are meant to measure
different desirable features of a clustering in a separate manner, and then the user
can select indexes and weights according to the requirements of the application in
order to define a composite index. This requires a calibration scheme that makes the
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values of the different indexes comparable, so that their weights can be interpreted
in terms of the relative importance of the respective characteristic. Although we
analyse data from the 2014-15 season, the composite indexes resulting from this
approach are applicable to other data sets of a similar kind.

Another important ingredient of our clusterings is a suitable dissimilarity mea-
sure between players. This involves a number of nontrivial choices, as the data are
of mixed type (there are categorical position variables, counts, ratios, and compo-
sitional variables as well as variables that are very skewly distributed and require
transformation and other ways of re-expression). A suitable dissimilarity measure
for football player performance data was proposed in Akhanli and Hennig (2017)
with the intention to use it for mapping the players by means of multidimensional
scaling (MDS) (Borg et al., 2012) and dissimilarity-based clustering. Some details
that were not covered in Akhanli and Hennig (2017) are explained here.

In Section 2 the data set is introduced and the dissimilarity measure is defined.
Section 3 lists the cluster analysis methods that have been used. Section 4 intro-
duces various indexes for cluster validation from the literature, and the indexes used
for individual aspects of clustering quality along with the calibration and weight-
ing scheme according to Akhanli and Hennig (2020). Section 5 applies these ideas
to the football players data set. This includes a discussion of the weights to be
chosen, which involves a survey among football experts regarding whether specific
players should be clustered together in order to justify one of the weighting schemes.
Section 6 concludes the paper.

1.1. General notation. Given a data set, i.a., a set of distinguishable objects
X = {x1, x2, . . . , xn}, the aim of cluster analysis is to group them into subsets of
X . A clustering is denoted by C = {C1, C2, . . . , CK}, Ck ⊆ X , with cluster size
nk = |Ck|, k = 1, . . . ,K. We require C to be a partition, e.g., k 6= g ⇒ Ck ∩Cg = ∅
and

⋃K
k=1 Ck = X . Clusters are assumed to be crisp rather than fuzzy, i.e., an

object is either a full member of a cluster or not a member of this cluster at all. An
alternative way to write xi ∈ Ck is li = k, i.e., li ∈ {1, . . . ,K} is the cluster label
of xi.

The approach presented here is defined for general dissimilarity data. A dissim-
ilarity is a function d : X 2 → R+

0 so that d(xi, xj) = d(xj , xi) ≥ 0 and d(xi, xi) = 0
for xi, xj ∈ X . Many dissimilarities are distances, i.e., they also fulfill the triangle
inequality, but this is not necessarily required here.

2. Football players dataset and dissimilarity construction

The data set analysed here contains 1501 football players characterized by 107
variables. It was obtained from the website www.whoscored.com. Data refer to
the 2014-2015 football season in 8 major leagues (England, Spain, Italy, Germany,
France, Russia, Netherlands, Turkey). The original data set had 3003 players, which
were those who have appeared in at least one game during the season. Goalkeepers
have completely different characteristics from outfield players and were therefore
excluded from the analysis. Because data about players who did not play very often
are less reliable, and because the methods that we apply are computer intensive, we
analysed the 1501 (about 50%) players who played most (at least 1403 or 37% out
of a maximum of 3711 minutes). Variables are of mixed type, containing binary,
count and continuous information. The variables can be grouped as follows:
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• Team and league variables: League and team ranking score based on
the information on UEFA website, and team points from the ranking table
of each league,

• Position variables: 11 variables indicating possible positions on which a
player can play and has played,

• Characteristic variables: Age, height, weight,
• Appearance variables: Number of appearances of teams and players,

and players number of minutes played,
• Top level count variables: Interceptions, fouls, offsides, clearances, un-

successful touch, dispossess, cards, etc.
• Lower level count variables: Subdivision of some top level count vari-

ables as shown in Table 1

Table 1. Top and lower level count variables

TOP
LEVEL

LOWER LEVEL

Zone: Out of box, six yard box, penalty area
Situation: Open play, counter, set piece, penalty taken
Body part: Left foot, right foot, header, other

SHOT

Accuracy: On target, off target, blocked

GOAL
Zone: Out of box, six yard box, penalty area
Situation: Open play, counter, set piece, penalty taken
Body part: Left foot, right foot, header, other
Length: AccLP, InAccLP, AccSP, InAccSP

PASS
Type: AccCr, InAccCr, AccCrn, InAccCrn, AccFrk, InAccFrk

KEY PASS
Length: Long, short
Type: Cross, corner, free kick, through ball, throw-in, other

ASSIST Type: Cross, corner, free kick, through ball, throw-in, other
BLOCK Pass blocked, cross blocked, shot blocked
TACKLE Tackles, dribble past
AERIAL Aerial won, aerial lost
DRIBBLE Dribble won, dribble lost
*Acc: Accurate, *InAcc: Inaccurate

*LP: Long pass, *SP: Short pass, *Cr: Cross, *Crn: Corner, *Frk: Free kick

In order to appropriately take into account the information content in the dif-
ferent variables, Akhanli and Hennig (2017) constructed a dissimilarity measure
between players, which we review here (the choice of c in Section 2.2 was not ex-
plained there). See that paper for more details including missing value treatment.
The construction process had five stages:

(1) Representation: Re-defining variables in order to represent the relevant
information in the variables appropriately;
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(2) transformation of variables, where the impact of variables on the resulting
dissimilarity is appropriately formalised in a nonlinear manner;

(3) standardisation in order to make within-variable variations comparable
between variables;

(4) weighting to take into account that not all variables have the same im-
portance;

(5) aggregation: Defining a dissimilarity putting together the information
from the different variables; the first four stages need to be informed by the
method of aggregation.

Data should be processed in such a way that the resulting dissimilarity between
observations matches how dissimilarity is interpreted in the application of interest,
see Hennig and Hausdorf (2006); Hennig (2015a). The resulting dissimilarities
between observations may strongly depend on transformation, standardisation, etc.,
which makes variable pre-processing very important.

2.1. Representation. Counts of actions such as shots, blocks etc. should be used
relative to the period of time the player played. A game of football lasts for 90
minutes, so we represent the counts as “per 90 minutes”, i.e., divided by the min-
utes played and multiplied by 90. We will still refer to these variables as “count
variables” despite them technically not being counts anymore in this way.

Regarding count variables at different levels such as shots overall, shots per zone,
shot accuracy, there is essentially different information in (a) the overall number
and (b) the distribution over sub-categories. Therefore the top level counts are kept
(per 90 minutes), whereas the lower level counts are expressed as proportions of
the overall counts. Some counts in sub-categories can be interpreted as successes of
actions counted by other variables. For example there is accuracy information for
passes, and goals are successful shots. In these cases, success rates are used (i.e.,
goals from the six yard box are expressed as success percentage of shots from the
six yard box). In some cases both success rates and sub-category proportions are
of interest in their own right, in which case they are both kept, see Table 2 for an
overview. Note that later variables are aggregated in such a way that redundant
information (such as keeping all sub-category proportions despite them adding up to
1 and therefore losing a degree of freedom) does not cause mathematical problems,
although this should be taken into account when weighting the variables, see Section
2.4.

