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A B S T R A C T

Recently, it was proposed to use a brand-new set of nonlinear ordinary differential equations. The system
aims to represent chaotic financial activities. Such a system was taken into consideration for various analyses
in this paper. For each of the three axes, we first evaluated the nullcline points and then gave the formula
for the associated Poincare mapping. With various differential operators, we have analyzed the existence and
uniqueness of systems of solutions. We have numerically solved the model using the well-known Nystrom in
the case of the classical model and the Midpoint in the case of fractional derivatives.
Introduction

In the fields of science, technology, and engineering, nonlinear
differential equations are potent mathematical instruments for simulat-
ing complicated systems. Since most systems are inherently nonlinear,
engineers, biologists, physicists, mathematicians, and many other sci-
entists are interested in nonlinear problems. In contrast to considerably
simpler linear systems, which describe changes in variables over time,
nonlinear dynamical systems might appear chaotic, unexpected, or
paradoxical. They have been shown to be particularly suitable for
modeling financial processes. In general, there are two distinct areas
of finance that need for advanced quantitative methods: risk and port-
folio management and the pricing of derivatives. Financial engineering
and computational finance share many similarities with mathematical
finance. The latter emphasizes modeling and applications, frequently
with the aid of stochastic asset models, whereas the former concentrates
on developing tools for putting the models into practice in addition to
analysis. Related to this is quantitative investing, which uses numerical
and statistical models rather than traditional fundamental analysis
to manage portfolios. Numerous academics with various backgrounds
in engineering, science, and technology have shown interest in this
study. According to the available literature, the PhD dissertation of
French mathematician Louis Bachelier, which was approved in 1900,
is regarded as the first academic study of mathematical finance. How-
ever, after the development of option pricing theory by Fischer Black,
Myron Scholes, and Robert Merton, the field of mathematical finance
began to take shape in the 1970s [1–4]. Other studies that predict
the dynamical behaviors of these processes as functions of time have
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been conducted in recent years [5–7]. Numerous researchers have used
cutting-edge methods like fractional calculus to more accurately model
the nonlocal processes that these financial problems illustrate. Some
of these suggested mathematical models have been found to exhibit
chaotic behavior, which is in complete agreement with what is seen
in real-world scenarios. In [8], they have proposed a nonlinear system
of ordinary differential equations and gave some analysis therein. We
will offer several analyses and broaden the concept to include the
framework of nonlocal operators in this study.

Definitions of derivatives

In this section, we present some definitions and theorems that will
be used in the paper [9–11].

Definition 1. Caputo fractional derivative of order 𝛼 > 0 of a function
𝑓 ∶ (0,∞) → 𝑅, according to Caputo, the fractional derivative of a
continuous and differentiable function 𝑓 is given as :

𝐶
0 𝐷

𝛼
𝑡 𝑓 (𝑡) =

1
𝛤 (1 − 𝛼) ∫

𝑡

0
(𝑡 − 𝑥)−𝛼 𝑑

𝑑𝑥
𝑓 (𝑥)𝑑𝑥, 0 < 𝛼 ≤ 1. (1)

Definition 2. The Riemann–Liouville fractional integral of order 𝛼 > 0
of a function 𝑓 ∶ (0,∞) → 𝑅, according to Riemann–Liouville, the
fractional integral that is considered as anti-fractional derivative of a
function 𝑓 is :

𝑅𝐿
0 𝐼𝛼𝑡 𝑓 (𝑡) =

1
𝛤 (𝛼) ∫

𝑡

0
(𝑡 − 𝑥)𝛼−1𝑓 (𝑥)𝑑𝑥, (2)
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Definition 3. Let 𝑓 ∈ 𝐻1(𝑎, 𝑏), 𝑏 > 𝑎, 0 < 𝛼 < 1 then, the new
Caputo–Fabrizio derivative of fractional derivative is defined as :

𝐶𝐹
𝑎 𝐷𝛼

𝑡 𝑓 (𝑡) = 1
1 − 𝛼 ∫

𝑡

𝑎
𝑓

′
(𝑥) exp

[

−𝛼
(𝑡 − 𝑥)
1 − 𝛼

]

𝑑𝑥. (3)

and also if the function does not belongs to 𝐻1(𝑎, 𝑏) then, the derivative
can be reformulated as

𝐶𝐹
𝑎 𝐷𝛼

𝑡 𝑓 (𝑡) = 𝛼
1 − 𝛼 ∫

𝑡

𝑎
(𝑓 (𝑡) − 𝑓 (𝑥)) exp

[

−𝛼
(𝑡 − 𝑥)
1 − 𝛼

]

𝑑𝑥. (4)

Theorem 1. Let 0 < 𝛼 < 1 then the following time fractional ordinary
differential equation
𝐶𝐹
0 𝐷𝛼

𝑡 𝑓 (𝑡) = 𝑢(𝑡), (5)

has a unique solution with taking the inverse Laplace transform and using
the convolution theorem below [12]:

𝑓 (𝑡) = (1 − 𝛼)𝑢(𝑡) + 𝛼 ∫

𝑡

0
𝑢(𝑠)𝑑𝑠, 𝑡 ≥ 0. (6)

Definition 4. Let 𝑓 (𝑡) be continuous, 𝑔(𝑡) be a non-constant increasing
positive function. And also taking 𝐾(𝑡) as kernel with singular or non-
singular versions. For 0 < 𝛼 ≤ 1, a fractional global derivative of Caputo
sense is defined by
𝐶
0 𝐷

𝛼
𝑔𝑓 (𝑡) = 𝐷𝑔𝑓 (𝑡) ∗ 𝐾(𝑡). (7)

Also with Riemann–Liouville version, we have
𝑅𝐿
0 𝐷𝛼

𝑔𝑓 (𝑡) = 𝐷𝑔 (𝑓 (𝑡) ∗ 𝐾(𝑡)) , (8)

where ∗ means the convolution operator.

Theorem 2. Let 0 < 𝛼 ≤ 1 then the following time fractional ordinary
differential equation
𝐶
0 𝐷

𝛼
𝑡 𝑓 (𝑡) = 𝑢(𝑡), (9)

has a unique solution with taking the inverse Laplace transform and using
the convolution theorem below:

𝑓 (𝑡) = 1
𝛤 (𝛼) ∫

𝑡

0
(𝑡 − 𝑠)𝛼−1𝑢(𝑠)𝑑𝑠, 𝑡 ≥ 0. (10)

Financial model

Financial modeling is the construction of an abstract representation
(a model) of a real financial situation. In other words, financial mod-
eling is about translating a set of hypotheses about the behavior of
markets or intermediaries into numerical predictions. In this section,
we consider the model formulation of the financial system that has
been considered in [8,13] recently. In [8], they proposed a model using
differential equations to investigate the behavior of a financial system
containing interest rates, investment demand, and a price index. The
model captures the interaction between a variety of financial factors.
In the following, based on the model presented in [8], we work for
the model to consider the interplay between the interest rate 𝑥(𝑡), the
nvestment demand 𝑦(𝑡) and the price index 𝑧(𝑡). Model is given by
𝑑𝑥
𝑑𝑡

= 𝑔𝑧 + (𝑦 − 𝑎)𝑥, (11)
𝑑𝑦
𝑑𝑡

= −𝑏𝑦3 − 𝑠𝑥2 + 𝑟,

𝑑𝑧
𝑑𝑡

= −𝑐𝑧 − 𝛽𝑥 − 𝑝𝑦

where 𝑎, 𝑏, 𝑐, 𝑝, 𝑟, 𝑠, and 𝛽 are constants. System (11) assumes that
he rate of change of interest rate is proportional to the price index.
nvestment demand significantly influences the interest rate.

