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Abstract
The East American mudminnow Umbra pygmaea was introduced to Europe a century ago and is now established in at least 
six European countries. Although considered harmless and with low spread potential, this fish species shows potential to 
colonise a broad range of habitats due to its wide environmental tolerance. Stomach content analyses were conducted over 
3 years to obtain a first insight into this species' diet, which could indicate the potential to alter the biotic composition of 
recipient ecosystems. The results showed that this fish can potentially have a high impact on insects, fish, and even amphib-
ians through predation. Species distribution models further indicated that environmental conditions of Central European 
ecoregions are currently a limiting factor for the spread of this species which seems, at least for now, to be driven by anthro-
pogenically driven introductions. Considering the species’ potential to be invasive and impact native biota, monitoring of 
potential spread is recommended.
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Introduction

In many cases, non-native species have been intentionally 
introduced to serve human well-being (Ewel et al. 1999) 
without notably affecting the recipient environment (Wil-
liamson and Fitter 1996a, b; Jeschke and Strayer 2005). 
Nonetheless, many of these species can become invasive, 
spread, and negatively affect native communities (Kolar and 
Lodge 2001; Crooks 2002; Russell and Blackburn 2017). 

This is particularly true in the case of non-native freshwater 
fish introductions (Casal 2006), although there is consider-
able debate about the degree of invasiveness that different 
introduced fish species show at national scales (Ruesnik 
2005; Haubrock et al. 2022).

Of the many non-native fish species that have been intro-
duced to the European continent (Schulz and Della Vedova 
2014; Turbelin et al. 2017), the East American mudminnow 
Umbra pygmaea (De Kay, 1842) is one of the five remaining 
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representatives of the family Umbridae (Wilson and Veil-
lieux 1982; Kottelat and Freyhof 2007). The natural distribu-
tion of U. pygmaea ranges from the south-eastern region of 
New York to the St. Johns River drainage in Florida, encom-
passing the Atlantic and Gulf slopes (Froese and Pauly 
2023). This freshwater fish occupies still, mud-bottomed and 
most often heavily vegetated streams, sloughs, and ponds 
(Lee 1980). It is a carnivorous species and an opportunistic 
feeder (similar to other species of the genus Umbra; Tabor 
et al. 2014), whose diet includes a variety of taxa, such as 
insects, crustaceans or small fish (Kuehne and Olden 2014). 
A century ago, U. pygmaea was introduced into Western 
Europe (Dederen et al. 1986; Welcomme 1988; Froese and 
Pauly 2023). Nowadays, established populations are known 
in at least six European countries, including Belgium, 
the Netherlands, Germany, Denmark, France, and Poland 
(Verreycken et al. 2010). At least for Northern France, the 
occurrence of U. pygmaea is a consequence of aquaculture 
in earthen ponds, as Belgian pisciculturists rented ponds in 
France where they cultured fish for restocking. When fish 
consignments were brought from Belgium to France, they 
contained U. pygmaea specimens.

Although considered harmless (Froese and Pauly 2023) 
and with low spread potential (Crombaghs et al. 2000), U. 
pygmaeat is likely able to colonise a broad range of habitats 
due to its wide environmental tolerance, being particularly 
acid tolerant (Dederen et al. 1986; Crombaghs et al. 2000; 
Verreycken et al. 2010). However, in moorland pools where 
U. pygmaea experience low interspecific competition, and 
in densely vegetated water bodies like ditches or other water 
bodies without competing fish species, U. pygmaea can 
potentially have a high impact on insects and amphibians 
through predation (Vooren 1972; Dederen et al. 1986). This 
is emphasised by this species being assigned as 'medium 
risk' of invasiveness for Flemish lotic waters by the Fish 
Invasiveness Screening Kit (FISK; scoring 14; Verreycken 
et al. 2010; see Copp et al. 2008 for further methodological 
information) as well as in countries where it has not yet been 
introduced (e.g. Turkey, Tarkan et al. 2017). Further, con-
sidering the interaction of U. pygmaea with other anthropo-
genic stressors on freshwater environments (Ruesnik 2005) 
and the effects of climate change on community composition 
(Rijnsdorp et al. 2009), both of which can synergistically 
affect the biotic resistance of freshwater ecosystems towards 
invasions (Winder et al. 2011), it is possible that U. pyg-
maea will spread and develop stronger impacts in the future 
(Mainka and Howard 2010). However, the explanation for 
why this non-native species is restricted in its distribution 
outside of Belgium (i.e. the north-east of Flanders) and the 
south-east of the Netherlands has remained unclear. How-
ever, natural means are unlikely, making anthropogenically 
driven spread the most likely cause. A useful tool to predict 
where a non-native species may find suitable conditions to 