2.2. Transformation. The top level count variables have more or less skew distri-
butions; for example, many players, particularly defenders, shoot very rarely during
a game, and a few forward players may be responsible for the majority of shots. On
the other hand, most blocks come from a few defenders, whereas most players block
rarely. This means that there may be large absolute differences between players
that shoot or block often, whereas differences at the low end will be low; but from
the point of view of interpretation, the dissimilarity between two players with large
but fairly different numbers of blocks and shots is not that large, compared with the
difference between, for example, a player who never shoots and one who occasion-
ally but rarely shoots. Most of these variables x have therefore been transformed
by y = log(x+ c), where the constant c (or no transformation) has been chosen de-
pendently of the variable in question by taking into account data from the previous
season. The transformation was chosen in order to make the differences between
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Table 2. Representation of lower level count variables

Variables Proportional
total

Success rate

(Include sub-
categories)

(standardised
by)

(standardised by)

Block Total Blocks 8

Tackle, Aerial, Dribble 8 Total tackles, total aerials, and total
dribbles

Shot (4 sub-categories) Total shots 8

Goal (4 sub-categories) Total goals Shot count in different sub-
categories, and total shots for
overall success rate

Pass (2 sub-categories) Total passes Pass count in different sub-
categories, and total passes for
overall success rate

Key pass (2 sub-
categories)

Total key passes 8

Assist Total assists Key pass count in different sub-
categories, and total assists for over-
all success rate

the two years as stable as possible over the range of x, according to the rationale
that in this way the amount of “random variation” is near constant everywhere
on the value range. More precisely, a regression was run, where the response was
the absolute value of the player-wise transformed count difference between the two
seasons, and the explanatory variable was the weighted mean (by minutes played)
of the two transformed count values. c is then chosen so that the regression slope is
as close to zero as possible (see Akhanli (2019) for more details and issues regarding
matching player data from the two seasons).

2.3. Standardisation. The general principle of aggregation of variables will be to
sum up weighted variable-wise dissimilarities (see Section 2.5), which for standard
continuous variables amounts to computing the L1 (Manhattan) distance. Accord-
ingly, variables are standardised by the average absolute distance from the median.
For the lower level percentages, we standardise by dividing by the pooled average
L1 distance from the median. We pool this over all categories belonging to the same
composition of lower level variables. This means that all category variables of the
same composition are standardised by the same value, regardless of their individual
relative variances. The reason for this is that a certain difference in percentages
between two players has comparable meaning between the categories, which does
not depend on the individual variance of the category variable (see Akhanli and
Hennig (2017) for a discussion of the treatment of compositional variables).

2.4. Weighting. An aspect of variable weighting here is that in case that there are
one or more lower level compositions of a top level variable, the top level variable
is transformed and standardised individually, whereas the categories of the lower
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level percentage composition are standardised together. This reflects the fact that
the top level count and the lower level distribution represent distinct aspects of
a player’s characteristics, and on this basis we assign the same weight to the top
level variable as to the whole vector of compositional variables, e.g., a weight of
one for transformed shot counts is matched by a weight of 1/3 for each of the zone
variables “out of the box”, “six yard box”, “penalty area”. Implicitly this deals with
the linear dependence of these variables (as they add to one); their overall weight is
fixed and would not change if the information were represented by fewer variables
removing linear dependence.

In case that a top level count variable is zero for a player, the percentage variables
are missing. In this situation, for overall dissimilarity computation between such
a player and another player, the composition variables are assigned weight zero
and the weight that is normally on a top level variable and its low level variables
combined is assigned to the top level variable.

2.5. Aggregation of variables. There are different types of variables in this data
set which we treat as different groups of variables. There are therefore two levels
of aggregation, namely aggregation within a group, and aggregation of the groups.
Group-wise dissimilarities dk are aggregated as follows:

(1) dfin(x,y) =
3∑

k=1

wk ∗ dk(x,y)
sk

,

where wk is the weight of group k, and sk is the standard deviation of the vector
of all dissimilarities dk from group k. wk is chosen proportionally to the number
of variables in the kth group. Note that there is another layer of weighting and
standardising here on top of what was discussed in Sections 2.3 and 2.4. This was
done in order to allow for a clear interpretation of weights and measures of variabil-
ity; it would have been much more difficult to standardise and weight individual
variables of different types against each other. (1) takes inspiration from the Gower
coefficient for mixed type data (Gower, 1971), although Gower did not treat groups
of variables and advocated range standardisation, which may be too dominated by
outliers.

For quantitative variables (characteristics, appearances, top and lower level count
variables), (1) with dk chosen as absolute value of the differences amounts to the
L1 (Manhattan) distance. These variables therefore do not have to be grouped.

The league ranking scores and the team points from the ranking table of each
league based on the 2014-2015 football season are aggregated to a single joint dis-
similarity by adding standardised differences on both variables in such a way that
a top team in a lower rated league is treated as similar to a lower ranked team in
a higher rated league.

The position variables can take values 0 or 1 for the presence, over the season,
of the player on 11 different possible positions on the pitch. These are aggregated
to a single dissimilarity using the geco coefficient for presence-absence data with
geographical location, taking into account geographical distances, as proposed in
Hennig and Hausdorf (2006), using a suitable standardised Euclidean distance be-
tween positions, see Table 3.
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Table 3. Distances between each position. Here the values are
obtained by using Euclidean geometry

dR(a, b) DC DL DR DMC MC ML MR AMC AML AMR FW
DC 0 1 1 1 2

√
5

√
5 3

√
10

√
10 4

DL 1 0 1
√

2
√

5 2
√

5
√

10 3
√

10
√

17
DR 1 1 0

√
2

√
5

√
5 2

√
10

√
10 3

√
17

DMC 1
√

2
√

2 0 1
√

2
√

2 2
√

5
√

5 3
MC 2

√
5

√
5 1 0 1 1 1

√
2

√
2 2

ML
√

5 2
√

5
√

2 1 0 1
√

2 1
√

2
√

5
MR

√
5

√
5 2

√
2 1 1 0

√
2

√
2 1

√
5

AMC 3
√

10
√

10 2 1
√

2
√

2 0 1 1 1
AML

√
10 3

√
10

√
5

√
2 1

√
2 1 0 1

√
2

AMR
√

10
√

10 3
√

5
√

2
√

2 1 1 1 0
√

2
FW 4

√
17

√
17 3 2

√
5

√
5 1

√
2

√
2 0

3. Clustering methods

Clustering has been carried out by standard dissimilarity-based clustering meth-
ods with the aim of finding the best clusterings by comparing all clusterings using
a composite cluster validity index based on indexes measuring different aspects of
clustering, see Section 4.

The following six clustering algorithms (all of which unless otherwise stated
are described in Kaufman and Rousseeuw (1990)) were used, all with standard
R-implementations and default settings:

• Partitioning Around Medoids (PAM),
• single linkage,
• average linkage,
• complete linkage,
• Ward’s method (this was originally defined for Euclidean data but can be

generalised to general dissimilarities, see Murtagh and Legendre (2014)),
• spectral clustering (Ng et al. (2001)).

4. A composite cluster validity index based on indexes measuring
different aspects of clustering

4.1. Cluster validity indexes. In order to choose a clustering method and num-
ber of clusters for clustering the players, we will follow the concept of aggregation
of calibrated cluster validity indexes as introduced in Hennig (2019) and elaborated
in Akhanli and Hennig (2020).

