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Abstract The Lugeon test is one of the commonly applied
field methods for measuring hydraulic conductivity of a rock
mass. Understanding hydraulic conductivity is especially nec-
essary when groundwater is present, as it has a direct effect on
the construction operations and stability of a structure.
Discontinuity orientation, spacing and discontinuous surface
quality, and the presence and type of infill play essential roles
in permeability of a rock mass. Commonly used rock quality
designation (RQD) and discontinuity surface condition rating
of the rock mass rating system (Dc) were chosen as predictive
parameters. Additionally, depth is involved as a critical pre-
dictor and it is observed so. Three variables impacting the
Lugeon value are not present in the literature. The importance
of each predictor variable was found to be significant while
depth contributed more. Simple regression work resulted in
insufficient correlation for each single parameter, but indicat-
ed they have relevance to the Lugeon value. In addition to
linear and nonlinear multiple regression studies, Box-Cox
transformation multiple regression was employed and predic-
tions were found to be statistically significant. Among the
multiple regression models, a nonlinear model provided the
highest prediction performance. Utilization of the adaptive
neuro-fuzzy inference system (ANFIS) enabled researchers
to predict the Lugeon value precisely, compared to the multi-
ple regression works. Subtractive clustering was employed in
order to successfully model the parameters by using ANFIS.
The clustering task resulted in a fuzzy inference system struc-
ture with three rules. A manually introduced fuzzy inference

system (FIS) structure with 27 rules exhibited low perfor-
mance when it was compared to the structure generated by
subtractive clustering. The findings can be used in the study
area since a wide range of rock types, properties and depth
were taken into account in the models. Groundwater flow and
permeability in jointed rock mass have a complex mechanism
with variable fracturing and discontinuity properties within a
small area. For prediction work, it is concluded to be benefi-
cial to add the depth parameter to the models for further
studies.

Keywords Hydraulic conductivity . Lugeon test . Rockmass
parameters . Multiple regression . ANFIS

Introduction

Groundwater has a significant impact on engineered structures
built in rock by means of construction operations, rock mass
deformation and stability. The degree of the impact depends
on its presence and on several engineering parameters as well
as moisture sensitivity of the rock material. For underground
rock structures, investigation on groundwater pressure and
water inflow rate is essential (Aydan et al. 2014; Singh and
Singh 2006) since these strongly influence operational issues
as well as the stability of the structure and supports.
Operational issues may include pump selection and infrastruc-
ture design for water discharge, identification of grouting re-
quirements and water sealing. The permeability of surface
material also plays an important role for surface structures
such as dams and their foundations (Foyo et al. 2005;
Karagüzel and Kilic 2000). Discontinuities in a rock mass
constitute a dominant path for hydraulic transport (Ren et al.
2015). The terms rock mass hydraulic conductivity, rock mass
permeability and secondary permeability are used
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interchangeably in the literature (Fell et al. 2005) and the
Lugeon test is one of the constant head-type in situ tests.
Alternatively, slug tests can also be applied in highly fractured
rock masses (Eryılmaz and Korkmaz 2015; Zlotnlk and
McGuire 1998). The researchers proposed an identification
method for the estimation of hydraulic conductivity.

Since the hydraulic conductivity of rock masses is a com-
plex process, it is drawing researchers’ attention. Snow (1969)
and Snow (1970) studied hydraulic conductivity of rock
masses by taking different discontinuity patterns. Oda et al.
(1987) handled randomly and highly jointed rock mass
permeability by treating it as a homogeneous anisotropic
porous medium. Foyo et al. (2005) proposed the Secondary
Permeability Index by utilizing Lugeon tests. The index can
be used for classification of a rock mass and treatment neces-
sity. Researchers mentioned the relevance of discontinuity and
infill characteristics of the rock mass with hydraulic conduc-
tivity. Due to nonuniform distribution of the hydraulic prop-
erties of fractures and geometric properties, hydraulic anisot-
ropy develops in a rock mass (Zhang 2013). Nappi et al.
(2005) investigated Lugeon values and outcrop discontinuity
properties on the outcrops in a region. The anisotropic behav-
ior of hydraulic conductivity was studied and led to complete
hydraulic characterization of near-surface rock mass in the
research area. The researchers mentioned that depth has an
influence on hydraulic conductivity other than the parameters
which are taken into account. Leung and Zimmerman (2012)
utilized fracture network parameters for estimating two-
dimensional hydraulic conductivity for isotropic networks.
Zhou et al. (2008) and Rong et al. (2013) studied the
interlocking effect of rock blocks and stress-induced reduction
of the aperture which has an influence on hydraulic conduc-
tivity. Ren et al. (2015) employed numerical analysis in order
to assess the hydraulic conductivity anisotropy of a fracture
network system. A discrete fracture method for seepage sim-
ulation based on a pipe network method is developed to sim-
ulate the permeability anisotropy in fracture networks.
Pardoen et al. (2016) studied excavation-induced damage
around an underground opening and its effect on the
hydraulic conductivity which leads a relative humidity
change in the ventilated opening. Min et al. (2004) carried
out numerical modeling in order to assess stress effect on
hydraulic conductivity at a fundamental level for fractured
rock masses. He et al. (2013) employed numerical analysis
techniques which cover elastic deformation in a fractured rock
mass. Zhang (2016) carried out laboratory testing on clay rock
samples and proposed an empirical model for fracturing-
induced permeability by considering the effects of connectiv-
ity and conductivity of micro-cracks. Ma et al. (2013) inves-
tigated seepage properties of laboratory samples under differ-
ent confining pressures.