Now we shall start with the nullcline point analysis.
2

Nullclines

In this section, we aim to determine from the above system of
equations, the nullcline points. This will be achieved for 𝑥, 𝑦 and 𝑧
directions. It is worth noting that, nullcline points are different from
equilibrium points since geometrically, they are points where vectors
are either straight up or straight down. By definition of the 𝑥𝑖−𝑛𝑢𝑙𝑙𝑐𝑙𝑖𝑛𝑒
is defined as

𝑓𝑥𝑖 (𝑥1,..., 𝑥𝑖,… , 𝑥𝑛) = 0. (12)

In our case 𝑥 − 𝑛𝑢𝑙𝑙𝑐𝑙𝑖𝑛𝑒 points will be determined by imposing

𝑔𝑧 + (𝑦 − 𝑎)𝑥 = 0, (13)

𝑦 − 𝑛𝑢𝑙𝑙𝑐𝑙𝑖𝑛𝑒 points will be obtained with

−𝑏𝑦3 − 𝑠𝑥2 + 𝑟 = 0, (14)

nd 𝑧 − 𝑛𝑢𝑙𝑙𝑐𝑙𝑖𝑛𝑒 points will be obtained with

𝑐𝑧 − 𝛽𝑥 − 𝑝𝑦 = 0. (15)

ndeed these points are different to equilibrium point. For the 𝑥 −
𝑢𝑙𝑙𝑐𝑙𝑖𝑛𝑒 points we have the following set

(0, 𝑦, 0) , ∀𝑦 ∈ 𝑅+, (16)
𝑥, 𝑎, 0) , ∀𝑥 ∈ 𝑅+.

or the 𝑦 − 𝑛𝑢𝑙𝑙𝑐𝑙𝑖𝑛𝑒 points, we have that if 𝑥 = 𝑦, we shall have
𝑏𝑦3 − 𝑠𝑥2 + 𝑟 = 0 the solution of the above equation will provide the
et of nullcline (𝑥, 𝑦, 𝑧), 𝑥 ≠ 0. For the 𝑧− 𝑛𝑢𝑙𝑙𝑐𝑙𝑖𝑛𝑒 points, we have first
0, 0, 0),

(

𝑥, 𝑥, −(𝑝+𝛽)𝑐 𝑥
)

, if 𝑥 ≠ 0, many similar can be obtained.

Downward spikes

In this section, since we have (𝑥, 𝑦, 𝑧), we shall have the Poincare
ection. Let us consider 𝐿 ∶ 𝑦 = 𝑚𝑥 + 𝑐 for 3 cases. The first case we
onsider (𝑥, 𝑦) which is the projection on the plane (𝑥, 𝑦). The second
ill be (𝑥, 𝑧) and the last is (𝑦, 𝑧). We note that we have 𝑦 = 𝑚𝑥 + 𝑐

s a Poincare section chosen to intersect the trajectories transversely,
hich implies that, no trajectory will be tangential to 𝐿. We recall that
Poincare mapping is defined as

𝑛+1 = 𝛤
(

𝛺𝑛
)

, (17)

where 𝛺𝑛, 𝑛 = 0, 1, 2,… , 𝑛 consists of the sequence of coordinates
located in 𝐿. Here the line and a trajectory of the system will intersect.
Without loss of generality we provide for (𝑥, 𝑦). We shall first solve
(

𝑥′, 𝑦′
)

numerically to obtain
(

𝑥
(

𝑡𝑘
)

, 𝑦
(

𝑡𝑘
))

, then we shall construct

𝑦
(

𝑡𝑘
)

= 𝑚𝑥
(

𝑡𝑘
)

+ 𝑐, (18)

the procedure used here is from [14]. Then the following formula
provides the downward spikes that will occur wherever

𝑦
(

𝑡𝑘
)

− 𝑚𝑥
(

𝑡𝑘
)

− 𝑐 = 0. (19)

But to obtain these coordinates we shall use the predictor–corrector
midpoint approach or the Heun’s method.
𝑑𝑥
𝑑𝑡

= 𝑓 (𝑡, 𝑥, 𝑦), 𝑥(𝑡0) = 𝑥0, (20)
𝑑𝑦
𝑑𝑡

= 𝑓1(𝑡, 𝑥, 𝑦), 𝑦(𝑡0) = 𝑦0,

𝑘 = 𝑥𝑘−1 +
ℎ
2
(

𝑓
(

𝑥𝑘, 𝑦𝑘
)

+ 𝑓
(

𝑥𝑘 + ℎ, 𝑦𝑘 + ℎ𝑓
(

𝑥𝑘, 𝑦𝑘
)))

, (21)

𝑦𝑘 = 𝑦𝑘−1 +
ℎ
2
(

𝑓1
(

𝑥𝑘, 𝑦𝑘
)

+ 𝑓1
(

𝑥𝑘 + ℎ, 𝑦𝑘 + ℎ𝑓1
(

𝑥𝑘, 𝑦𝑘
)))

.

Finally the downward spike is given as

𝐷(𝑡𝑘) = log ||
|

𝑦
(

𝑡𝑘
)

− 𝑚𝑥
(

𝑡𝑘
)

− 𝑐||
|

. (22)
Some numerical simulations are presented below.
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Dynamical behavior of the model

In [8] the following equilibrium points were obtained for given
model where

𝑐 = 𝑓 = 𝛽 = 1, 𝑠 = 0.1, 𝑝 = 0.05, 𝑔 = 1.2, (23)

1 = (0.04949849664,−7.070201517, 0.3040115792),

2 = (0.07616084207, 7.069016737,−0.4296116789),

𝐸3 = (3.087391472, 1.529728564,−3.163877901),

𝐸4 = (−3.093050811, 1.471456216, 3.019478000).

It was found in [8] that all the above equilibrium points are unable
that is to say the eigenvalues have nonzero real part, therefore the
nonlinear flow is conjugate to the flow of the linearized system in the
neighborhood of 𝐸1, 𝐸2, 𝐸3 and 𝐸4. However different behaviors of the
dynamic of this model can be obtained particular values of 𝑔, 𝑟. For
example for 𝑟 = 0, we have the following model
𝑑𝑥
𝑑𝑡

= 𝑔𝑧 + (𝑦 − 𝑎)𝑥, (24)

𝑑𝑦
𝑑𝑡

= −𝑏𝑦3 − 𝑠𝑥2,

𝑑𝑧
𝑑𝑡

= −𝑐𝑧 − 𝛽𝑥 − 𝑝𝑦.

Here (0, 0, 0) is an equilibrium point. We shall also note that

𝑓1 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑔𝑧 + (𝑦 − 𝑎)𝑥, (25)

2 (𝑥, 𝑦, 𝑧, 𝑡) = −𝑏𝑦3 − 𝑠𝑥2,

3 (𝑥, 𝑦, 𝑧, 𝑡) = −𝑐𝑧 − 𝛽𝑥 − 𝑝𝑦.

1 (0, 0, 0) = 𝑓2 (0, 0, 0) = 𝑓3 (0, 0, 0) = 0 (26)

s a fixed point.
If 𝑔 = 0, then we shall have

𝑑𝑥
𝑑𝑡

= (𝑦 − 𝑎)𝑥, (27)
𝑑𝑦
𝑑𝑡

= −𝑏𝑦3 − 𝑠𝑥2 + 𝑟,

𝑑𝑧
𝑑𝑡

= −𝑐𝑧 − 𝛽𝑥 − 𝑝𝑦.