A large number of cluster validity indexes are proposed in the literature, for
example the Average Silhouette Width (ASW) (Kaufman and Rousseeuw, 1990),
the Calinski-Harabasz index (CH) (Caliński and Harabasz, 1974), the Dunn index
(Dunn, 1974), a Clustering Validity Index Based on Nearest Neighbours (CVNN)
(Liu et al., 2013), and Hubert’s Γ (Hubert and Schultz, 1976). All these indexes
attempt to summarise the quality of a clustering as a single number. They are nor-
mally optimised in order to find the best clustering out of several clusterings. Mostly
the set of compared clusterings is computed from the same clustering method but
with different numbers of clusters. Clusterings computed by different methods can
also be compared in this way, but this is done much less often, and some indexes
are closer connected to specific clustering methods than others (e.g., optimising
CH for a fixed number of clusters is equivalent to k-means). See Arbelaitz et al.
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(2012) for a comparative simulation study, and Halkidi et al. (2015) for more in-
dexes and discussion. The indexes are usually presented as attempts to solve the
problem of finding the uniquely best clustering on a data set. Occasionally the
ASW is also used to assess a clustering’s validity without systematic optimisation.
Alternatively, stability under resampling has been suggested as a criterion for mea-
suring the quality of a clustering (Tibshirani and Walther (2005); Fang and Wang
(2012)). Further approaches to choose the number of clusters are more closely re-
lated to specific clustering methods and their objective functions, such as the gap
statistic (Tibshirani et al., 2001). In model-based clustering, information criteria
such as the BIC are popular (Bouveyron et al., 2019). As the indexes above, these
are also usually interpreted as stand-alone measures of the clustering quality.

As argued in Hennig (2015a,b), there are various aspects of clusterings that
can be of interest, such as separation between clusters, within-cluster homogeneity
in the sense of small within-cluster dissimilarities or homogeneous distributional
shapes, representation of clusters by their centroids, stability under resampling,
and entropy. In many situations two or more of these aspects are in conflict; for
example single linkage clustering will emphasise between-cluster separation dis-
regarding within-cluster homogeneity, whereas complete linkage will try to keep
within-cluster dissimilarities uniformly small disregarding separation. In different
applications, different aspects of clustering are of main interest, and there can be
different legitimate clusterings on the same data set depending on which character-
istics are required. For example, different biological species need to be genetically
separated, whereas within-cluster homogeneity is often more important than sepa-
ration for example when colouring a map for highlighting clusters of similar regions
according to criteria such as economic growth, severity of a pandemic, or avalanche
risk.

The chosen clustering then needs to depend on a user specification of relevant
features of the clustering. The traditional literature on validity indexes gives little
guidance in this respect; where such indexes are introduced, authors tend to argue
that their new index is the best over a wide range of situations, and comparative
studies such as Arbelaitz et al. (2012) normally focus on the ability of the indexes to
recover a given “true” clustering. The approach taken here is different. It is based
on defining indexes that separately measure different aspects of clustering quality
that might be of interest, and the user can then aggregate the indexes, potentially
involving weights, in order to find a clustering that fulfills the specific requirements
of a given application.

In the following we will first define indexes that measure various characteristics
of a clustering that are potentially of interest for the clustering of football players,
and then we will propose how they can be aggregated in order to define an overall
index that can be used to assess clusterings and select an optimal one.

4.2. Measurement of individual aspects of clustering quality. Hennig (2019)
and Akhanli and Hennig (2020) defined several indexes that measure desirable char-
acteristics of a clustering (and contain more details than given below). Not all of
these are relevant for clustering football players. We will define the indexes that
are later used in the present work, and then give reasons why further indexes have
not been involved.

Average within-cluster dissimilarities:: This index formalises within-cluster
homogeneity in the sense that observations in the same cluster should all
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be similar. This is an essential requirement for useful clusters of football
players.

Iave.within(C) = 1
n

K∑
k=1

1
nk − 1

∑
xi 6=xj∈Ck

d(xi, xj).

A smaller value indicates better clustering quality.
Separation index:: Objects in different clusters should be different from

each other. This is to some extent guaranteed if the within-cluster dis-
similarities are low (as then the larger dissimilarities tend to be between
clusters), but usually, on top of this, separation is desirable, meaning that
there is some kind of gap between the clusters. The idea is that clusters
should not just result from arbitrarily partitioning a uniformly or otherwise
homogeneously distributed set of observations. There is no guarantee that
there is meaningful separation between clusters in the set of football play-
ers, but if such separation exists between subsets, these are good cluster
candidates. Separation refers to dissimilarities between observations that
are at the border of clusters, and closer to other clusters than the inte-
rior points of clusters. Therefore, separation measurement is based on the
observations that have smallest dissimilarities to points in other clusters.

For every object xi ∈ Ck, i = 1, . . . , n, k ∈ 1, . . . ,K, let dk:i = minxj /∈Ck
d(xi, xj).

Let dk:(1) ≤ . . . ≤ dk:(nk) be the values of dk:i for xi ∈ Ck ordered from the
smallest to the largest, and let [pnk] be the largest integer ≤ pnk. Then,
the separation index with the parameter p is defined as

Isep(C; p) = 1∑K
k=1[pnk]

K∑
k=1

[pnk]∑
i=1

dk:(i),

Larger values are better. The proportion p is a tuning parameter speci-
fying what percentage of points should contribute to the “cluster border”.
We suggest p = 0.1 as default.

Representation of dissimilarity structure by the clustering:: A clus-
tering can be seen as a parsimonious representation of the overall dissim-
ilarities. In fact, a clustering of football players can be used as a simpli-
fication of the dissimilarity structure by focusing on players in the same
cluster rather than using the exact dissimilarities to consider more or less
similar players. The quality of a clustering as representation of the dissimi-
larity structure can be measured by several versions of the family of indexes
known as Hubert’s Γ introduced by Hubert and Schultz (1976). The ver-
sion that can be most easily computed for a data set of the given size is
based on the Pearson sample correlation ρ. It interprets the “clustering
induced dissimilarity” c = vec([cij ]i<j), where cij = 1(li 6= lj), i.e. the
indicator whether xi and xj are in different clusters, as a “fit” of the given
data dissimilarity d = vec ([d(xi, xj)]i<j), and measures its quality as

IP earsonΓ(C) = ρ(d, c).
This index has been used on its own to measure clustering quality, but

we use it as measuring a specific aspect of clustering quality. Large values
are good.
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Entropy:: Although not normally seen as primary aim of clustering, in some
applications very small clusters are not very useful, and cluster sizes should
optimally be close to uniform. This is measured by the well known “en-
tropy” Shannon (1948):

Ientropy(C) = −
K∑

k=1

nk

n
log(nk

n
).

Large values are good. For the clustering of football players, we aim
at a high entropy, as too large clusters will not differentiate sufficiently
between players, and very small clusters (with just one or two players, say)
are hardly informative for the overall structure of the data.

Stability:: Clusterings are often interpreted as meaningful if they can be
generalised as stable substantive patterns. Stability means that they can
be replicated on different data sets of the same kind. Without requiring
that new independent data are available, this can be assessed by resampling
methods such as cross-validation and bootstrap.