Rigorous approaches which necessitate detailed informa-
tion on discontinuity properties are being developed for

studying the hydraulic conductivity of jointed rock masses.
Collection of various properties of fracture networks is still a
practical challenge and is obviously difficult to undertake
(Rong et al. 2013). In addition to detailed theoretical studies,
employing statistical tools also increases the understanding of
field-scale hydraulic conductivity. Kayabasi et al. (2015)
employed nonlinear regression and adaptive neuro-fuzzy in-
ference system (ANFIS) modeling in order to relate Lugeon
data and discontinuity properties. Data groups from six sites
and five different lithologies were utilized in the analysis
targeting to estimate the hydraulic conductivity of the rock
mass (Lugeon value) empirically. Rock quality designation
(RQD) was found to be significantly related to the Lugeon
value, while the discontinuity spacing and surface condition
rating (Sonmez and Ulusay 1999) represented statistically in-
significant behavior, as can be seen from the repeated values.
However, the researchers mentioned the importance of those
parameters. Assari and Mohammadi (2017) investigated a
dam site where heterogeneous hydraulic properties are present
in a karstic formation. The researchers conducted a stochastic
simulation technique by considering RQD and Lugeon values
in order to estimate their spatial character.

Rock mass, hydraulic conductivity and Lugeon test

Hydraulic conductivity can be measured at both a laboratory
scale and a field scale and then can be utilized for calculation
of total inflow of groundwater in a particular area. For soil
material, all pores or voids are interconnected (Lambe and
Whitman 1969) and, in general, gradation, density, porosity,
void ratio, saturation degree and stratification affect perme-
ability (Hunt 2005). Generally, intact rock is very well
compacted or cemented with mineral grains which contain
pores. The pores or voids are not interconnected and they
represent at least very low conductivity if the rock mass is
not fractured (Fig. 1). Hydraulic conductivity of intact rock
and a rock mass are obviously different due to the presence
and frequency of discontinuities. Discontinuity condition
(Dc), namely persistence, tightness, aperture, roughness, infill
type and filling thickness, also govern the water flow rate
through a rock mass as well as affecting rock mass strength.
Field-scale estimation and measurement of hydraulic conduc-
tivity becomes more important when the area of interest is a
rock mass.

Assuming a laminar flow through smooth joints, hydraulic
conductivity, K (Scesi and Gattinoni 2009):

K ¼ γe2

12η
¼ ge2

12υ
ð1Þ

where e is the joint mean aperture, g is the gravitational accel-
eration and ν, γ and η are the kinematic viscosity, the specific
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weight and the dynamic viscosity of the fluid, respectively.
For laminar flow through smooth-joint groups, Snow

(1969, 1970) proposed:

K ¼ e3i f ig
12υ

ð2Þ

where fi is the frequency (m−1) of the ith discontinuity set.
The Lugeon test is widely employed for in situ estima-

tion of rock mass hydraulic conductivity and sometimes it
is called a packer test. This test owes its name to Maurice
Lugeon, a geologist who first formulated the method in
1933, (Lugeon 1933). The Lugeon test is a constant head
permeability test applied to a particular and isolated inter-
val of a borehole. The testing section is restricted by up-
per and lower inflatable packers which fit the borehole. A
maximum test pressure is identified before the test. The
value should be decided bearing in mind that no hydraulic
fracturing should occur in the borehole walls. The test is
generally conducted at five stages or more. At each stage,
a particular percentage of the maximum pressure is kept
constant and applied for 10 min. Water loss at each stage

must be recorded. The first-stage pressure must be lower than
the maximum pressure. After application of the maximum-
pressure stage, lower-pressure stages are supposed to be applied
(Quiñones-Rozo 2010; Nappi et al. 2005).

The permeability value obtained in this test gives rough
information on the rock discontinuities which intersect the
wall of the borehole in the test section (Table 1). Results are
expressed in Lugeon (represented by Lu) units. A Lugeon is
defined as the water loss of 1 l/min per metre length of test
section at an effective pressure of 1 MPa (Fell et al. 2005).