We obtain the following equilibrium points if 𝑟 ≠ 0

𝑦 = 𝑎,−𝑏𝑎3 − 𝑠𝑥∗2 + 𝑟 = 0,−𝑐𝑧∗ − 𝛽𝑥∗ − 𝑝𝑦∗ = 0, (28)

𝑥∗2 = 𝑟 − 𝑏𝑎3

𝑠
, 𝑧∗ = −

𝛽𝑥∗ + 𝑝𝑎
𝑐

.

f 𝑟 = 𝑏𝑎3, then

𝑥∗ = 0, 𝑦∗ = 𝑎, 𝑧∗ = −
𝑝𝑎
𝑐
. (29)

f 𝑟−𝑏𝑎3
𝑠 > 0, then

∗ = ∓
√

𝑟 − 𝑏𝑎3
𝑠

, 𝑦∗ = 𝑎, 𝑧∗1,2 =
𝑥∗1,2 + 𝑝𝑎

𝑐
. (30)

he Jacobian associate to this system is given by

=
⎡

⎢

⎢

⎣

−𝑎𝑦 𝑥 𝑔
−2𝑠𝑥 −3𝑏𝑦2 0
−𝛽 −𝑝 −𝑐

⎤

⎥

⎥

⎦

. (31)

f 𝑟 = 0, then 𝐽𝑟=0 can be obtained as

𝐸∗

𝑟=0 =
⎡

⎢

⎢

⎣

0 0 𝑔
0 0 0
−𝛽 −𝑝 −𝑐

⎤

⎥

⎥

⎦

. (32)

et
[

𝐽𝐸∗

𝑟=0 − 𝜆𝐼
]

=
⎡

⎢

⎢

−𝜆1 0 𝑔
0 −𝜆2 0

⎤

⎥

⎥

. (33)
3

⎣−𝛽 −𝑝 −𝑐 − 𝜆3⎦
2 = 0 and 𝜆1 = −𝑔𝛽
𝑐+𝜆3

. Since 𝑔, 𝛽, 𝑐 > 0 then 𝜆1 + 𝑎
𝑏+𝜆3

= 0 provide a

et of eigenvalues verifying the above equations. If 𝑟 ≠ 0 and 𝑔 = 0, we
ave

𝐽𝑔=0
(

𝑥∗, 𝑦∗, 𝑧∗
)

=
⎡

⎢

⎢

⎣

−𝑎𝑦∗ 𝑥∗ 0
−2𝑠𝑥∗ −3𝑏𝑦∗2 0
−𝛽 −𝑝 −𝑐

⎤

⎥

⎥

⎦

, (34)

𝐽𝑔=0
(

0, 𝑎,
−𝑝𝑎
𝑐

)

=
⎡

⎢

⎢

⎣

−𝑎2 0 0
0 −3𝑏𝑎2 0
−𝛽 −𝑝 −𝑐

⎤

⎥

⎥

⎦

,

det
[

𝐽𝑔=0
(

0, 𝑎,
−𝑝𝑎
𝑐

)

− 𝜆𝐼
]

= 0,
(

−𝑎2 − 𝜆1
) (

−3𝑏𝑎2 − 𝜆2
) (

−𝑐 − 𝜆3
)

= 0.

In this case,

𝜆1 = −𝑎2, 𝜆2 = −3𝑏𝑎2, 𝜆3 = −𝑐, (35)

which are all negative which leads to stability. However at least we
recall that, we are dealing with financial model therefore some restric-
tions could be set to avoid multiple scenarios.

Global stability of the equilibrium point of financial model

We have obtained above equilibrium points for the considered
mathematical model. In this section, we aim at providing a theoretical
behavior of these equilibrium points using existing theoretical methods.
In this section, we will search for global stability of given model. Let
us consider model again:
𝑑𝑥
𝑑𝑡

= 𝑔𝑧 + (𝑦 − 𝑎)𝑥, (36)

𝑑𝑦
𝑑𝑡

= −𝑏𝑦3 − 𝑠𝑥2 + 𝑟,

𝑑𝑧
𝑑𝑡

= −𝑐𝑧 − 𝛽𝑥 − 𝑝𝑦.

heorem 3. The system is globally asymptotically stable if the equilibrium
oint 𝐸∗(𝑥∗, 𝑦∗, 𝑧∗) satisfy the following conditions.

1 − 𝑇2 > 0 then 𝑑𝐿(𝑡)
𝑑𝑡

> 0, (37)

𝑇1 − 𝑇2 = 0 then 𝑑𝐿(𝑡)
𝑑𝑡

= 0,

𝑇1 − 𝑇2 < 0 then 𝑑𝐿(𝑡)
𝑑𝑡

< 0.

Here

𝑇1 = 𝑔𝑧 + 𝑦𝑥 + 𝑥∗𝑎 + 𝑟 + 𝑦∗𝑏𝑦2 +
𝑦∗

𝑦
𝑠𝑥2 (38)

+ 𝑧∗𝑐 + 𝑧∗

𝑧
𝛽𝑥 + 𝑧∗

𝑧
𝑝𝑦

nd

2 = 𝑎𝑥 + 𝑥∗

𝑥
𝑔𝑧 + 𝑥∗𝑦 + 𝑏𝑦3 + 𝑠𝑥2 (39)

+
𝑦∗

𝑦
𝑟 + 𝑐𝑧 + 𝛽𝑥 + 𝑝𝑦.

roof. We prove this using the idea of Lyapunov function. We start by
efining the Lyapunov function associated the system as below:

(𝐸∗(𝑥∗, 𝑦∗, 𝑧∗)) =
(

𝑥 − 𝑥∗ + 𝑥∗ log 𝑥∗

𝑥

)

+
(

𝑦 − 𝑦∗ + 𝑦∗ log
𝑦∗

𝑦

)

(40)

+
(

𝑧 − 𝑧∗ + 𝑧∗ log 𝑧∗

𝑧

)

.

By the derivative of Lyapunov function with respect to 𝑡, we get

𝑑𝐿(𝑡)
=
(

𝑥 − 𝑥∗
)

𝑑𝑥 +
(

𝑦 − 𝑦∗
)

𝑑𝑦
+
(

𝑧 − 𝑧∗
)

𝑑𝑧 . (41)

𝑑𝑡 𝑥 𝑑𝑡 𝑦 𝑑𝑡 𝑧 𝑑𝑡
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W

∀
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|

|

i

|

|

i

i

Now we put values in above equation for derivatives

𝑑𝐿(𝑡)
𝑑𝑡

=
(

𝑥 − 𝑥∗

𝑥

)

(𝑔𝑧 + (𝑦 − 𝑎)𝑥) (42)

+
(

𝑦 − 𝑦∗

𝑦

)

(

−𝑏𝑦3 − 𝑠𝑥2 + 𝑟
)

+
(

𝑧 − 𝑧∗

𝑧

)

(−𝑐𝑧 − 𝛽𝑥 − 𝑝𝑦) .

hen we write
𝑑𝐿(𝑡)
𝑑𝑡

= 𝑔𝑧 + 𝑦𝑥 − 𝑎𝑥 − 𝑥∗

𝑥
𝑔𝑧 − 𝑥∗

𝑥
𝑦𝑥 + 𝑥∗

𝑥
𝑎𝑥 (43)

− 𝑏𝑦3 − 𝑠𝑥2 + 𝑟 +
𝑦∗

𝑦
𝑏𝑦3 +

𝑦∗

𝑦
𝑠𝑥2 −

𝑦∗

𝑦
𝑟

− 𝑐𝑧 − 𝛽𝑥 − 𝑝𝑦 + 𝑧∗

𝑧
𝑐𝑧 + 𝑧∗

𝑧
𝛽𝑥 + 𝑧∗

𝑧
𝑝𝑦.