establish are species distribution models (SDMs) (Barbet-
Massin et al. 2018). By using correlative approaches linking 
occurrence records with environmental variables, it is pos-
sible to investigate distribution patterns and the likelihood 
of invasion in a given area (Elith and Leathwick 2009), thus 
making management policies and monitoring protocols by 
stakeholders less expensive and more effective (Frans et al. 
2022).

Europe has been at the centre of globalisation for the past 
two centuries, making invasive species an increasing con-
cern (Schulz and Della Vedova 2014; Turbelin et al. 2017). 
The constantly rising ratio of successful introductions with 
a wide range of impacts on recipient ecosystems makes inva-
sive species a major challenge for biodiversity , highlighting 
the need for risk assessments to determine those species that 
potentially pose invasive threats (Dukes and Mooney 1999; 
Walther et al. 2009; Vilà et al. 2010; Cucherousset et al. 
2012). Albeit not considered as ‘invasive’ in Germany—
mostly due to a limited potential to spread and lack of con-
ducted impact assessments—it is likely that U. pygmaea 
exerts detectable impacts on recipient communities (mostly 
inferred from isolated ponds) either as competitor, prey or 
predator (Matthews et al. 2017). Thus, to better understand 
the relative impact potential of this non-native species and 
to increase our understanding of interactions with the recipi-
ent environment, risk assessments based on integrated geo-
graphical and ecological data are needed. Here, we used 
stomach content analysis, which is known to be a reliable 
tool to assess the immediate impacts of fish species in newly 
colonised ecosystems (Haubrock et al. 2018), collected over 
3  years, to obtain a first insight into this species’ diet. In 
addition, we used species distribution models to identify the 
potential distribution of the target species across Europe and 
freshwater ecoregions most susceptible to invasion, and to 
identify the most important climatic variables underpinning 
population establishment at the present time. We hypoth-
esise that: (1) the diet will be comparable with that of other 
non-native populations from the invaded range (see, for 
example, Verreycken et al. 2010), indicating the potential 
to alter the biotic composition of recipient ecosystems, and 
that (2) the current distribution is not limited by climatic 
suitability of ecoregions (Abell et al. 2008).

Methods

A total of 86 specimens of U. pygmaea were collected from 
the Oberhorstweiher, a small pond within a protected forest 
near Offenbach, Germany (50°4′45.01″N; 8°44′19.16″E). 
This pond is frequently visited by people and found to be 
heavily littered (i.e. garbage and household items) even 
though it is protected and is only accessible through a high-
way rest stop (Fig. 1). Sampling was conducted over a period 
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of 5 days during the summers (June/July) of 2019, 2020 
and 2021 by placing five funnel traps baited with a mix-
ture of liver, cat food and maggots and checking the traps 
every 24 h. Traps were always placed at the same positions 
around the lake. We also characterised the relative water 
level as low (water depth < 50 cm, minimal surface area), 
medium (water depth 50–100 cm, medium surface area) or 
high (water depth > 100 cm; maximum surface area) (Fig. 1).