Lugeon ¼ Lu ¼ q=Lð Þ � P0=Pð Þ ð3Þ
Here, the Lugeon value is calculated by using water loss q

(lt/min), testing length L(m), reference pressure P0 (1 MPa)
and pressure applied at a test stage P (MPa).

The Lugeon test can also be interpreted as suggested by
Moye (1955):

K ¼ Q� Cð Þ= L� Hð Þ ð4Þ

WhereK is hydraulic conductivity (m/s),Q is flow rate (m3/s),
L is the length of the test section (m) and r is the radius of the

Fig. 1 Hydraulic conductivity of various geological units (after Atkinson 2000)

Table 1 Condition of rock mass
discontinuities associated with
different Lugeon values (after
Quiñones-Rozo 2010)

Lugeon
range

Classification Hydraulic
conductivity
range (cm/s)

Condition of rock mass
discontinuities

Reporting
precision
(Lugeons)

<1 Very low <1 × 10−5 Very tight <1

1–5 Low 1 × 10−5 – 6 × 10−5 Tight ±0

5–15 Moderate 6 × 10−5 – 2 × 10−4 Few partly open ±1

15–50 Medium 2 × 10−4 – 6 × 10−4 Some open ±5

50–100 High 6 × 10−4 – 1 × 10−3 Many open ±10

>100 Very high > 1 × 10−3 Open and closely spaced or voids >100
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hole (m). H is the net head above the static water table at the
centre of the test section (m). C is given as

C ¼
1þ ln

L
2r

� �
2π

ð5Þ

Hoek and Bray (1981) recommend the equation given be-
low which is modified from Moye (1955):

ke ¼
Qln

2ML
D

� �
2πLH

ð6Þ

Here,

M ¼ ke=kpð Þ0:5

kp equivalent permeability parallel to the hole
ke equivalent permeability normal to the hole
D diameter of borehole

Assuming ke/kp = 1 represents homogenous and isotropic
conditions, M = 1 and 1 Lugeon = 1.3 × 10−5 cm/
s = 1.3 × 10−7 m/s (Fell et al. 2005).

In this study, Lugeon value is taken into account in order to
represent rock mass hydraulic conductivity. RQD is used for
prediction of Lugeon values since it has a relationship with
hydraulic conductivity. The RQD was developed by Deere
et al. (1966) to provide a quantitative estimate of rock mass
quality from drill core logs. RQD is defined as the percentage
of intact pieces longer than 100 mm in total length. RQD, as a
commonly used parameter, can also be correlated to fracture
density, volumetric joint count or block volume (Palmstrom
2005). In situ stress is represented by depth. Due to the influ-
ence of its parameters on hydraulic conductivity, the joint
condition rating parameter is involved in the study. The table
for Dc rating is given in Table 2.

Here, it is important to mention uncertainty in measuring
persistence, especially in boreholes. In the absence of this

data, a zero value is chosen. However, in stratified strata, the
persistence rating will be zero, generally.

Geology of the study area

Lugeon tests and geotechnical borehole logging were con-
ducted in the Soma lignite coal basin. The area is located in
the city of Soma in the Manisa Province of Turkey. An open
cast mine is under operation in the northern region of the basin
where the coal seam lies at shallow depth. In the neighbor-
hood, underground coal mines are in operation at a depth
range of 150–400 m (Basarir et al. 2015; Aksoy et al. 2016).
The new government and privately owned underground coal
mines with depths ranging between 700 and 1200 m are being
projected at an approximate distance of 5 km from the mines
under operation.

General geology

Tüysüz and Genç (2013) studied the geology of the study area
site. A Pliocene-aged formation named as Deniş is underlain
by the Miocene-aged Soma formation. The Deniş Formation
contains clastic limnic deposit succession with coal intercala-
tions. The unit was sub-classified in six series by Nebert
(1978). They are: sandstone-siltstone-multicolored clay level
(P1), upper lignite level (KP1), clay-tuff-marl series (P2ab),
clay-sandstone-conglomerate level (P2c), finely graveled
(siliceous) calcareous level (P3) and tuff-agglomerate (P4 or
Plvt) levels. Another rock group situated within the volcanic
series, typical outcrops of which are commonly observed in
the vicinity of Elmadere Village, is flowing breccias. These
are formed by thick layers of a lithology with poor but dis-
tinctive, variously sized and angular lava gravels as well as
lavas in the form of cement pyroclastic flow and rubble units
that are composed of latitic, andesitic, rarely dacitic fine lava
levels and are interfingered with flowing breccias and lahar
levels. The lahar levels contain gravel and blocks with medi-
um-coarse-sized, generally rounded and spherical andesite,

Table 2 Guidelines for classification of discontinuity conditions (Dc) after Bieniawski 1989