Let us write above also
𝑑𝐿(𝑡)
𝑑𝑡

= 𝑇1 − 𝑇2, (44)

here

𝑇1 = 𝑔𝑧 + 𝑦𝑥 + 𝑥∗𝑎 + 𝑟 + 𝑦∗𝑏𝑦2 +
𝑦∗

𝑦
𝑠𝑥2 (45)

+ 𝑧∗𝑐 + 𝑧∗

𝑧
𝛽𝑥 + 𝑧∗

𝑧
𝑝𝑦

nd

2 = 𝑎𝑥 + 𝑥∗

𝑥
𝑔𝑧 + 𝑥∗𝑦 + 𝑏𝑦3 + 𝑠𝑥2 (46)

+
𝑦∗

𝑦
𝑟 + 𝑐𝑧 + 𝛽𝑥 + 𝑝𝑦.

Therefore if

𝑇1 − 𝑇2 > 0 then 𝑑𝐿(𝑡)
𝑑𝑡

> 0, (47)

1 − 𝑇2 = 0 then 𝑑𝐿(𝑡)
𝑑𝑡

= 0,

1 − 𝑇2 < 0 then 𝑑𝐿(𝑡)
𝑑𝑡

< 0.

xistence and uniqueness

The mathematical model under consideration, is highly nonlinear,
hus, with the current available knowledge, there is no suitable mathe-
atical method that can help obtain analytical solutions to this system

s in the case of many nonlinear equations. Researchers in this case
ommonly use numerical scheme to provide numerical solutions to
hese system, which is also the case of our system. Nevertheless, before
roviding this numerical solutions, we have to provide conditions
nder which these system admit a system of unique solutions. This
ill be achieved by evaluation the continuity of partial derivatives
f respective functions forming the model. We verify in this section
he criteria under which the above system admits a unique system of
olutions. Let us take partial derivatives of equations.
𝜕𝑓1(𝑥,𝑦,𝑧,𝑡)

𝜕𝑥 = (𝑦 − 𝑎), 𝜕𝑓1(𝑥,𝑦,𝑧,𝑡)
𝜕𝑦 = 𝑥, 𝜕𝑓1(𝑥,𝑦,𝑧,𝑡)

𝜕𝑧 = 𝑔,
𝜕2𝑓1(𝑥,𝑦,𝑧,𝑡)

𝜕𝑥2
= 0, 𝜕2𝑓1(𝑥,𝑦,𝑧,𝑡)

𝜕𝑦2
= 0, 𝜕2𝑓1(𝑥,𝑦,𝑧,𝑡)

𝜕𝑧2
= 0,

𝜕2𝑓1(𝑥,𝑦,𝑧,𝑡)
𝜕𝑥𝜕𝑦 = 1, 𝜕2𝑓1(𝑥,𝑦,𝑧,𝑡)

𝜕𝑥𝜕𝑧 = 0, 𝜕2𝑓1(𝑥,𝑦,𝑧,𝑡)
𝜕𝑦𝜕𝑧 = 0,

(48)

We verify the same with 𝑓2 and 𝑓3,
𝜕𝑓2(𝑥,𝑦,𝑧,𝑡)

𝜕𝑥 = −2𝑠𝑥, 𝜕𝑓2(𝑥,𝑦,𝑧,𝑡)
𝜕𝑦 = −3𝑏𝑦2, 𝜕𝑓2(𝑥,𝑦,𝑧,𝑡)

𝜕𝑧 = 0,
𝜕2𝑓2(𝑥,𝑦,𝑧,𝑡)

𝜕𝑥2
= −2𝑠, 𝜕2𝑓2(𝑥,𝑦,𝑧,𝑡)

𝜕𝑦2
= −6𝑏𝑦, 𝜕2𝑓2(𝑥,𝑦,𝑧,𝑡)

𝜕𝑧2
= 0,

𝜕2𝑓2(𝑥,𝑦,𝑧,𝑡)
𝜕𝑥𝜕𝑦 = 0, 𝜕2𝑓2(𝑥,𝑦,𝑧,𝑡)

𝜕𝑥𝜕𝑧 = 0, 𝜕2𝑓2(𝑥,𝑦,𝑧,𝑡)
𝜕𝑧𝜕𝑦 = 0,

(49)

𝜕𝑓3(𝑥,𝑦,𝑧,𝑡)
𝜕𝑥 = −𝛽, 𝜕𝑓3(𝑥,𝑦,𝑧,𝑡)

𝜕𝑦 = −𝑝, 𝜕𝑓3(𝑥,𝑦,𝑧,𝑡)
𝜕𝑧 = −𝑐,

𝜕2𝑓3(𝑥,𝑦,𝑧,𝑡)
𝜕𝑥2

= 0, 𝜕2𝑓3(𝑥,𝑦,𝑧,𝑡)
𝜕𝑦2

= 0, 𝜕2𝑓3(𝑥,𝑦,𝑧,𝑡)
𝜕𝑧2

= 0,
𝜕2𝑓3(𝑥,𝑦,𝑧,𝑡) 𝜕2𝑓3(𝑥,𝑦,𝑧,𝑡) 𝜕2𝑓3(𝑥,𝑦,𝑧,𝑡)

(50)
4

𝜕𝑥𝜕𝑦 = 0, 𝜕𝑥𝜕𝑧 = 0, 𝜕𝑧𝜕𝑦 = 0,
e have verified that

(𝑥, 𝑦, 𝑧, 𝑡) ∈ 𝑅0 =
{

|

|

𝑡 − 𝑡0|| < 𝑎, |
|

𝑥 − 𝑥0|| < 𝑏1,
|

|

𝑦 − 𝑦0|| < 𝑏2, ||𝑧 − 𝑧0|| < 𝑏3
}

, (51)

the partial derivative of 𝑓1, 𝑓2 and 𝑓3 are continuously differentiable.
Thus under an additional condition that ∀ (𝑥, 𝑦, 𝑧, 𝑡) ∈ 𝑅0, 𝑓1, 𝑓2
nd 𝑓3 are bounded, then we can construct the following Tonelli
equences [15]

𝑛 = 𝑥0, 𝑖𝑓 𝑡 ∈
[

0, 1
𝑛

]

(52)

𝑦𝑛 = 𝑦0,
𝑧𝑛 = 𝑧0,

𝑥𝑛 = 𝑥0 + ∫

𝑡− 1
𝑛

0
𝑓1

(

𝑥𝑛, 𝑦𝑛, 𝑧𝑛, 𝜏
)

𝑑𝜏, 𝑖𝑓 1
𝑛
≤ 𝑡 ≤ 2

𝑛

𝑦𝑛 = 𝑦0 + ∫

𝑡− 1
𝑛

0
𝑓2

(

𝑥𝑛, 𝑦𝑛, 𝑧𝑛, 𝜏
)

𝑑𝜏,

𝑧𝑛 = 𝑧0 + ∫

𝑡− 1
𝑛

0
𝑓3

(

𝑥𝑛, 𝑦𝑛, 𝑧𝑛, 𝜏
)

𝑑𝜏.

ue to the boundness of the functions 𝑓1, 𝑓2 and 𝑓3 are the conti-
nuity of these functions, the above sequence admits a subsequence
(

𝑥𝑛𝑙 , 𝑦𝑛𝑙 , 𝑧𝑛𝑙
)

𝑛≥0 of
(

𝑥𝑛, 𝑦𝑛, 𝑧𝑛
)