It is probably not of much interest to interpret the given set of foot-
ball players as a random sample representing some underlying true sub-
stantially meaningful clusters that would also be reproduced by different
players. However, it is relevant to study the stability of the clustering of
football players under resampling, as such stability means that whether
certain players tend to be clustered together does not depend strongly on
which other players are in the sample, which is essential for interpreting
the clusters as meaningful.

Two approaches from the literature have been used for clustering sta-
bility measurement in Akhanli and Hennig (2020), namely the prediction
strength Tibshirani and Walther (2005), and a bootstrap-based method
(called “Bootstab” here) by Fang and Wang (2012). We focus on the lat-
ter below. In the original paper this (as well as the prediction strength)
was proposed for assessing clustering quality and making decisions such
as regarding the number of clusters on their own, but this is problematic.
Whereas it makes sense to require a good clustering to be stable, it cannot
be ruled out that an undesirable clustering is also stable. We therefore
involve Bootstab as measuring just one of several desirable clustering char-
acteristics.
B times two bootstrap samples are drawn from the data with replace-

ment. Let X[1], X[2] the two bootstrap samples in the bth bootstrap itera-
tion. For t = 1, 2, let L(t)

b =
(
l
(t)
1b , . . . , l

(t)
nb

)
based on the clustering of X[t].

This means that for points xi that are resampled as member of X[t], l
(t)
ib is

just the cluster membership indicator, whereas for points xi not resampled
as member of X[t], l

(t)
ib indicates the cluster on X[t] to which xi is classified

using a suitable supervised classification method (we use the methods listed
in Akhanli and Hennig (2020), extending the original proposal in Fang and
Wang (2012)). The Bootstab index is
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IBootstab(C) = 1
B

B∑
b=1

 1
n2

∑
i,i′

∣∣∣f (1)
ii′b
− f (2)

ii′b

∣∣∣
 ,

where for t = 1, 2,

f
(t)
ii′b

= 1
(
l
(t)
i′b = l

(t)
ib

)
,

indicating whether xi and xi′ are in or classified to the same cluster based on
the clustering of X[1t]. IBootstab is a percentage of pairs that have different
“co-membership” status based on clusterings on two bootstrap samples.
Small values of IBootstab are better.

The following indexes from Hennig (2019) are not involved here, because they
seem rather irrelevant to potential uses of clusters of football players: representation
of clusters by centroids; small within-cluster gaps; clusters corresponding to density
modes; uniform or normal distributional shape of clusters.

4.3. Aggregation and calibration of indexes. Following Akhanli and Hennig
(2020), indexes measuring different desirable aspects of a clustering are aggre-
gated computing a weighted mean. For selected indexes I∗1 , . . . , I∗s with weights
w1, . . . , ws > 0:

(2) A(C) =
∑s

j=1 wjI
∗
j (C)∑s

j=1 wj
.

The weights are used to up- or down-weight indexes that are more or less im-
portant than the others for the aim of clustering in the situation at hand. This
assumes that all involved indexes are calibrated so that their values are comparable
and that they point in the same direction, e.g., that large values are better for all
of them. The latter can be achieved easily by multiplying those indexes that are
better for smaller values by −1.

The following approach is used to make the values of the different indexes com-
parable. We generate a large number m of random clusterings CR1, . . . , CRm on
the data. On top of these there are q clusterings produced by regular clustering
methods as listed in Section 3, denoted by C1, . . . , Cq. For given data set X and
index I, the clusterings are used to standardise I:

m(I,X ) = 1
m+ q

(
m∑

i=1
I(CRi) +

q∑
i=1

I(Ci)
)
,

s2(I,X ) = 1
m+ q − 1

(
m∑

i=1
[I(CRi)−m(I,X )]2 +

q∑
i=1

[I(Ci)−m(I,X )]2
)
,

I∗(Ci) = I(Ci)−m(I,X )
s(I,X ) , i = 1, . . . , q.

I∗ is therefore scaled so that its values can be interpreted as expressing the qual-
ity compared to what the collection of clusterings CR1, . . . , CRm, C1, . . . , Cq achieves
on the same data set. The approach depends on the definition of the random clus-
terings. These should generate enough random variation in order to work as a
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tool for calibration, but they also need to be reasonable as clusterings, because if
all random clusterings are several standard deviations away from the clusterings
provided by the standard clustering methods, the exact distance may not be very
meaningful.

Four different algorithms are used for generating the random clusterings, “ran-
dom K-centroids”, “random nearest neighbour”, “random farthest neighbour”, and
“random average distances”, for details see Akhanli and Hennig (2020).

Assume that we are interested in numbers of clusters K ∈ {2, . . . ,Kmax}, and
that all clustering methods of interest are applied for all these numbers of clusters.
Section 3 lists six clustering methods, and there are four approaches to generate
random clusterings. Therefore we compare q = 6(Kmax − 1) clusterings from the
methods and m = 4B(Kmax−1) random clusterings, where B = 100 is the number
of random clusterings generated by each approach for each K.

Two different ways to calibrate the index values have been proposed in Akhanli
and Hennig (2020):

C1:: All index values can be calibrated involving clusterings with all numbers
of clusters.

C2:: Index values for a given number of clusters k can be calibrated involving
only clusterings with k clusters.

In order to understand the implications of these possibilities it is important to note
that some of the indexes defined in Section 4.2 will systematically favour either
larger or smaller numbers of clusters. For example, a large number of clusters will
make it easier for Iave.within to achieve better values, whereas a smaller number of
clusters will make it easier for Isep to achieve better values. Option C1 will not
correct potential biases of the collection of involved indexes in favour of larger or
smaller numbers of clusters. It is the method of choice if any tendency in favour
of larger or smaller numbers of clusters implied by the involved indexes is desired,
which is the case if the indexes have been chosen to reflect desirable characteristics of
the clusterings regardless of the number of clusters. Option C2 employs the involved
indexes relative to the number of clusters, and will favour a clustering that stands
out on its specific number of clusters, even if not in absolute terms. When using
option C1, the choice of the number of clusters is more directly determined by the
chosen indexes, whereas calibration according to option C2 will remove systematic
tendencies of the indexes when choosing the number of clusters, and can therefore
be seen as a more data driven choice.

5. Application to the football player data

The clustering methods listed in Section 3 will be applied to the football player
data set using a range of numbers of clusters. The quality of the resulting cluster-
ings is measured and compared according to the composite cluster validity index
A as defined in (2). The involved indexes are I∗1 = I∗ave.within, I

∗
2 = I∗sep, I

∗
3 =

I∗P earsonΓ, I
∗
4 = I∗entropy, I

∗
5 = I∗Bootstab, see Section 4.2, where the upper star index

means that indexes are calibrated, see Section 4.3.
Corresponding to the two different aims of clustering as outlined in Section 1,

two different sets of weights w1, . . . , w5 will be used.

5.1. A data driven composite index. The first clustering is computed with
the aim of giving a raw representation of inherent grouping structure in the data.
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Figure 1. Results for football data with calibration index
A1(C) = Iave.wit + 0.5Isep.index + IP earsonΓ + Ientropy + IBootstab.
Left side: full range of the number of clusters; right side: number
of clusters in the range [2 : 20].