Discontinuity length (persistence) < 1 m 1 to 3 m 3 to 10 m 10 to 20 m More than 20 m

Rating 6 4 2 1 0

Separation (aperture) None < 0.1 mm 0.1 – 1.0 mm 1–5 mm More than 5 mm

Rating 6 5 4 1 0

Roughness Very rough Rough Slightly rough Smooth Slickensided

Rating 6 5 3 1 0

Infilling (gouge) None Hard infilling <5 mm 4 Hard filling >5 mm Soft infilling <5 mm 2 Soft infilling >5 mm 0

Rating 6 2

Weathering Unweathered Slightly weathered Moderate weathering Highly weathered Decomposed

Rating 6 5 3 1 0
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latite and occasionally dacite compositions. Although they are
mostly represented by lava flows, their dykes and vein sys-
tems were also observed to cut the deposits and the pyroclas-
tics. Typical examples of them can be witnessed in the south-
ern part of the area, in the east and west of Kocadere and also
in the vicinity of the Kızkaya regions.

The Soma Formation starts with a basement conglom-
erate unit, discordantly overlaying metamorphic rocks.
The conglomerate contains gray-colored, fine-medium-
sized grains cemented with sand and silt. A lignite zone
with thickness values ranging between 3.5 and 30 m sits
over the basement detritus which is symbolized with M1.
Called KM2 in the regional Neogene nomenclature, this
lignite is of generally hard, massive, black and bright
appearance. The lignite quality decreases at the lower sec-
tions of KM2 where its clay ratios increase. A bluish-
gray-colored marl level overlays the KM2 zone.

Brinkmann and Feist (1970) combine this lithology, de-
fined as M2 with an upper limestone level (M3); they
categorized both marl and limestone together as a Bmarl-
calcareous series^. The boundaries between KM2 (lower
lignite series) and overlaying marls are very discernible,
since the marl directly overlays the M2 lignite zone with a
sharp contact. The marls are gray and gray-green-colored,
hard and massive. It is a medium-thick layer and contains
abundant leaf fossils. In these levels, marls are split into
small plates and exhibit almost cardboard shale appear-
ances. The marl series (M2) cut through almost all of each
borehole opened in the licensed area, and are widespread
and homogenous.

Structural geology

The study area is located south of Bakırçay Graben which is
one of the most important grabens in NWAnatolia. Bakırçay
Graben starts with Dikili-Çandarlı at the West, extends to the
east, gets narrow eastwardly and changes direction in the vi-
cinity of Soma. The basin is limited at the north by an oblique
slip of an active fault which forms a boundary to the Bergama
Valley as well. At the south, small fault segments dominated
by vertical slip components limit the graben’s boundaries.
Dirik et al. (2010a) claimed that the coal basins located at
the western part of Soma were developed in the Pliocene-
Quaternary period and remained over the Çamlıca Rise which
was disintegrated by block faults.

Another structural element in the study area are the folds.
The folds are determined by the strike and dips of the deposits,
and changing features of the layers through borehole cores are
observed. It is known from previous studies that Soma and
Deniş Formations are folded. From both Dirik’s (2010) data
and the borehole data, some folds are of syn-sedimentary folds
(slump structure). The slump nature of the folds is clearly seen
through the boreholes, and also from low angled slopes or
horizontal features of the layers at much upper and lower
sections of the high inclined layer zones. In addition, many
medium-scaled folds were also delineated in the area as well.
They are symmetrical and of NE-SW-directed folds. Fold
structures are especially important for synclinal structures,
exploration of underground water and underground water
movement. Although the strata dip directions are generally
SE, SW and NW directional, the strikes of the layers are
NE-SW directionally dominated, but partially NW-SE direct-
ed. Layer dips directed NE are rare.

Data

Four boreholes were subjected to Lugeon testing in the area.
These boreholes were drilled in order to conduct geotechnical
and hydrogeological investigations for proposed mine access

Fig. 2 Generalized stratigraphy of Soma coal basin (after Aksoy et al.
2004)
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openings: two shafts and a decline which are being excavated
during the study. Borehole depths were adjusted considering
the investigated part of the decline and shafts. In the Soma
coal basin, a Miocene-aged coal seam (named as KM2) is
being mined. Overburden consists of Miocene-aged marl
and limestone at the roof of the KM2 coal. Pliocene-aged
sedimentary units cover Miocene formations. Volcanic units
are also present, especially in Pliocene formations in the form
of andesite, basalt or agglomerate. Borehole descriptions and
lithology are presented, and in the study, the coal seam is not
taken into account (Fig. 2):

BH1: 3 Lugeon tests were conducted along this bore-
hole at depths from 27 to 76 m. Rock types at test
locations are agglomeratic, basaltic and andesitic tuff
variations. Borehole BH1 is closely located to decline
opening.