𝑛≥0 that converges, since
(

𝑥𝑛, 𝑦𝑛, 𝑧𝑛
)

𝑛≥0 is
equicontinuous and uniformly bounded. The uniqueness is obtained
due to the fact that 𝑓1, 𝑓2 and 𝑓3 are Lipschitz under

[

𝑡0, 𝑡0 + 𝜆
]

where
𝜆 = min

{

𝑎, 𝑏
𝑀

}

where 𝑀 = max
{

𝑀𝑓1 ,𝑀𝑓2 ,𝑀𝑓3

}

,

𝑀𝑓𝑖 = max
𝑡∈[𝑡,𝑡0+𝑎]

|

|

𝑓𝑖 (𝑥, 𝑦, 𝑧, 𝑡)|| . (53)

Alternatively,

𝑥 = max
{

𝑥1, 𝑥2, 𝑥3
}

, (54)
𝑥1 = max

𝑡∈[𝑡,𝑡0+𝑎]
|𝑥 (𝑡)| , 𝑥2 = max

𝑡∈[𝑡,𝑡0+𝑎]
|𝑦 (𝑡)| , 𝑥3 = max

𝑡∈[𝑡,𝑡0+𝑎]
|𝑧 (𝑡)| .

𝑓1 (𝑥, 𝑦, 𝑧, 𝑡)|| ≤ 𝑔𝑥 + 𝑥 |𝑥| , (55)

≤ 𝑔𝑥
(

1 + 1
𝑔
|𝑥|

)

,

≤ 𝑘1

(

1 + 1
𝑔
|𝑥|

)

,

≤ 𝑘1 (1 + |𝑥|) ,

f
1
𝑔
< 1. (56)

𝑓2 (𝑥, 𝑦, 𝑧, 𝑡)|| ≤ 𝑏 ||
|

𝑦3||
|

− 𝑠𝑥2 + 𝑟, (57)

≤ 𝑏𝑥2 |𝑦| + 𝑠𝑥2 + 𝑟,

≤
(

𝑠𝑥2 + 𝑟
)

(

1 +
𝑏𝑥2 |𝑦|

𝑠𝑥2 + 𝑟

)

,

≤
(

𝑠𝑥2 + 𝑟
)

(1 + |𝑦|) ,

f

𝑏𝑥2

𝑠𝑥2 + 𝑟
< 1. (58)

|

|

𝑓3 (𝑥, 𝑦, 𝑧, 𝑡)|| ≤ 𝑐 |𝑧| + 𝛽𝑥 + 𝑝𝑥 (59)

≤ 𝑥 (𝑝 + 𝛽)
(

1 + 𝑐
𝑥 (𝑝 + 𝛽)

|𝑧|
)

≤ 𝑥 (𝑝 + 𝛽) (1 + |𝑧|) ,

f
𝑐 < 1. (60)
𝑥 (𝑝 + 𝛽)
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Fig. 1. Numerical simulation results of system for classical case.
Taking

𝑚𝑎𝑥
{

1
𝑔
, 𝑏𝑥2

𝑠𝑥2 + 𝑟
, 𝑐
𝑥 (𝑝 + 𝛽)

}

= 𝛺. (61)

If 𝛺 < 1 then the system verifying the Caratheodory principle that leads
to existence of the solution [16]. The existence and uniqueness allow
us to derive a numerical solution since the system is nonlinear.

The study presented above is based on differential operator that
uses only the rate of change therefore only a class of some finan-
cial behaviors can be captured. However, financial behavior portrait
different dynamics that in our opinion cannot be replicated using a
differential operator based on the rate of change. In the next section,
we shall reformulate the problem by replacing the classical derivative
with nonlocal operator.

Model with Caputo–Fabrizio derivative

Processes with fading memory could be observed in financial dy-
namic for example inflation. To capture such dynamic, we replace by
the Caputo–Fabrizio fractional derivative to obtain
𝐶𝐹
0 𝐷𝛼

𝑡 𝑥(𝑡) = 𝑓1 (𝑥, 𝑦, 𝑧, 𝑡) 𝑖𝑓 𝑡 > 0, (62)
𝐶𝐹
0 𝐷𝛼

𝑡 𝑦(𝑡) = 𝑓2 (𝑥, 𝑦, 𝑧, 𝑡) 𝑖𝑓 𝑡 > 0,
𝐶𝐹
0 𝐷𝛼

𝑡 𝑧(𝑡) = 𝑓3 (𝑥, 𝑦, 𝑧, 𝑡) 𝑖𝑓 𝑡 > 0,
𝑥 (0) = 𝑥0,
5

𝑦 (0) = 𝑦0,
𝑧 (0) = 𝑧0.

𝑓1, 𝑓2 and 𝑓3 are the same with the same condition like in the classical
case. Here to achieve uniqueness, we need

𝜆 = min
{

𝑎, 𝑏
𝑀

}

. (63)

The following Picard iteration

𝑥𝑛(𝑡) = 𝑥(0) + (1 − 𝛼) 𝑓1
(

𝑡, 𝑥𝑛−1, 𝑦𝑛−1, 𝑧𝑛−1
)

(64)

+ 𝛼 ∫

𝑡

0
𝑓1

(

𝜏, 𝑥𝑛−1 (𝜏) , 𝑦𝑛−1 (𝜏) , 𝑧𝑛−1 (𝜏)
)

𝑑𝜏,

𝑦𝑛(𝑡) = 𝑦(0) + (1 − 𝛼) 𝑓2
(

𝑡, 𝑥𝑛−1, 𝑦𝑛−1, 𝑧𝑛−1
)

+ 𝛼 ∫

𝑡

0
𝑓2

(

𝜏, 𝑥𝑛−1 (𝜏) , 𝑦𝑛−1 (𝜏) , 𝑧𝑛−1 (𝜏)
)

𝑑𝜏,

𝑧𝑛(𝑡) = 𝑧(0) + (1 − 𝛼) 𝑓3
(

𝑡, 𝑥𝑛−1, 𝑦𝑛−1, 𝑧𝑛−1
)

+ 𝛼 ∫

𝑡

0
𝑓3

(

𝜏, 𝑥𝑛−1 (𝜏) , 𝑦𝑛−1 (𝜏) , 𝑧𝑛−1 (𝜏)
)

𝑑𝜏,

are equicontinuous and uniformly bounded. Therefore they admit a
system of subsequences

(

𝑥𝑛𝑙
)

,
(

𝑦𝑛𝑙
)

and
(

𝑧𝑛𝑙
)

that convergence to the
solution of the system of the equations. The uniqueness is achieved
by either using the fact that the function 𝑓1, 𝑓2 and 𝑓3 satisfy the
Caratheodory principles or the Lipschitz conditions. This therefore
leads us to a numerical scheme. We shall adopt the previous method.
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Fig. 2. Numerical simulation results of system for classical case.
𝑥𝑛+1 = 𝑥𝑛 + (1 − 𝛼)
[

𝑓1
(

𝑡𝑛+1, 𝑥𝑛+1, 𝑦𝑛+1, 𝑧𝑛+1
)

− 𝑓1
(

𝑡𝑛, 𝑥𝑛, 𝑦𝑛, 𝑧𝑛
)]

(65)
+ 2ℎ𝛼𝑓1

(

𝑡𝑛, 𝑥𝑛, 𝑦𝑛, 𝑧𝑛
)

,
𝑦𝑛+1 = 𝑦𝑛 + (1 − 𝛼)

[

𝑓2
(

𝑡𝑛+1, 𝑥𝑛+1, 𝑦𝑛+1, 𝑧𝑛+1
)

− 𝑓2
(

𝑡𝑛, 𝑥𝑛, 𝑦𝑛, 𝑧𝑛
)]

+ 2ℎ𝛼𝑓2
(

𝑡𝑛, 𝑥𝑛, 𝑦𝑛, 𝑧𝑛
)

,
𝑧𝑛+1 = 𝑧𝑛 + (1 − 𝛼)

[

𝑓3
(

𝑡𝑛+1, 𝑥𝑛+1, 𝑦𝑛+1, 𝑧𝑛+1
)

− 𝑓3
(

𝑡𝑛, 𝑥𝑛, 𝑦𝑛, 𝑧𝑛
)]

+ 2ℎ𝛼𝑓3
(

𝑡𝑛, 𝑥𝑛, 𝑦𝑛, 𝑧𝑛
)

.