For this aim we choose calibration strategy C2 from Section 4.3. A first intuitive
choice of weights, given that the five involved indexes all formalise different desir-
able features of the clustering, would be w1 = w2 = w3 = w4 = w5 = 1 (W1).
Experience with the working of the indexes suggests that I∗sep has a tendency to
favour clusterings that isolate small groups or even one point clusters of observa-
tions. It even tends to yield better values if the remainder of the observations is
left together (as splitting them up will produce weaker separated clusters). Al-
though a certain amount of separation is desirable, it is advisable to downweight
I∗sep, as it would otherwise go too strongly against the requirements of small within-
cluster distances and entropy, which are more important. Similarity of the players
in the same cluster is a more elementary feature for interpreting the clusters, and
the clustering should differentiate players properly, which would not be the case
if their sizes are too imbalanced. For this reason we settle for A1(C) defined by
w2 = 1

2 , w1 = w3 = w4 = w5 = 1 (W2). The optimal clustering, the five clus-
ter solution of Ward’s method, is in fact the same for W1 and W2, but the next
best clusterings are different, and the best clusterings stick out quite clearly using
A1(C), see Figure 1 and Table 7 (note that the listed values of A1(C) and A2(C) as
defined below can be interpreted in terms of the standard deviations per involved
index compared to the set of clusterings used for calibration).

A visualisation of the clustering using MDS is in Figures 2, 3. Commenting on
clusters from left to right in the MDS plot, corresponding to going from defensive
to offensive players, cluster 3 mainly contains centre backs (DC), cluster 2 mainly
contains full backs (DR or DL), cluster 1 mainly involves midfielders (M), cluster
4 has attacking midfielders (AM), and cluster 5 mainly contains forwards (FW),
respectively. Table 8 in the Appendix gives cluster-wise comprehensive statistical
summaries for the top level performance variables. Cluster 3 is characterised by
strong values in defensive features, such as interceptions, clearances, aerial duels
and long passes. Somewhat surprisingly they also do most free kicks. Cluster 2
players are on average strongest in blocks, and good at cross passes compared with
the other more defensive clusters. They are weakest at scoring goals. Players in
cluster 1 are on average the strongest in tackles and short passes. Otherwise their
values are in between the two more defensive and the two more offensive clusters
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Figure 2. Multidimensional scaling representation of the data
with Ward clustering, K = 5.

Figure 3. Multidimensional scaling representation of the data
with Ward clustering, K = 5, with location of some well known
players.

4 and 5. Players in cluster 4 support the goalscorers, who mainly are in cluster 5.
In cluster 4, players have most dribbles, crosses, key passes, assists, fouls given in
their favour, tend to play most corners, but are also dispossessed most. Cluster 5
leads regarding shots and goals, but these players also commit most fouls, are most
often in an offside position, have most unsuccessful touches, and have the clearly
lowest values regarding passes.

The clusters are strongly aligned with the players’ positions, but they are not
totally dominated by these positions. For instance, cluster 1 mainly contains de-
fensive midfielders, but some players are in different positions, such as Banega.
Although he is usually deployed as a central midfielder, he is well capable to play
as an attacking one. Banega was engaged as defensive midfielder in Boca Juniors,

15



Clustering of football players performance data Akhanli and Hennig

but his technical skills, such as dribbling ability, quick feet, vision and accurate
passing enabled him to play as a attacking midfielder (Dalmonte, 2016). His his-
torical background and his playing style placed him in cluster 1. Another example
is Carrick, who is a midfielder, but his style of play relies on defensive roles, such
as tackles, stamina, physical attributes, etc. (Newman, 2015). These kinds of play-
ing characteristics put him into cluster 3, which mainly contains central defenders.
Samuel Eto’o is a forward player and could as such be expected in cluster 5, but his
playing style rather fits in cluster 4, which mostly includes attacking midfielders.
During Inter’s 2009–10 treble-winning season, Eto’o played an important role in the
squad, and was utilised as a winger or even as an attacking midfielder on the left
flank in Mourinho’s 4–2–3–1 formation, where he was primarily required to help
his team creatively and defensively with his link-up play and work-rate off the ball,
which frequently saw him tracking back (Bandini, 2020).

5.2. A composite index for smaller clusters based on expert assessments.
The second clustering is computed with the aim of having smaller homogeneous
clusters that unite players with very similar characteristics. These can be used by
managers for finding players that have a very similar profile to a given player, and
for characterising the team composition at a finer scale. Larger numbers of clusters
become computationally cumbersome for assessing stability and for the resampling
scheme introduced in Section 4.3. For this reason the maximum investigated num-
ber of clusters is 150; we assume that clusters with 10 players on average deliver a
fine enough partition. In fact very small clusters with, say, 1-3 players, may not be
very useful for the given aim, or only for very exceptional players.

In order to find a suitable weighting for a composite index we conducted a survey
of 13 football experts. The idea of the survey was to have several questions, in
which alternatives are offered to group a small set of famous players. The experts
were then asked to rank these groupings according to plausibility. The groupings
were chosen in order to distinguish between different candidate clusterings from
the methods listed in Section 3 between 100 and 150 clusters (single linkage and
spectral clustering were not involved due to obvious unsuitability, in line with their
low value on the resulting composite index).

More precisely, different clustering solutions correspond to the multiple choices in
each question, and each selection is based on a different clustering solution. For the
selected players for the survey, these groupings do not change over ranges of numbers
of clusters; e.g., for PAM with K ∈ {100, . . . , 113}, see Table 4. The respondents
answer each question by ranking different groupings in order of plausibility from 1
to the number of multiple choices of that question. The questions are presented in
the Appendix.

We have collaborated with The İstanbul Başakşehir football club. The survey
questions were asked to 13 football experts including the head coach, the assistant
coaches, the football analysts and the scouts of this club, and some journalists who
are experienced with European football.

For the ranking responses of the survey questions we assigned scores for each
rank in each question, where the score assignment was made in a balanced way,
because each question has a different number of possible choices. Table 5 shows the
assignment of the scores. The idea behind the scoring system is that a question with
five choices gives more differentiated information; the score difference between the
first rank and the last rank is therefore bigger than for questions with fewer choices,
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however the difference between first and second rank should be bigger for a lower
number of choices, as with five choices the quality of the best two is more likely
assessed as similar, as both of these are ranked ahead of further choices, whereas
with two choices overall this is not the case. Apart from these considerations, as we
were interested in the comparison between all choices by the experts rather than
focusing on their favourites, score differences between adjacent ranks have been
chosen as constant given the same number of choices in the question.

Table 4. Clustering selections with the clustering algorithms and
their number of clusters range

Selections Clustering Algorithms Number of clusters range
Selection 1 PAM K ∼ [100 : 113]
Selection 2 PAM K ∼ [114 : 118]
Selection 3 PAM K ∼ [119 : 129, 134 : 136, 147 : 150]
Selection 4 PAM K ∼ [130 : 133, 137 : 146]
Selection 5 Ward’s method K ∼ [100 : 147]
Selection 6 Ward’s method K ∼ [148 : 150]
Selection 7 Complete linkage K ∼ [100 : 150]
Selection 8 Average linkage K ∼ [100 : 150]

Table 5. Score assignment for the survey questions

The selection of multiple choices 1. Rank 2. Rank 3. Rank 4. Rank 5. Rank
5 choices 30 24 18 12 6
3 choices 30 20 10 - -
2 choices 30 15 - - -

Table 6 shows the result of the survey based on the responses from each expert.
It shows substantial variation between the experts. As a validation, we conducted
a test of the null hypothesis H0 of randomness of the experts’ assessments. The
H0 was that the experts assigned ranks to the alternative choices randomly and
independently of each other. The test statistic was the resulting variance of the
sum scores of the eight selections listed in Table 4. In case that there is some
agreement among the experts about better and worse selections, the variance of
the sum scores should be large, as higher ratings will concentrate on the selections
agreed as better, and lower ratings will concentrate on the selections agreed as
worse. The test is therefore one-sided. The distribution of the test statistic under
H0 was approximated by a Monte Carlo simulation of 2000 data sets (Marriott,
1979), in which for each expert random rankings for all the survey questions were
drawn independently. This yielded p = 0.048, just about significant at the 5%
level. Although not particularly convincing, this at least indicates some agreement
between the experts.