Dietary analysis

Collected individuals were immediately euthanised and 
placed on ice. Total length (TL, mm) were determined for 
each individual. The stomach was then removed, and stom-
ach contents were analysed once in the laboratory (Haubrock 
et al. 2018). Using a standard stereo microscope, consumed 
prey items were identified to the larger taxonomic group (i.e. 
insects, amphibians, etc.) and classified according to life 
stage (i.e. adult, juvenile) or ranked as unidentifiable if their 
remnants could not be attributed to any taxon. Fragmented 
prey items were considered part of a whole organism and 
counted as such. Overall, we collected 25 individuals in 
2019, 29 in 2020 and 32 in 2021. Fish without any stomach 
contents (n = 4 in 2019; n = 5 in 2020; n = 7 in 2021) were 
excluded from the dataset and the analysis, resulting in 70 
stomach contents (2019: n = 21; 2020: n =  24; 2021: n =  
25). Stomach content data were expressed as frequency of 
occurrence (F% = number of stomachs containing each food 
item in relation to the total number of full stomachs) and 
abundance (N% = the number of individuals of each food 
item summed across all fish individuals). Using these param-
eters, we estimated the prominence value (PV) for each 
dietary component following the approach of Hickley et al. 
(1994): PV = N% ∗

√

F% . The feeding intensity was 

calculated using the vacuity index (VI) as the percentage of 
empty stomachs with respect to stomachs that contained prey 
items (Batistić et al. 2005). The diet breadth was estimated 
based on Levin's index formula (Whittaker et al. 1973): 
Bi =

1

Σp2
i

 where  Bi is the standardised index of diet breadth 
for specimen i and p the sum of the squared proportion of 
each prey item of specimen i (Levins 1968).

A Bray–Curtis dissimilarity matrix was built that included 
stomach content records from each sampled specimen and 
a permutational analysis of variance (PERMANOVA; 3 
orthogonal fixed factors: 'year' [2019, 2020, 2021], 'water 
level' [low, medium, high] and 'the average length of individ-
uals caught in each 5-day sampling period'; sums of squares: 
type III, partial; permutation of residuals under a reduced 
model) was used to test if the diet of the studied popula-
tion differed according to annual differences. Additionally, 
a canonical analysis of principal coordinates (CAP) for fac-
tors whose levels were found to be significantly different 
was applied, thus identifying the variables (i.e. prey items) 
contributing more consistently to differentiating the levels. 
Spearman correlations for each variable with CAP1 axis are 
reported. For all tests, the level of significance under which 
the null hypothesis was rejected is α = 0.05, and values are 
reported as the median and interquartile range (i.e. the first 
and third quartile).

Species distribution modelling and niche overlap

We collected data on the occurrences of Umbra pygmaea 
using two main sources: (1) the Global Biodiversity Infor-
mation Facility (GBIF, www. gbif. org); and (2) direct lit-
erature search on the most updated distribution in Europe 
(Verreycken et al. 2010). We assembled a total of 5552 

Fig. 1  Location of the sampled site ‘Oberhorstweiher’ in Offenbach, Germany (a) and the site’s surroundings (b). The pond's surface during 
winter with high water level is highlighted in orange, while the surface during low water conditions is shown in red

http://www.gbif.org


 P. J. Haubrock et al.

1 3

   90  Page 4 of 11

georeferenced records of U. pygmaea both in Europe 
and North America (made available at https:// doi. org/ 10. 
15468/ dl. n5ft7w and https:// doi. org/ 10. 15468/ dl. bvcywh 
for open data science and to enhance reproducibility, see 
also ESM 1), which were subsequently thinned using the 
spthin function of the spThin R package (Aiello-Lam-
mens et al. 2015) with a radius of 10 km. After the thin-
ning process, we retained a total of 573 occurrence records 
for the modelling process (Europe = 72, USA = 501). We 
also obtained the standard 19 bioclimatic variables avail-
able in the Worldclim database (Fick and Hijmans 2017; 
https:// www. world clim. org/) at a 2.5-arc-min spatial reso-
lution for the present (1960–1990). It should be noted that 
this climate data were used as it represents the same time 
frame for most of the reported records of U. pygmaea. We 
addressed multicollinearity using the variance inflation 
factor (VIF), with the correlation threshold set to r > 0.6 
to exclude the highly correlated variables and fit species 
distribution models (SDM). This procedure selected three 
non-collinear predictors further used in the final models 
(Dormann et al. 2012 ). We carried out modelling proce-
dures using the sdm R package (Naimi and Araújo 2016). 
We used the Maximum Entropy algorithm (Phillips et al.  
2004) with fine-tune settings. To determine the best com-
bination of Maxent features and regularisation multipli-
ers, we performed a model sensitivity analysis using the 
ENMeval (Kass et al. 2022) package, using combinations 
of linear, quadratic, hinge and product features (L, LQ, 
LQH, LQHP) and regularisation multipliers from 1.0 and 
5.0 following 1.0 increases. We retained the configuration 
which presented the lowest Akaike Information Criterion 
difference (∆AIC). Hence, models were built using linear, 
quadratic, hinge and product features and a regularisation 
multiplier of 1.0 (∆AIC = 0; See Electronic Supplementary 
Material [ESM 2] for other model configuration results).