We can notice that the above is implicit, to make it explicit we replace
the 𝑥𝑛+1, 𝑦𝑛+1 and 𝑧𝑛+1 of the right hand side by

𝑥𝑛+1 = 𝑥0 + (1 − 𝛼) 𝑓1
(

𝑡𝑛, 𝑥𝑛, 𝑦𝑛, 𝑧𝑛
)

+ ℎ𝛼
𝑛
∑

𝑗=0
𝑓1

(

𝑡𝑗 , 𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗
)

, (66)

𝑦𝑛+1 = 𝑦0 + (1 − 𝛼) 𝑓2
(

𝑡𝑛, 𝑥𝑛, 𝑦𝑛, 𝑧𝑛
)

+ ℎ𝛼
𝑛
∑

𝑗=0
𝑓2

(

𝑡𝑗 , 𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗
)

,

𝑧𝑛+1 = 𝑧0 + (1 − 𝛼) 𝑓3
(

𝑡𝑛, 𝑥𝑛, 𝑦𝑛, 𝑧𝑛
)

+ ℎ𝛼
𝑛
∑

𝑗=0
𝑓3

(

𝑡𝑗 , 𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗
)

.

Model with power law process

In order to include into the mathematical formulation of the new
financial model the effect of power-law, we replace the classical deriva-
tive with the Caputo derivative to obtain
𝐶
0 𝐷

𝛼
𝑡 𝑥(𝑡) = 𝑓1 (𝑥, 𝑦, 𝑧, 𝑡) 𝑖𝑓 𝑡 > 0, (67)

𝐶𝐷𝛼𝑦(𝑡) = 𝑓 𝑥, 𝑦, 𝑧, 𝑡 𝑖𝑓 𝑡 > 0,
6

0 𝑡 2 ( )
𝐶
0 𝐷

𝛼
𝑡 𝑧(𝑡) = 𝑓3 (𝑥, 𝑦, 𝑧, 𝑡) 𝑖𝑓 𝑡 > 0,
𝑥 (0) = 𝑥0,
𝑦 (0) = 𝑦0,
𝑧 (0) = 𝑧0.

1
𝛤 (1 − 𝛼) ∫

𝑡

0
𝑥′(𝜏)(𝑡 − 𝜏)−𝛼𝑑𝜏 = 𝑓1 (𝑥, 𝑦, 𝑧, 𝑡) , (68)

1
𝛤 (1 − 𝛼) ∫

𝑡

0
𝑦′(𝜏)(𝑡 − 𝜏)−𝛼𝑑𝜏 = 𝑓2 (𝑥, 𝑦, 𝑧, 𝑡) ,

1
𝛤 (1 − 𝛼) ∫

𝑡

0
𝑧′(𝜏)(𝑡 − 𝜏)−𝛼𝑑𝜏 = 𝑓3 (𝑥, 𝑦, 𝑧, 𝑡) .

We transform the above into

𝑥(𝑡) = 𝑥(0) + 1
𝛤 (𝛼) ∫

𝑡

0
𝑓1 (𝑥, 𝑦, 𝑧, 𝜏) (𝑡 − 𝜏)𝛼−1𝑑𝜏, (69)

𝑦(𝑡) = 𝑦(0) + 1
𝛤 (𝛼) ∫

𝑡

0
𝑓2 (𝑥, 𝑦, 𝑧, 𝜏) (𝑡 − 𝜏)𝛼−1𝑑𝜏,

𝑧(𝑡) = 𝑧(0) + 1
𝛤 (𝛼) ∫

𝑡

0
𝑓3 (𝑥, 𝑦, 𝑧, 𝜏) (𝑡 − 𝜏)𝛼−1𝑑𝜏.

For existence and uniqueness, we need only

𝜆 = min

⎧

⎪

⎨

⎪

⎩

𝑎,
(

𝑏𝛤 (𝛼 + 1)
𝑀

)
1
𝛼
⎫

⎪

⎬

⎪

⎭

. (70)

Then the following predictor–corrector iterative formula can be utilized

𝑥𝑛+1(𝑡) = 𝑥(0) + 1 𝑡
𝑓1

(

𝑥𝑛+1, 𝑦𝑛+1, 𝑧𝑛+1, 𝜏
)

(𝑡 − 𝜏)𝛼−1𝑑𝜏, (71)

𝛤 (𝛼) ∫0
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Fig. 3. Numerical simulation results of system for Caputo case.
𝑦𝑛+1(𝑡) = 𝑦(0) + 1
𝛤 (𝛼) ∫

𝑡

0
𝑓2

(

𝑥𝑛+1, 𝑦𝑛+1, 𝑧𝑛+1, 𝜏
)

(𝑡 − 𝜏)𝛼−1𝑑𝜏,

𝑧𝑛+1(𝑡) = 𝑧(0) + 1
𝛤 (𝛼) ∫

𝑡

0
𝑓3

(

𝑥𝑛+1, 𝑦𝑛+1, 𝑧𝑛+1, 𝜏
)

(𝑡 − 𝜏)𝛼−1𝑑𝜏.

The system is implicit therefore

𝑥𝑛+1(𝑡) = 𝑥(0) + 1
𝛤 (𝛼) ∫

𝑡

0
𝑓1

(

𝑥𝑛+1, 𝑦𝑛+1, 𝑧𝑛+1, 𝜏
)

(𝑡 − 𝜏)𝛼−1𝑑𝜏, (72)

𝑦𝑛+1(𝑡) = 𝑦(0) + 1
𝛤 (𝛼) ∫

𝑡

0
𝑓2

(

𝑥𝑛+1, 𝑦𝑛+1, 𝑧𝑛+1, 𝜏
)

(𝑡 − 𝜏)𝛼−1𝑑𝜏,

𝑧𝑛+1(𝑡) = 𝑧(0) + 1
𝛤 (𝛼) ∫

𝑡

0
𝑓3

(

𝑥𝑛+1, 𝑦𝑛+1, 𝑧𝑛+1, 𝜏
)

(𝑡 − 𝜏)𝛼−1𝑑𝜏,

where

𝑥𝑛+1 = 𝑥(0) + 1
𝛤 (𝛼) ∫

𝑡

0
𝑓1

(

𝑥𝑛, 𝑦𝑛, 𝑧𝑛, 𝜏
)

(𝑡 − 𝜏)𝛼−1𝑑𝜏, (73)

𝑦𝑛+1 = 𝑦(0) + 1
𝛤 (𝛼) ∫

𝑡

0
𝑓2

(

𝑥𝑛, 𝑦𝑛, 𝑧𝑛, 𝜏
)

(𝑡 − 𝜏)𝛼−1𝑑𝜏,

𝑧𝑛+1 = 𝑧(0) + 1
𝛤 (𝛼) ∫

𝑡

0
𝑓3

(

𝑥𝑛, 𝑦𝑛, 𝑧𝑛, 𝜏
)

(𝑡 − 𝜏)𝛼−1𝑑𝜏.