According to the survey, the clusterings of Selection 4 are best, but due to the
considerable disagreement between the experts and the limited coverage of the
overall clusterings by the survey questions, we use the survey result in a different
way rather than just taking Selection 4 as optimal. Instead, we choose a weighting
for a composite indexA2 that optimises the Spearman correlation between the value
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Table 6. Total scores of the seven survey questions for different
clustering selections from each of the 13 football experts.

Respondents Selection
1 2 3 4 5 6 7 8

Head coach 138 138 162 162 148 160 109 125
Assistant coach - 1 138 138 144 144 144 166 109 137
Assistant coach - 2 125 115 127 137 109 121 136 134
Goalkeeping coach 148 118 130 160 152 176 109 125
Individual performance coach 166 136 148 178 146 152 109 119
Physical performance coach 159 149 119 129 125 137 116 168
Football Analyst 132 132 144 144 166 154 123 139
Chief Scout 176 166 166 176 134 128 117 155
Scout - 1 144 144 150 150 154 148 99 97
Scout - 2 113 143 155 125 133 145 142 168
Scout - 3 148 118 100 130 132 126 115 129
Journalist - 1 129 149 161 141 95 123 150 156
Journalist - 2 154 134 116 166 136 160 117 145
TOTAL 1870 1780 1822 1942 1774 1896 1531 1797

of A2(C), for each selection maximised over the clusterings in that selection, and the
selection’s sum scores from the survey as listed in the last line of Table 6. We believe
that the resulting composite index represents the experts’ assessments better than
just picking a clustering from Selection 4, particularly if applied to future data of
the same kind, because it allows to generalise the assessments beyond the limited
set of players used in the survey questions.

Although we did not run a formal optimisation, the best value of 0.524 that we
found experimentally was achieved for w1 = w2 = w3 = 0, w4 = 0.5, w5 = 1.
I∗Bootstab is the only index to favour PAM solutions with large K, and these are
ranked generally highly by the sum scores, so it is clear that w5, the weight for
I∗Bootstab, must be high. In fact, using I∗Bootstab alone achieves the same Spearman
correlation value of 0.524, but if I∗Bootstab is used on its own, useless single linkage
solutions with 2 and 3 clusters are rated as better than the best PAM solutions with
K > 100, whereas the composite index with w4 = 0.5 makes the latter optimal over
the whole range of K. Spearman rather than Pearson correlation was used, because
the Pearson correlation is dominated too strongly by the outlyingly bad rating for
Selection 7. The majority of indexes, including all indexes proposed in the literature
for stand-alone use presented in Table 7 (which includes the best results found by
A2(C)), yield negative Spearman correlations with the expert’s sum scores; entropy
on its own achieves a value of 0.214.

According to A2(C) with weights as above, the best clustering is PAM with
K = 150 from Selection 3. This has an ARI of 0.924 when compared with the
PAM solution with K = 146, which belongs to Selection 4, optimal according to
the expert’s sum score, so these clusterings are very similar (this is the highest ARI
value among the ARIs between the best two clusterings of any two Selections).

Interpreting all 150 clusters is infeasible here, so we focus in just three clusters,
see Figure 5. The most obvious result is that some of the most well known forward
players (Messi, Ronaldo, Neymar and Robben) are grouped in one cluster, no. 127.
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Figure 4. Results for football data with the calibration index
A2(C) = 0.5Ientropy +IBootstab. Left side: full range of the number
of clusters; right side: number of clusters in the range [100 : 150].

Figure 5. MDS plot of the football players data with three com-
plete clusters of the PAM solution with K = 150.

These players are in Figure 5 well distanced from the other players. They stand
out especially in attacking features, such as shot, goal, dribble, key pass, but are
also, atypically for general forward players, strong at short passes, see Table 8 in
the Appendix. The PAM objective function allows to group them together despite
a considerable within-cluster variance, which is better in terms of entropy than
isolating them individually as “outliers”, as happened in some other clusterings
with large K.

Cluster 12 has typical central defenders who are skilled in variables such as
clearance and aerial duels, while the players in cluster 11 are strikers who are well
characterised by seemingly more negative aspects such as offsides, dispossession and
bad control. Regarding positive characteristics, they are strong regarding shots and
goals, but not as strong as cluster 127. Compared with cluster 127, they are stronger
in aerial duels and clearances, but despite well reputed players being in this cluster,
it can be clearly seen that they are not as outstanding as those in cluster 127.
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Table 7. Clustering validity index results for the football players
data; note that for Bootstab and CVNN smaller values are better.

Validity Index Best clusterings in order (K) with validity index values
First Second Third Fourth Fifth

A1(C) W ard (5) W ard (6) P AM (6) P AM (5) W ard (4)
1.386 1.336 1.216 1.172 1.081

A2(C) P AM (150) P AM (149) P AM (148) P AM (147) P AM (146)
1.025 1.021 1.020 1.019 1.017

ASW Spectral (2) Average (2) W ard (2) P AM (2) Complete (2)
0.345 0.344 0.342 0.340 0.340

CH Spectral (2) P AM (2) Complete (2) Average (2) W ard (2)
1038 1027 1013 1006 967

Dunn Complete (145) Complete (144) Complete (143) Complete (142) Complete (141)
0.371 0.371 0.371 0.370 0.368

P earson Γ Spectral (2) Average (2) W ard (2) Average (4) Complete (2)
0.695 0.693 0.693 0.692 0.687

CV NN W ard (4) W ard (5) P AM (4) W ard (3) P AM (5)
0.935 0.965 0.976 0.988 1.034

Bootstab Single (2) Single (3) Single (4) Single (5) P AM (150)
0.0011 0.0021 0.0025 0.0039 0.0039

Finding the optimal clustering at the largest considered number of clusters K =
150 suggests that even better results may be achieved at even larger K. Ultimately
we do not believe that any single clustering, particularly at such fine granularity,
can be justified as the objectively best one. K = 150 is probably large enough in
practice, but in principle, accepting a high computational burden, the methodology
can be extended to larger K.

5.3. Other indexes. On top of the results of A1(C) and A1(C), Table 7 also shows
the best clusterings according to some validity indexes from the literature that are
meant to measure the general quality of a clustering, as mentioned in Section 4.1.
The K = 2 solutions for single linkage and spectral clustering marked as optimal by
ASW, CH, PearsonΓ, and Bootstab, contain a very small cluster with outstanding
players and do not differentiate between the vast majority of players. The complete
linkage solution that is optimal according to Dunn’s index belongs to Selection 7
that comes out worst in the survey of football experts, see Table 6. CVNN (run
with tuning parameter κ = 10, see Liu et al. (2013)) achieves best results for Ward’s
method with K = 4 and K = 5, which is reasonably in line with our A1(C).