We set 10,000 randomly distributed background points 
following evidence-based recommendations (Barbet-Massin 
et al. 2012), generated across both the native North Ameri-
can and non-native European ranges to account for potential 
non-equilibrium environmental conditions in the introduced 
European range (Guisan and Thuiller 2005; Broennimann 
and Guisan 2008) to avoid transferability problems and 
improve SDM performance. Of the whole dataset, 70% were 
used for model calibration, and the remaining 30% were used 
for model validation. We generated ten model replicates for 
each algorithm and evaluated these using a cross-validation 
5 k-fold method. We obtained ensemble predictions by 
combining the single models through a weighted average, 
where the weight of each model was proportional to its "true 
skill statistic" TSS score (Allouche et al. 2006), using the 
weighted average of all models assuming the TSS threshold 
for maximum sensitivity and specificity.

We evaluated models using three different metrics: (1) 
the area under the receiver operating characteristic curve 
(AUC), with values ranging from 0 to 1 where 0.5 indi-
cates that the model is no better than a random sample of 
values and 1 indicates that the model has high predictive 
power; (2) the TSS defined as (sensitivity + specificity) - 
1; and (3) the Boyce Index. We transformed continuous 
probability of occurrence into binary climate suitability 
values by using the threshold that maximises both sensitiv-
ity and specificity (max se + sp) as the cut-off value. The 
use of this binary threshold is recommended for models 
which are not fitted on 'true' absence data (Liu et al. 2013). 
Later, we assessed areas at higher potential risk of being 
invaded by U. pygmaea considering the European fresh-
water ecoregions (Abell et al. 2008, https:// www. feow. 
org/). To do so, we calculated the proportion of suitable 
grid cells out of the total extension of each ecoregion. 
For example, the Cantabric Coast–Languedoc ecoregion 
has a total of 14,228 grid cells of which a given number 
of suitable cells can be used to estimate the proportions. 
We estimated the amount of niche overlap considering 
the environmental conditions geographically available 
for each population following the approach described in 
Broennimann et al. (2012), which allows for pairwise com-
parisons of niches in a few steps. We generated a buffer 
of approximately  100 km around the occurrence records to 
determine the background available conditions to further 
apply a principal coordinate analysis (PCA) for all com-
bined background environmental conditions and generate 
an environmental space (PCA-env; Broennimann et al.  
2012). We divided this environmental space into a grid of 
100 × 100 cells and then calculated the occurrence density 
within each cell of the environmental space grid for the 
whole distribution range of the species. Finally, we mod-
elled the occurrence density using a smooth kernel density 
function that considers the geographical conditions avail-
able for each group (Broennimann et al. 2012). We calcu-
lated observed niche overlap scores using Schoener’s D 
and its significance, using a similarity test (Broennimann 
et al. 2012), which varies from 0 (complete dissimilarity 
between the compared environmental niches) to 1 (com-
plete overlap). We used a null modelling procedure to test 
the significance of niche similarity between the compared 
ranges, i.e. to determine if one population’s climatic niche 
is better at predicting the second population’s niche than 
randomly generated niches from a background region. 
Finally, we randomised the occurrence records in both 
backgrounds. We recalculated Schoener’s D 100 times to 
produce a null distribution of overlap scores (α = 0.05), 
which we then compared to the observed value.

https://doi.org/10.15468/dl.n5ft7w
https://doi.org/10.15468/dl.n5ft7w
https://doi.org/10.15468/dl.bvcywh
https://www.worldclim.org/
https://www.feow.org/
https://www.feow.org/
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Results

The average (± standard deviation [SD]) size (TL) of 
specimens caught in 2019, 2020, and 2021 varied over 
time, with the on average largest individuals being caught 
in 2020 (2019: 6.3 ± 1.3 cm; 2020: 6.8 ± 1.8 cm; 2021: 
5.6 ± 1.1 cm). Concomitantly, we found the diet breadth 
of U. pygmaea decreased over time, being highest in 2019 
(3.9), 3.8 in 2020 and lowest in 2021 (3.5) (Fig. 2).