BH2: 10 Lugeon test results at depths from 8 to 80 m
were obtained. Siltstone and conglomerate layers are
present with clay and sand. Borehole BH2 is closely lo-
cated to decline opening.

A geological cross-section around BH-1 and BH-2 is given
in Fig. 3.

BH3: 6 Lugeon tests were applied at depths from 40 to
90 m. Fractured andesite was observed from 40 to
140 m, tuffitic agglomerate from 140 to 236 m and
andesite from 236 to 306 m. From 306 to 340 m, ba-
salt, andesite and 10-m-thick silicified limestone frac-
tured with slickensides were observed. Borehole BH3
is located at the centerline of mine shaft 1.

BH4: 31 Lugeon tests were applied at depths from 15 to
386 m and from 684 to 772 m. During the first 125 m, the
borehole passed through fractured tuff, andesite and ag-
glomerate. From 125 to 228 m, the geological units are
siltstone, claystone and marl. From 228 to 276 m, dacite,
andesitic agglomerate and tuff reappear. At geological
unit contacts, sheared and slickensided discontinuity

surfaces were observed. From 276 to 383 m, Pliocene-
aged claystone, conglomerate, siltstone, sandstone and
marl layers are present, named as P2C. From 684 to
772 m, P1 Pliocene claystone, siltstone layers, Miocene
limestones (M3) and Miocene marl (M2) units are pres-
ent. Borehole BH4 is located at the centerline of mine
shaft 2. A geological cross-section around BH-3 and
BH-4 is given in Fig. 4.

For BH-3 and BH-4, in addition to borehole logs, shaft
sinking face mapping data is available for the study. It is ob-
served that from 0 to 436 m in BH-3 and 0 to 536 m in BH-4,
strike slip faults were observed frequently with small throws
(1–2 m). For deeper sections, normal faults start to dominate
and strike slip faults disappear. It is thought that fault types
may indicate varied mean and deviatoric stresses acting on the
rock mass which may lead to a change in the trend of rock
mass hydraulic conductivity. Due to the absence of in situ
stress data, an exact conclusion cannot be made. However,
there are indicators suggesting a considerable variation of in
situ stress in the mine field.

In Fig. 5, volcanic and sedimentary rock cores representing
a wide range of rock mass quality are given which are taken
from different boreholes. A fractured nature is observed while
massive zones are present in the field, and different ranges of
rock quality were tested by water tests.

Failed tests were identified and finally removed from the
study. The common reason is improper insulation of the test
interval by the packers. The important point is detecting the
leakage and disregarding the test.

Multiple regression modeling

As given in the study, available literature mentioned the im-
portance of several parameters on rock mass hydraulic

Fig. 3 Geological cross-section around BH-1 and BH-2
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conductivity. In situ stress has an influence on rock mass hy-
draulic conductivity. This influence is reflected by imposing
depth in the analyses. Discontinuity density is another impor-
tant parameter since it identifies the fluid flow path amount in
a unit dimension. RQD is chosen to represent discontinuity
density in the study. Additionally, discontinuity properties
play an important role during fluid flow: persistence and con-
nectivity of the discontinuities, aperture, infilling presence and
type, and geometrical character of the discontinuity surfaces.
Since a classification system for discontinuity properties is not
present in the literature, rock mass rating (RMR) of the Dc is
used and it covers most of the parameters under consideration.

Lugeon contours with respect to several combinations are
presented in Fig. 6. On top, RQD and depth are used for the

construction of Lugeon contours; in the middle Dc, and depth;
at the bottom, Dc and RQD.

Figure 6 reveals the complex relationship among the pa-
rameters. Depth is observed to be a strong contributor to
Lugeon value. It is also obvious that two variables cannot be
satisfactory since a visually observable trend in the contours is
not present. However, it is possible to gain an idea about the
nature of the parameters. A low Lugeon value is observed for
low RQD and poor Dc. Heavily fractured rock mass with clay
infills exhibits low hydraulic conductivity. Higher rock mass
permeability is observed when RQD > 30–40 and Dc > 5.

Due to the complex nature of fluid flow through a fractured
rock mass, multiple regression modeling is chosen for predic-
tion of Lugeon value. Since the rock mass hydraulic conduc-
tivity is represented by Lugeon test measurements which are a
function of the above-mentioned parameters, in the study,
multiple parameters should be taken into account.

Histograms for the data set are provided in Fig. 7. Depth
range is large for the data set and covers a wide range. A
sample gap around 500–600 m is observed. The study covers
the complete range of RQD. Dc rating varies between 0 and
30. Here, lower-range data is available and represents fair to
poor discontinuity surface conditions. For the Lugeon value, a
range between 0 and 80 is available. The majority of the
values can be classified as very low to moderate hydraulic
conductivity, while few data are present for high conductivity.