This system is very accurate as it has been introduced in [17] with the
aim to improve the Picard iteration. Since this is subsequence of the
Picard iteration under the condition that

(

𝑓𝑖
)

𝑖=1,2,3 are bounded and dif-
ferentiable continuous it followed that if converges. The uniqueness is
also satisfied via the Gronwall inequality since the functions 𝑓1, 𝑓2 and
𝑓3 satisfy the Lipschitz condition. With the existence and uniqueness
obtained we can now proceed with numerical solution via the Midpoint
7

principle as follow

𝑥𝑛+1(𝑡) = 𝑥(0) + ℎ𝛼

𝛤 (𝛼 + 1)

𝑛−1
∑

𝑗=0
𝑓1

(

𝑡𝑗 +
ℎ
2
,
𝑥𝑗 + 𝑥𝑗+1

2
,
𝑦𝑗 + 𝑦𝑗+1

2
,
𝑧𝑗 + 𝑧𝑗+1

2

)

(74)
×

{

(𝑛 − 𝑗 + 1)𝛼 − (𝑛 − 𝑗)𝛼
}

+ ℎ𝛼

𝛤 (𝛼 + 1)
𝑓1

(

𝑡𝑛 +
ℎ
2
,
𝑥𝑛 + 𝑥𝑛+1

2
,
𝑦𝑛 + 𝑦𝑛+1

2
,
𝑧𝑛 + 𝑧𝑛+1

2

)

,

𝑦𝑛+1(𝑡) = 𝑦(0) + ℎ𝛼

𝛤 (𝛼 + 1)

𝑛−1
∑

𝑗=0
𝑓2

(

𝑡𝑗 +
ℎ
2
,
𝑥𝑗 + 𝑥𝑗+1

2
,
𝑦𝑗 + 𝑦𝑗+1

2
,
𝑧𝑗 + 𝑧𝑗+1

2

)

×
{

(𝑛 − 𝑗 + 1)𝛼 − (𝑛 − 𝑗)𝛼
}

+ ℎ𝛼

𝛤 (𝛼 + 1)
𝑓2

(

𝑡𝑛 +
ℎ
2
,
𝑥𝑛 + 𝑥𝑛+1

2
,
𝑦𝑛 + 𝑦𝑛+1

2
,
𝑧𝑛 + 𝑧𝑛+1

2

)

,

𝑧𝑛+1(𝑡) = 𝑧(0) + ℎ𝛼

𝛤 (𝛼 + 1)

𝑛−1
∑

𝑗=0
𝑓3

(

𝑡𝑗 +
ℎ
2
,
𝑥𝑗 + 𝑥𝑗+1

2
,
𝑦𝑗 + 𝑦𝑗+1

2
,
𝑧𝑗 + 𝑧𝑗+1

2

)

×
{

(𝑛 − 𝑗 + 1)𝛼 − (𝑛 − 𝑗)𝛼
}

+ ℎ𝛼

𝛤 (𝛼 + 1)
𝑓3

(

𝑡𝑛 +
ℎ
2
,
𝑥𝑛 + 𝑥𝑛+1

2
,
𝑦𝑛 + 𝑦𝑛+1

2
,
𝑧𝑛 + 𝑧𝑛+1

2

)

,

where

𝑥𝑛+1 = 𝑥(0) + ℎ𝛼

𝛤 (𝛼 + 1)

𝑛
∑

𝑗=0
𝑓1

(

𝑡𝑗 , 𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗
) {

(𝑛 − 𝑗 + 1)𝛼 − (𝑛 − 𝑗)𝛼
}

, (75)

𝑦𝑛+1 = 𝑦(0) + ℎ𝛼

𝛤 (𝛼 + 1)

𝑛
∑

𝑓2
(

𝑡𝑗 , 𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗
) {

(𝑛 − 𝑗 + 1)𝛼 − (𝑛 − 𝑗)𝛼
}

,

𝑗=0
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Fig. 4. Numerical simulation results of system for Caputo case.
𝑧𝑛+1 = 𝑧(0) + ℎ𝛼

𝛤 (𝛼 + 1)

𝑛
∑

𝑗=0
𝑓3

(

𝑡𝑗 , 𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗
) {

(𝑛 − 𝑗 + 1)𝛼 − (𝑛 − 𝑗)𝛼
}

.

Numerical simulations are presented below.

Numerical solution

In this section, we shall use a well-known accurate numerical
scheme to solve the system. We shall adopt the Nystrom scheme [18].
We shall first show the general. Let 𝑦′ = 𝑓 (𝑡, 𝑦(𝑡)) be a general Cauchy
problem with initial condition 𝑦(𝑡0) = 𝑦0, 𝑓 is continuous

∀ (𝑡, 𝑦) ∈ 𝑅0 =
{

|

|

𝑡 − 𝑡0|| < 𝑎, |
|

𝑦 − 𝑦0|| < 𝑏
}

. (76)

The Nystrom scheme says

𝑦𝑛+1 = 𝑦𝑛−1 + 2ℎ𝑓
(

𝑡𝑛, 𝑦𝑛
)

. (77)

It is known that the method is of order 𝑂
(

ℎ3
)

. In our case, therefore

𝑥𝑛+1 = 𝑥𝑛−1 + 2ℎ𝑓1
(

𝑡𝑛, 𝑥𝑛, 𝑦𝑛, 𝑧𝑛
)

, (78)

𝑦𝑛+1 = 𝑦𝑛−1 + 2ℎ𝑓2
(

𝑡𝑛, 𝑥𝑛, 𝑦𝑛, 𝑧𝑛
)

,

𝑧𝑛+1 = 𝑧𝑛−1 + 2ℎ𝑓3
(

𝑡𝑛, 𝑥𝑛, 𝑦𝑛, 𝑧𝑛
)

.

Numerical simulation will be depicted in following Figs. 1–2 given for
different values of 𝑟 and 𝑔 for classical case.
8

The numerical solution of the model under investigation is therefore
given as

𝑥𝑛+1(𝑡) = 𝑥(0) + ℎ𝛼

𝛤 (𝛼 + 1)

𝑛−1
∑

𝑗=0

{

𝑔
( 𝑧𝑗 + 𝑧𝑗+1

2

)

+
(( 𝑦𝑗 + 𝑦𝑗+1

2

)

− 𝑎
)

×
(𝑥𝑗 + 𝑥𝑗+1

2

)}

(79)

×
{

(𝑛 − 𝑗 + 1)𝛼 − (𝑛 − 𝑗)𝛼
}

+ ℎ𝛼

𝛤 (𝛼 + 1)

{

𝑔
(

𝑧𝑛 + 𝑧𝑛+1
2

)

+
((

𝑦𝑛 + 𝑦𝑛+1
2

)

− 𝑎
)

×
(

𝑥𝑛 + 𝑥𝑛+1
2

)}

,

𝑥𝑛+1 = 𝑥(0) + ℎ𝛼

𝛤 (𝛼 + 1)

𝑛
∑

𝑗=0

{

𝑔𝑧𝑗 +
(

𝑦𝑗 − 𝑎
)

𝑥𝑗
}{

(𝑛 − 𝑗 + 1)𝛼 − (𝑛 − 𝑗)𝛼
}

𝑦𝑛+1(𝑡) = 𝑦(0) + ℎ𝛼

𝛤 (𝛼 + 1)