6. Conclusion

We computed two different clusterings of football player performance data from
the 2014-15 season. We believe that the considerations presented here are worth-
while also for analysing new data, in particular regarding dissimilarity construction,
measuring desirable characteristics of a clustering, and using such measurement to
select a specific clustering. Results from the approach taken here look more convinc-
ing than the assessments given by existing indexes from the literature that attempt
to quantify clustering quality in a one-dimensional manner. The index combination
from calibrated average within-cluster dissimilarities, Pearson-Γ, entropy, Bootstab
stability, and (with half the weight) separation may generally be good for balancing
within-cluster homogeneity and “natural” separation as far as it occurs in the data
in situations where for interpretative reasons useful clusters should have roughly
the same size. The focus of this combination is a bit stronger on within-cluster ho-
mogeneity than on separation. Chances are that natural variation between human
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beings implies that athletes’ performance data will not normally be characterised
by strong separation between different groups, particularly not if such groups are
not very homogeneous. The involvement of stability should make sure that the
found clusters are not spurious.

The second combination of indexes used here, Bootstab with full weight and
entropy with half weight, was motivated by best agreement with football expert’s
assessments based on the specific data set analysed here. One may wonder whether
this is a good combination also for different data for finding a clustering on a finer
scale, i.e., with more and smaller clusters. Entropy is in all likelihood important
for the use of such a clustering; endemic occurrence of clusters with one or two
players should be avoided. Stability is certainly desirable in itself; it is also corre-
lated over all involved clusterings strongly (0.629) with low average within-cluster
dissimilarities, so it carries some information on within-cluster homogeneity, too.
Strong between-cluster separation in absolute terms can hardly be expected with
such a large number of clusters; these clusterings have a pragmatic use rather than
referring to essential underlying differences between them. Although it is conceiv-
able that this index combination works well also for new in some sense similar data,
a wider investigation into which characteristics of clusterings correspond to expert
assessments of their use and plausibility would surely be of interest.

The proposed methodology is implemented in the function clusterbenchstats in
the R-package fpc (Hennig, 2020).
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Appendix A. Basic statistical summary of top level count variables
for the selected clusters

Appendix B. Survey questions

Tables 9-15 list the questions from the survey of preferences of football experts
regarding the grouping of certain players. The corresponding clusterings and Se-
lection numbers from Table 4 are also included, although these were not shown to
the experts.
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Table 8. Statistical summary (Mean ± standard deviation) of top
level variables for no cluster solution (Overall), 3 cluster solutions
in PAM (K = 150) and all cluster solutions in Ward (K = 5).

Variables Overall PAM (K = 150) Ward (K = 5)
Cluster 11 Cluster 12 Cluster 127 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

TACKLE 1.96 ± 0.88 0.66 ± 0.28 1.82 ± 0.34 0.70 ± 0.39 2.62 ± 0.80 2.42 ± 0.69 1.80 ± 0.58 1.67 ± 0.65 0.77 ± 0.39
INTERCEPTION 1.77 ± 0.99 0.32 ± 0.15 3.13 ± 0.58 0.29 ± 0.19 2.04 ± 0.74 2.28 ± 0.67 2.59 ± 0.74 0.96 ± 0.41 0.42 ± 0.25
FOUL GIVEN 1.38 ± 0.73 1.36 ± 0.52 0.74 ± 0.39 2.27 ± 1.03 1.46 ± 0.67 1.17 ± 0.54 0.80 ± 0.38 1.88 ± 0.78 1.69 ± 0.68
FOUL COMMITTED 1.43 ± 0.61 1.42 ± 0.43 1.12 ± 0.48 0.86 ± 0.27 1.69 ± 0.61 1.29 ± 0.46 1.12 ± 0.42 1.42 ± 0.61 1.77 ± 0.77
OFFSIDE 0.22 ± 0.34 1.13 ± 0.37 0.06 ± 0.07 0.67 ± 0.30 0.06 ± 0.07 0.08 ± 0.09 0.03 ± 0.05 0.33 ± 0.27 0.88 ± 0.38
CLEARANCE 2.60 ± 2.43 0.77 ± 0.33 5.00 ± 0.93 0.29 ± 0.40 1.54 ± 0.80 3.11 ± 1.26 6.37 ± 1.77 0.63 ± 0.51 0.70 ± 0.45
BLOCK 1.44 ± 0.55 0.48 ± 0.19 1.57 ± 0.25 0.75 ± 0.25 1.58 ± 0.48 1.82 ± 0.46 1.48 ± 0.39 1.32 ± 0.47 0.72 ± 0.34
SHOT 1.29 ± 1.01 3.44 ± 0.48 0.47 ± 0.28 4.94 ± 1.39 1.09 ± 0.55 0.56 ± 0.38 0.50 ± 0.26 2.12 ± 0.78 2.76 ± 0.84
GOAL 0.14 ± 0.17 0.62 ± 0.10 0.12 ± 0.06 1.00 ± 0.21 0.08 ± 0.08 0.03 ± 0.05 0.05 ± 0.05 0.23 ± 0.14 0.43 ± 0.20
DRIBBLE 0.91 ± 0.81 1.42 ± 0.34 0.21 ± 0.11 3.99 ± 1.52 0.79 ± 0.60 0.80 ± 0.50 0.30 ± 0.25 1.70 ± 1.00 0.94 ± 0.75
UNSTCH 1.16 ± 0.81 2.20 ± 0.66 0.33 ± 0.18 1.59 ± 0.41 0.93 ± 0.39 0.80 ± 0.32 0.32 ± 0.16 1.90 ± 0.58 2.28 ± 0.62
DISPOSSESSED 1.15 ± 0.86 1.99 ± 0.68 0.19 ± 0.08 1.73 ± 0.39 1.12 ± 0.51 0.73 ± 0.39 0.23 ± 0.16 2.03 ± 0.68 1.96 ± 0.74
AERIAL DUEL 1.80 ± 1.29 1.72 ± 0.73 2.55 ± 0.76 0.91 ± 0.60 1.51 ± 1.02 1.45 ± 0.84 2.84 ± 1.06 1.05 ± 1.00 2.48 ± 1.71
PASS (SHORT) 37.0 ± 12.3 30.0 ± 6.10 46.7 ± 7.69 52.3 ± 10.6 47.8 ± 12.6 34.5 ± 8.50 37.0 ± 11.7 35.0 ± 9.42 25.7 ± 7.14
PASS (LONG) 5.13 ± 3.10 1.10 ± 0.45 5.91 ± 1.93 2.05 ± 1.20 5.96 ± 2.54 5.75 ± 1.99 8.28 ± 2.37 2.89 ± 1.57 1.14 ± 0.80
CROSS 2.07 ± 2.19 1.29 ± 0.76 0.18 ± 0.20 2.54 ± 0.99 1.46 ± 1.66 3.05 ± 1.71 0.21 ± 0.45 4.09 ± 2.48 1.17 ± 0.99
CORNER 0.54 ± 1.07 0.07 ± 0.10 0.00 ± 0.00 1.40 ± 1.51 0.61 ± 1.14 0.26 ± 0.68 0.01 ± 0.22 1.46 ± 1.36 0.14 ± 0.53
FREE KICK 1.16 ± 0.98 0.13 ± 0.11 1.44 ± 0.53 0.71 ± 0.44 1.54 ± 1.16 1.17 ± 0.63 1.92 ± 0.79 0.63 ± 0.62 0.11 ± 0.20
KEY PASS 0.99 ± 0.70 1.56 ± 0.36 0.17 ± 0.09 2.41 ± 0.45 1.01 ± 0.58 0.84 ± 0.43 0.23 ± 0.15 1.75 ± 0.61 1.17 ± 0.48
ASSIST 0.11 ± 0.12 0.25 ± 0.13 0.01 ± 0.02 0.41 ± 0.16 0.09 ± 0.11 0.09 ± 0.09 0.02 ± 0.04 0.21 ± 0.13 0.14 ± 0.11
*UNSTCH: Unsuccessful Touch (Bad control)