To comprehend the effect of the independent parameters on
the dependent ones, a separate simple linear regressionmodel-
ing is conducted. The performance of the regression modeling
is investigated by the statistical parameters (Table 3). H is the
depth in meters.

P values indicate statistical significance for all models. R2

values are not high and those equations do not offer a
sufficiently precise prediction. Statistical indicators show
that all variables contribute to the Lugeon value, which led
to multiple regression modeling work. The correlation
coefficients among the predictive parameters are found to be
smaller than 0.11. This means there is not a correlation among
them. Kahraman and Kahraman (2016) initially employed
simple regression in their study. Later on, they employed mul-
tiple regression in order to achieve better predictive
performance.

Both linear and nonlinear multiple regression converge to
coefficients by minimizing the sum of the squared residuals
(SSE). For linear regression, the minimum SSE is derived by
solving equations for a given model. If the same data are used,
then the same result will be obtained.

In nonlinear regression, a straight-forward solution cannot
be proposed, and an iterative algorithm is used in order to
estimate unknown coefficients. A nonlinear model compatible
with the present data should be selected diligently so that the
iterative algorithm systematically adjusts the coefficients to
reduce SSE. For each coefficient, an initial value must be

Fig. 4 Geological cross-section around BH-3 and BH-4 (Öge 2017)
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assigned with which the algorithm starts iterations. During the
iteration process, SSE converges to a minimum; thus, it cannot
be reduced more and the solution is then obtained. For non-
linear multiple regression, a different model type and initial
coefficients alter the prediction. Even for a single model, dif-
ferent initial coefficients may change the results. It can be
time-consuming to decide on the model and the initial param-
eters. In that case, the findings are mostly based on judgment.
Omittance of local convergence, rather than the global SSE
minimum, is essential during the evaluation of the findings.
The same fitting model and initial coefficient were chosen
during this study. R2 values for linear multiple regression are
reported but not for nonlinear multiple regression. The

summation of SSE and SSR are not equal to total SS and it
totally invalidates R2 evaluation in nonlinear models (Spiess
and Neumeyer 2010). In the Box-Cox technique, the model is
forced to behave linearly and the R2 use is acceptable. Linear,
nonlinear and Box-Cox multiple regression models and
corresponding performance values are given in Table 4. For
the multiple regression tasks, the field values are grouped into
training and verification groups similar to that done in Basarir
et al. (2014) and Yesiloglu-Gultekin et al. (2013). 80% of the
data rows are used for training purpose and 20% of the data
rows are reserved for verification.

MSE and SSE values are lower for NLMR when it is com-
pared with LMR. Still, the R2 value for LMR is acceptable.
Performance parameters for the Box-Cox technique are pre-
sented with respect to the transformed Lugeon value. Using
values based on prediction achieves considerably better per-
formance parameters since the Box-Cox technique optimizes

Fig. 6 Lugeon contour
representation for RQD and depth
(top), for Dc and depth (middle)
and for Dc and RQD (bottom)

Fig. 5 (a) Agglomeratic tuff. (b) Silt and sand-banded claystone. (c)
Conglomerate with volcanic pebbles and siltstone. (d) Andesite. (e)
Agglomeratic andesite. (f) Clay-banded silicified limestone

R

Fig. 7 Histograms showing the
distribution of available field data
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the regression by imposing nonlinear transformation for pre-
dicted values and corresponding R2 values belong to the trans-
formed value. Evaluation of predicted and measured data is
presented in the discussion section and the actual perfor-
mances of the predictions can be investigated rather than sta-
tistical parameters. R2 values for predicted and observed data
are also presented and they are above 70%.

ANFIS

Since three predictive parameters are involved in the study
and due to the complex nature of the relationship among the
predictive and target variables, ANFIS is employed in the
study. ANFIS is capable of handling scattered, complex and
nonlinear relationships having multiple variables. Artificial
neural networks and fuzzy logic combine the advantage of
recognizing the pattern and adapting the method to cope with
the changing environment by the incorporation of human
knowledge and expertise on the nature of the problem. The
FIS is constructed on the foundation of fuzzy set theory, fuzzy
if-then rules and fuzzy reasoning (Jang et al. 1997). Khorami
et al. (2011) classified the system into three types: Tsukamoto-
type FIS (Tsukamoto 1979), Mamdani-type FIS (Mamdani
and Assilian 1975) and Takagi–Sugeno type FIS (Sugeno
1985; Sugeno and Kang 1988). ANFIS application can be
run on MATLAB (v.9.0.0) and Mamdani and Sugeno types
are offered. The Sugeno type has similarities to the Mamdani
method in many aspects. The first two parts of the fuzzy in-
ference process are fuzzifying the input and applying the
fuzzy operator. However, the main difference between
Mamdani and Sugeno is that the Sugeno output membership
functions (mf) are either linear or constant. Two fuzzy training
types are available: the back-propagation and hybrid types,

which combines back propagation and the least squares
method. Jang et al. (1997) explained the inference system is
comprised of five layers, each of which involves several
nodes, which are described by the node function. Basarir
et al. (2014) and Assari and Mohammadi (2017) explained
ANFIS architecture and governing equations in detail, incor-
porated to rock engineering studies.