Dietary analysis

Prey item contribution (F%, N%, and PV%; see ESM 3) 
varied to some degree over time as the relative importance 
of adult insects decreased and more detritus was consumed 
(Fig. 3). Overall, the diet was dominated by insects (both 

adult and larval stages), albeit fish as alternative prey was 
consistently found to a certain extent. Furthermore, we 
found indications of opportunistic predation, indicated by 
the occurrence of amphibians (tadpoles), also evidenced by 
consistently high niche breadth values.

The PERMANOVA main tests (ESM 4) confirmed 
differences for the factors ‘water level’ and ‘year’ (both 
p < 0.05). Significant correlation with the CAP1 and CAP2 
axes emerged for ‘detritus’ (r2 = 0.85), adult fish (r2 = 0.66), 
‘adult insects’ (r2 = 0.33), algae (r2 = 0.22) and ‘unidenti-
fied insects’ (r2 = 0.17). Correlation with the CAP1 axis 
ranged from 0.936 (‘detritus’) to – 0.976 (‘algae’). Correla-
tions with the CAP2 axis ranged from 0.890 (‘unidentified 
insects’) to – 0.954 (‘adult fish’; ESM 5) (see Fig. 4).

SDM and niche overlap

Results from the niche overlap metric (Schoener's D = 0) 
indicated no shared environmental conditions between the 
compared native and non-native niches of U. pygmaea. 
Species distribution models accurately predicted the poten-
tial distribution of U. pygmaea in Europe, with the final 
model showing satisfactory TSS, AUC and Boyce Index 
values of 0.56, 0.85 and 0.95 ± 0.03 (SD), respectively. 
Annual precipitation (47.9%), minimum temperature of the 
coldest month (45.5%) and Minimal diurnal range (9.5%) 
were the most important predictors, with the most suitable 
values at moderate conditions (1000–1500 mm and 10–12 
ºC) (ESM 6; Fig. 1a). The freshwater ecoregions with 
highest percentage of suitable areas considering the binary 
cut-off were Dalmatia (58.39%), Cantabric Coast–Langue-
doc (49.42%) and southeast Adriatic Drainages (48.24%) 
but see also Table 1).

Fig. 2  Average size (total length ± standard deviation; in cm; left 
y-axis) and Levins niche breadth (right y-axis) over the period 2019–
2021, indicating the respective water level in comparison

Fig. 3  Stacked bar diagram showing the number of occurrences (N%&), frequency of occurrence (F%) and prominence value (PV) of identified 
prey over the period 2019–2021
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Discussion

It can be difficult to make the distinction between non-
native and invasive species, with the difference pos-
sibly depending on the perspective and definition used 

(Ricciardi and Cohen 2007). The is particularly true in the 
case of non-native fish introductions, which are a global 
concern (Britton 2023), because the classification of non-
native as  invasive is sometimes biased by a paucity of 
information and of impact or risk assessments (Vilizzi 
et al. 2021). This  in itself can be problematic as it hinders 

Fig. 4  Two-dimensional scatter 
plot of the first and second 
principal coordinates axis (after 
resemblance matrix with Bray–
Curtis distance, n samples = 70, 
n variables = 9) based on dietary 
components for the years 2019 
(green), 2020 (yellow) and 
2021 (red). Vectors of the linear 
Spearman correlations between 
individual fish characteristics 
(blue) and dietary components 
(black) are superimposed on the 
graph

Table 1  Most suitable European 
freshwater ecoregions for 
Umbra pygmaea ranked by the 
proportion of suitable cell grids 
within each ecoregion

Name Ecoregion ID Suitable cell 
grids (n)

Percentage of suit-
able grids

Occur-
rence 
records

Dalmatia 419 1482 58.39 0
Cantabric Coast–Languedoc 403 7031 49.42 4
Southeast Adriatic Drainages 420 1303 48.24 0
Northern British Isles 402 4320 28.59 0
Gulf of Venice Drainages 415 2437 27.28 0
Western Iberia 412 2459 17.47 0
Central and Western Europe 404 15,206 14.46 67
Eastern Iberia 414 993 10.97 0
Italian Peninsula and Islands 416 778 6.97 0
Dniester–Lower Danube 419 2784 6.35 0
Upper Danube 417 771 4.43 0
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effective control and management interventions, but it can 
also result in the misallocation of resources towards the 
management of non-native or invasive species with “lower 
degree” impacts.