Table 9. Question 1: This group of players are centre-defenders.
Please rank the following in order of appropriateness from 1 to 5
where 1 is the most appropriate to you and 5 is the least appro-
priate to you.

Clustering solutions 1. Group 2. Group 3. Group 4. Group Rank
Selection 1, 2, 3, 4

PAM
(K ∼ [100 : 150]) John Terry Gary Cahill Chris Smalling

John Stones
Thiago Silva

Selection 5
Ward’s method

(K ∼ [100 : 147])

John Terry
Gary Cahill
John Stones
Thiago Silva Chris Smalling — —

Selection 6
Ward’s method

(K ∼ [148 : 150])

John Terry
Gary Cahill
Thiago Silva Chris Smalling John Stones —

Selection 7
Complete linkage
(K ∼ [100 : 150])

John Terry
Gary Cahill
Thiago Silva

Chris Smalling
John Stones — —

Selection 8
Average linkage

(K ∼ [100 : 150])
John Terry
Gary Cahill

Thiago Silva
Chris Smalling

John Stones — —

Table 10. Question 2: This group of players are right or left
defenders. Please rank the following in order of appropriateness
from 1 to 2 where 1 is the most appropriate to you and 2 is the
least appropriate to you.

Clustering solutions 1. Group 2. Group 3. Group Rank
Selection 1, 2, 3, 4, 5, 6

PAM and Ward’s method
(K ∼ [100 : 150]) Cesar Azpilicueta Gael Clichy

Dani Alves
Daniel Carvajal

Selection 7,8
Complete and average linkage

(K ∼ [100 : 150])
Cesar Azpilicueta

Gael Clichy
Dani Alves

Daniel Carvajal —
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Table 11. Question 3: This group of players are defensive mid-
fileders. Please rank the following in order of appropriateness from
1 to 3 where 1 is the most appropriate to you and 3 is the least
appropriate to you.

Clustering solutions 1. Group 2. Group 3. Group Rank
Selection 1, 4

PAM
(K ∼ [100 : 113, 130 : 133, 137 : 146])

Nemanja Matic
Fernando

Sergio Busquets
Javier Mascherano —

Selection 5, 6
Ward’s method

(K ∼ [100 : 150]) Nemanja Matic Fernando
Sergio Busquets

Javier Mascherano
Selection 2, 3, 7, 8

PAM
(K ∼ [114 : 129, 134 : 136, 147 : 150]),

Complete and average linkage
(K ∼ [100 : 150]) Nemanja Matic

Fernando
Sergio Busquets

Javier Mascherano —

Table 12. Question 4: This group of players are midfileders.
Please rank the following in order of appropriateness from 1 to
3 where 1 is the most appropriate to you and 3 is the least appro-
priate to you.

Clustering solutions 1. Group 2. Group 3. Group 4. Group Rank
Selection 1, 4

PAM
(K ∼ [100 : 113, 130 : 133, 137 : 146]) Gabi Tiago Xabi Alonso Thiago Motta

Selection 2, 3
PAM

(K ∼ [114 : 129, 134 : 136, 147 : 150]) Gabi Tiago
Xabi Alonso

Thiago Motta —
Selection 5, 6, 7, 8

Ward’s method, complete and average linkage
(K ∼ [100 : 150])

Gabi
Xabi Alonso

Thiago Motta Tiago — —

Table 13. Question 5: This group of players are defensive mid-
fileders. Please rank the following in order of appropriateness from
1 to 3 where 1 is the most appropriate to you and 3 is the least
appropriate to you.

Clustering solutions 1. Group 2. Group 3. Group 4. Group Rank
Selection 1, 2, 3, 4, 8

PAM and average linkage
(K ∼ [100 : 150])

Paul Pogba
Arturo Vidal Kevin De Bruyne Henrikh Mkhitaryan —

Selection 5, 6
Ward’s method

(K ∼ [100 : 150]) Paul Pogba Arturo Vidal Kevin De Bruyne Henrikh Mkhitaryan
Selection 7

Complete linkage
(K ∼ [100 : 150])

Paul Pogba
Arturo Vidal

Kevin De Bruyne
Henrikh Mkhitaryan — —
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Table 14. Question 6: This group of players are attacking mid-
fileders. Please rank the following in order of appropriateness from
1 to 5 where 1 is the most appropriate to you and 5 is the least
appropriate to you.

Clustering solutions 1. Group 2. Group 3. Group Rank
Selection 1, 2

PAM
(K ∼ [100 : 118])

Lionel Messi
Neymar

Arjen Robben Eden Hazard Cristiano Ronaldo

Selection 3, 4
PAM

(K ∼ [119 : 150])

Lionel Messi
Neymar

Arjen Robben
Cristiano Ronaldo Eden Hazard —

Selection 5, 6
Ward’s method

(K ∼ [100 : 150])

Lionel Messi
Arjen Robben

Cristiano Ronaldo
Eden Hazard

Neymar —

Selection 7
Complete linkage
(K ∼ [100 : 150])

Lionel Messi
Arjen Robben
Eden Hazard

Neymar Cristiano Ronaldo —
Selection 8

Average linkage
(K ∼ [100 : 150])

Lionel Messi
Eden Hazard

Neymar Cristiano Ronaldo Arjen Robben

Table 15. Question 7: This group of players are forwards. Please
rank the following in order of appropriateness from 1 to 5 where 1
is the most appropriate to you and 5 is the least appropriate to
you.

Clustering solutions 1. Group 2. Group 3. Group 4. Group Rank
Selection 1, 2

PAM
(K ∼ [100 : 118])

Cristiano Ronaldo
Karim Benzema Robert Lewandowski Zlatan Ibrahimovic —

Selection 3, 4
PAM

(K ∼ [119 : 150]) Cristiano Ronaldo
Robert Lewandowski
Zlatan Ibrahimovic Karim Benzema —

Selection 5, 6
Ward’s method

(K ∼ [100 : 150]) Cristiano Ronaldo

Robert Lewandowski
Zlatan Ibrahimovic

Karim Benzema — —
Selection 7

Complete linkage
(K ∼ [100 : 150])

Cristiano Ronaldo
Karim Benzema

Robert Lewandowski
Zlatan Ibrahimovic — —

Selection 8
Average linkage

(K ∼ [100 : 150]) Cristiano Ronaldo Karim Benzema Robert Lewandowski Zlatan Ibrahimovic
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