Initially, a number of mf for each depth, RQD andDc rating
variables were introduced as the three parameters required.
Each function was defined in the form of an upper and lower
bound and a median. Since each variable has three mf, for
each combination, a corresponding rule was defined, which
makes 27 rules. Triangular, trapezoidal and Gaussian mf were
also imposed for the same logic. This methodology may re-
flect the nature of the problem; however, it led to an inaccurate
prediction of linear relation parameters, possibly due to divid-
ing data sets into small groups. Finally, another FIS is gener-
ated by employing subtractive clustering which led to the
same number of Gaussian mf. In total, three rules were gen-
erated, which increased the number of training samples for
each rule. The subtractive clustering method measured the
likelihood of each data point and generated clusters by iden-
tifying the cluster centre of a potential. This is accomplished
based on the density of surrounding data points. The algorithm
does the following:

i. Selects the data point with the highest potential to be the
first cluster centre

ii. Removes all data points in the vicinity of the first cluster
centre (as determined by radii), in order to determine the
next data cluster and its centre location

iii. Iterates on this process until all of the data is within the
radius of a cluster centre

The subtractive clustering method is an extension of the
mountain clustering method proposed by Yager and Filev
(1994) and can be applied by MATLAB.

The cluster radius indicates the range of influence of a
cluster when you consider the data space as a unit hypercube.
Specifying a small cluster radius usually yields many small
clusters in the data, and results in many rules. Specifying a
large cluster radius usually yields a few large clusters in the

Table 3 Simple linear regressions

Prediction R2 P value

Lugeon = 10.2 + 0.0565 H 54.6% P = 0.000

Lugeon = 14.0 + 0.198 RQD 13.0% P = 0.010

Lugeon = 7.72 + 2.70 Dc 10.4% P = 0.022

Table 4 Regression models and performance parameters

Type Prediction Training data Verification data

MSE DFE SSE R2 (%) R2

adj. (%)
R2

pred. (%)

LMR Lugeon = −6.42 + 0.0507 H + 0.218 RQD + 1.83 Dc 114.7 36 14,749 72% 69.7 74%

NLMR Lugeon = (H1.20768 + RQD1.59227 + Dc2.33228) × 0.0154763 126.787 33 4184 – – 74%

Box-Cox Box-Cox(Lugeon) = 0.0374512*H + 0.20944*RQD + 2.05255*Dc 84.23 37 3117 92.41 92.00 71%
Box-Cox (Lugeon) = 1 + (Lugeon0.569028–1) / (0.569 × 16.8576–0.431)
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data, and results in fewer rules. In the study, rules are identi-
fied in the given form and applied with Gaussian mf:

Rule 1: if depth is A1 and RQD is B1 and Dc is C1 then
f1 = p1 depth + q1 RQD + r1 Dc + s1
Rule 2: if depth is A2 and RQD is B2 and Dc is C2, then
f2 = p2 depth + q2 RQD + r2 Dc + s2.
Rule 3: if depth is A3 and RQD is B3 and Dc is C3, then
f3 = p3 depth + q3 RQD + r2 Dc + s3.

The ANFIS structure constructed for this study is given in
Fig. 8.

The structure consists of five layers and three main param-
eters which are divided into three and Gaussian mf were in-
troduced. As mentioned before, introducing 27 memberships
for this combination is possible; however, the structure offer-
ing the better result is presented.

Discussion and performance of predictions

Linear, nonlinear and Box-Coxmultiple regression techniques
converged to fits, and their performance is close to each other
when predicted and estimated Lugeon values are considered.
However, nonlinear multiple regression required numerous
trials and enhanced understanding of the available data.
Although, user-dependent nonlinear regression performance
parameters are found to be better when compared to linear
regression. However, depending on the trial and error and
inspection of each variable, an unsuccessful and
nonconvergent solution could be obtained, unlike linear re-
gression. In order to achieve high prediction performance,
employing a systematical approach Box-Cox technique is uti-
lized. This approach is less user-dependent and convergence
to the same result with a fixed methodology is possible. Box-

Cox transformation applied to Lugeon value improves the
performance characteristics of the proposed prediction while
altering the linear regression into nonlinear regression. In re-
gression modeling, it is possible to divide available data into
training and testing groups. Researchers have preferred a
variety of the ratios in their studies; Yilmaz and Yuksek
(2009) applied a 1:0.5 ratio for training/test ratio, while
Kayabasi et al. (2015) preferred 1:0.2, with the ratio being
1:0.25 in this study.