𝑛−1
∑

𝑗=0

{

−𝑏
( 𝑦𝑗 + 𝑦𝑗+1

2

)3
− 𝑠

(𝑥𝑗 + 𝑥𝑗+1
2

)2
+ 𝑟

}

(80)
×

{

(𝑛 − 𝑗 + 1)𝛼 − (𝑛 − 𝑗)𝛼
}

+ ℎ𝛼

𝛤 (𝛼 + 1)

{

−𝑏
(

𝑦𝑛 + 𝑦𝑛+1
2

)3

− 𝑠
(

𝑥𝑛 + 𝑥𝑛+1
2

)2

+ 𝑟

}

,

𝑦𝑛+1 = 𝑦(0) + ℎ𝛼

𝛤 (𝛼 + 1)

𝑛
∑

{

−𝑏𝑦3𝑗 − 𝑠𝑥2𝑗 + 𝑟
}

{

(𝑛 − 𝑗 + 1)𝛼 − (𝑛 − 𝑗)𝛼
}

𝑗=0
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Fig. 5. Numerical simulation results of system for piecewise case.
𝑧𝑛+1(𝑡) = 𝑧(0) + ℎ𝛼

𝛤 (𝛼 + 1)

𝑛−1
∑

𝑗=0

{

−𝑐
( 𝑧𝑗 + 𝑧𝑗+1

2

)

− 𝛽
(𝑥𝑗 + 𝑥𝑗+1

2

)

−𝑝
( 𝑦𝑗 + 𝑦𝑗+1

2

)}

(81)

×
{

(𝑛 − 𝑗 + 1)𝛼 − (𝑛 − 𝑗)𝛼
}

+ ℎ𝛼

𝛤 (𝛼 + 1)

{

−𝑐
(

𝑧𝑛 + 𝑧𝑛+1
2

)

− 𝛽
(

𝑥𝑛 + 𝑥𝑛+1
2

)

−𝑝
(

𝑦𝑛 + 𝑦𝑛+1
2

)}

,

𝑧𝑛+1 = 𝑧(0) + ℎ𝛼

𝛤 (𝛼 + 1)

𝑛
∑

𝑗=0

{

−𝑐𝑧𝑗 − 𝛽𝑥𝑗 − 𝑝𝑦𝑗
}{

(𝑛 − 𝑗 + 1)𝛼 − (𝑛 − 𝑗)𝛼
}

Numerical simulation are presented below in Figs. 3 to 4 given for
different values of 𝑟 and 𝑔 for Caputo case.

With using piecewise case idea [19,20], we have considered the
following piecewise model

⎧

⎪

⎨

⎪

⎩

𝑥′(𝑡) = 𝑓1 (𝑥, 𝑦, 𝑧, 𝑡) , if 𝑡 ∈ [0, 𝑡1]

𝑦′(𝑡) = 𝑓2 (𝑥, 𝑦, 𝑧, 𝑡) ,
𝑧′(𝑡) = 𝑓3 (𝑥, 𝑦, 𝑧, 𝑡)

, (82)

⎧

⎪

⎨

⎪

⎩

𝐶
𝑡1
𝐷𝛼

𝑡 𝑥(𝑡) = 𝑓1 (𝑥, 𝑦, 𝑧, 𝑡) , if 𝑡 ∈ [𝑡1, 𝑇 ]
𝐶
𝑡1
𝐷𝛼

𝑡 𝑦(𝑡) = 𝑓2 (𝑥, 𝑦, 𝑧, 𝑡) ,
𝐶
𝑡1
𝐷𝛼

𝑡 𝑧(𝑡) = 𝑓3 (𝑥, 𝑦, 𝑧, 𝑡)

.

9

The above is easily converted to

⎧

⎪

⎨

⎪

⎩

𝑥(𝑡) = 𝑥(0) + ∫ 𝑡
0 𝑓1 (𝑥, 𝑦, 𝑧, 𝜏) 𝑑𝜏, if 𝑡 ∈ [0, 𝑡1]

𝑦(𝑡) = 𝑦(0) + ∫ 𝑡
0 𝑓2 (𝑥, 𝑦, 𝑧, 𝜏) 𝑑𝜏,

𝑧(𝑡) = 𝑧(0) + ∫ 𝑡
0 𝑓3 (𝑥, 𝑦, 𝑧, 𝜏) 𝑑𝜏,

(83)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥(𝑡) = 𝑥(𝑡1) +
1

𝛤 (𝛼) ∫
𝑡
𝑡1
𝑓1 (𝑥, 𝑦, 𝑧, 𝜏) (𝑡 − 𝜏)𝛼−1𝑑𝜏, if 𝑡 ∈ [𝑡1, 𝑇 ]

𝑦(𝑡) = 𝑦(𝑡1) +
1

𝛤 (𝛼) ∫
𝑡
𝑡1
𝑓2 (𝑥, 𝑦, 𝑧, 𝜏) (𝑡 − 𝜏)𝛼−1𝑑𝜏,

𝑧(𝑡) = 𝑧(𝑡1) +
1

𝛤 (𝛼) ∫
𝑡
𝑡1
𝑓3 (𝑥, 𝑦, 𝑧, 𝜏) (𝑡 − 𝜏)𝛼−1𝑑𝜏,

(84)

Here we can use Nystrom scheme of the classical case and fractional
Euler for the fractional case as follow,

⎧

⎪

⎨

⎪

⎩

𝑥𝑛+1 = 𝑥𝑛−1 + 2ℎ𝑓1
(

𝑡𝑛, 𝑥𝑛, 𝑦𝑛, 𝑧𝑛
)

, if 𝑡𝑛 ∈ [0, 𝑡1]
𝑦𝑛+1 = 𝑦𝑛−1 + 2ℎ𝑓2

(

𝑡𝑛, 𝑥𝑛, 𝑦𝑛, 𝑧𝑛
)

,

𝑧𝑛+1 = 𝑧𝑛−1 + 2ℎ𝑓3
(

𝑡𝑛, 𝑥𝑛, 𝑦𝑛, 𝑧𝑛
)

,

. (85)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑥𝑛+1(𝑡) = 𝑥(𝑡1) +
ℎ𝛼

𝛤 (𝛼+1)

𝑛
∑

𝑗=0
𝑓1

(

𝑡𝑗 , 𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗
) {

(𝑛 − 𝑗 + 1)𝛼 − (𝑛 − 𝑗)𝛼
}

, if 𝑡 ∈ [𝑡1, 𝑇 ]

𝑦𝑛+1(𝑡) = 𝑦(𝑡1) +
ℎ𝛼

𝛤 (𝛼+1)

𝑛
∑

𝑗=0
𝑓2

(

𝑡𝑗 , 𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗
) {

(𝑛 − 𝑗 + 1)𝛼 − (𝑛 − 𝑗)𝛼
}

,

𝑧𝑛+1(𝑡) = 𝑧(𝑡1) +
ℎ𝛼

𝛤 (𝛼+1)

𝑛
∑

𝑗=0
𝑓3

(

𝑡𝑗 , 𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗
) {

(𝑛 − 𝑗 + 1)𝛼 − (𝑛 − 𝑗)𝛼
}

,

.

Numerical simulations are presented in Figs. 5–6 given for different
values of 𝑟 and 𝑔 for piece-wise case.
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Fig. 6. Numerical simulation results of system for piecewise case.
Conclusion

In this work, we extend a new mathematical model with three non-
linear equations that was proposed to represent phenomena resembling
those portrayed by financial processes. In this situation, the Poincare
mapping was used to project the model into two dimensions. We also
evaluated the stability of the equilibrium points and their associated
Lyapunov functions and Poincare mapping. For many differential op-
erators, we have offered conditions for the solutions, existence and
uniqueness. We also used the Nystrom and midpoint concepts to solve
the model.
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