ANFIS is capable of handling complex behavior and high
scatter. The introduction of human expertise to the problem
increases the problem-solving capacity of the ANFIS; however,
in this study, rather than human preferences, subtractive clus-
tering results in success, in contrast to the study by Kayabasi
et al. (2015). The researchers also applied subtractive cluster-
ing, but then imposed human expertise and reduced mf num-
bers in order to improve the performance of prediction.

In order to compare predicted and observed Lugeon values,
the overall data set is considered and the error for each data is
given. In Basarir et al. (2014), training and testing data were
used in regression analyses which enabled comparison of
findings by employing the similar approach.

Figure 9 reveals that ANFIS has better prediction perfor-
mance since the slope of best fit of the data should be close to
1, and a closeness of R2 to 1 is important. NLMR has the
second rank; however, it cannot always be possible to reach
this quality since nonlinear behavior must be introduced man-
ually, unlike the Box-Cox technique. LMR has the lowest
prediction quality among others. LMR is important when in-
vestigating is real relevance exists among the variables and
target value or not. When Lugeon error is plotted against the
data, again, visually observing the same ranking is possible
(Fig. 10).

In addition to R2 and slope check prediction performance,
variation accounted for (VAF) is often used, by comparing the

Fig. 8 ANFIS structure for the
study
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variation of observed values (y) with the estimated output of
the model (y’). High VAF values mean a better model perfor-
mance. If the observed and predicted values are exactly the
same, VAF will be equal to 100%. Root mean square error
(RMSE) is another parameter which is commonly used to
assess and compare the prediction performances of the tools
and models. A lower RMSE value indicates better perfor-
mance.

VAF ¼ 1−var y−y
0

� �
=var yð Þ

h i
� 100 ð7Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
� ∑

N

i¼1
y−y

0
� �2

s
ð8Þ

Where N is the sample amount, y is the observed value and y’ is
predicted. The performance parameters are presented in Table 5.

ANFIS performs better when it is compared to regression
modeling; however, the data trend can be easily inspected.
Then, the output can be inspected and behavior with respect
to the parameters can be discussed.

The influence of depth is clear since the depth varies from
around 9 to 800 m. The input for depth is in meters and pa-
rameters for depth contribute effectively in the equations.

The significant parameter RQD is found to be positively
correlated. In fact, an increased number of discontinuities will
lead to higher Lugeon values and vice versa. Barton’s (2002)
Lugeon ≈ 1/Qc describes the same trend and it is true if the
same Dc is accepted for the whole range of rock mass struc-
tural quality. Here, Qc stands for the strength-adjusted Q-sys-
tem rating. In the study area, it can be observed that for low
RQD, clay or fine material presence increases and it is cap-
tured by the correlations, intuitively.

y = 0.7034x + 7.6463

R² = 0.7124

LMR

y = 0.7572x + 5.4375

R² = 0.7082

NLMR

y = 0.7435x + 5.5823

R² = 0.6825

Box-Cox

y = 0.8938x + 3.8807

R² = 0.8776
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Lugeon value and discontinuity surface condition have
a positive correlation for all analyses, as expected. The
rating Dc has a range from 0 to 30. Higher values indicate
a better quality of the discontinuity surface. For a lower
boundary condition, clay or fine material presence is
higher which leads low hydraulic conductivity, while dis-
continuities having higher values contain less or no
infilling. Another important fact is the Dc parameter
varies between 0 and 12 in the study area. Thus, higher
Dc cases could not be investigated and proposed relation-
ships cannot be applied in rock masses having a Dc great-
er than 12 due to a possible trend change. The possible
trend change can be the smooth and clean nature of the
discontinuities with high Dc value.

Conclusions

This research presents relationships among rock mass classifica-
tion parameters (Dc and RQD), depth and hydraulic conductivity
of the rock mass (Lugeon value). Awide range of rock types and
Dc were subjected to Lugeon testing and borehole logging.
Finally, successful equations are given in the article. In order to
develop more precise relationships, a new rock mass classifica-
tion system for hydraulic conductivity similar to rock mass clas-
sification systems can also be proposed instead of using RQD
and Dc values. On the contrary, utilizing pre-existing and com-
monly used parameters for estimating rock mass permeability
will provide higher applicability. Expanding the database used
in the study will improve the quality of the relationships.
Hydraulic conductivity of the rock masses has great complexity
and in-situ testing is crucial. However, in the absence of Lugeon
tests, proposed equations can be used in the research area, and
involvement of the depth parameter is suggested in further
Lugeon value prediction work.
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