In our study of U. pygmaea from the Oberhorstweiher 
in Germany, we found only minor variability in its diet 
over time, similar to what was found for populations in its 
native range (Lombardi 2009; Panek and Weis 2013). This 
variability, which was mostly observable as changes in the 
importance of insects and detritus in the diet, was likely 
driven by changes in the water level. Changes in water 
level also coincided with changes in the average length of 
specimens, with TL being longest under low water condi-
tions and shortest during high water conditions. While bias 
may introduced due to the selectivity of almost any trap-
ping method, with a behavioural component that affected 
the size of individuals being caught in traps (Michelangeli 
et al. 2016), it is also possible that the water level affected 
the availability or accessibility of prey (Junk et al. 1997). 
The change in TL was also mirrored by the results of the 
CAP, which identified differences in prey occurrences 
across time.

A previous risk assessment on U. pygmaea carried out in 
Belgium identified an impact score of 14 (Verreycken et al. 
2010) while a “medium” impact score was determined for 
the UK (Copp et al. 2008), underlining the potential of this 
non-native species to become invasive, although ‘medium 
risk’ does not imply that this species does not pose any risk 
at all. The ability to cause a detectable impact as well as the 
ability to establish and spread should be the prerequisite for 
the classification as invasive (Kamenova et al. 2017), but 
the potential of U. pygmaea to cause a notable impact has 
been described to depend on the invaded ecosystem and the 
presence of predators (Dederen et al. 1986); the Oberhorst-
weiher population does not meet these latter criteria. The 
dominating occurrence of insects and detritus is therefore 
not unusual, but the occurrence of other fish is, as the east-
ern mudminnow is the only species present in the sampled 
pond, indicating cannibalism (Pereira et al. 2017). In addi-
tion, the few occurrences of (unidentifiable) amphibians are 
arguably a profound argument for the species’ opportunistic 
character and therefore also its considerable impact (Kats 
and Ferrer 2003). This potential to exert a notable impact is 
further enhanced by the effect of climate change, which is 
argued to increase the likelihood of non-native species, in 
particular fish species, to establish, spread, and to eventu-
ally cause notable negative impacts (Kernan 2015), while it 
should also be noted that the reproductive temperature for 
the eastern mudminnow is reported to be 10–15 °C (Kottelat 
and Freyhof 2007).

While U. pygmaea is currently present solely in Cen-
tral and Western Europe (3,806 records), the Cantabric 
Coast–Languedoc (16 records) and, in particular, the Marne 

region (Atlas de poisson d'eau douce de France; https:// inpn. 
mnhn. fr/ espece/ cd_ nom/ 67612), these freshwater ecore-
gions were also the most prone to invasion according to our 
models. However, highly suitable areas are found in adjacent 
ecoregions, such as the Italian Peninsula and Islands, Gulf 
of Venice Drainages in Italy, and Upper Danube, covering 
southern Germany, Austria,  and the Czech Republic basins. 
Hence, reduced temperature seasonality seems to be the 
most important factor influencing the high probability of the 
occurrence of this species in Europe. Since there will likely 
be less variation between seasons in the future, as periods 
of warmer weather become longer, long-lasting conditions 
for the spread of U. pygmaea  can be expected in the future. 
Our models also indicate that suitable conditions exist in 
areas where U. pygmaea had not yet been recorded and that 
given the connectivity between aquatic systems and fresh-
water ecoregions, future records may be expected in Spain 
and the Czech Republic, but also the UK and Sweden thanks 
to human dispersal and release events (Fig. 5a, b). This dis-
persal can be predicted despite taking into account the fact 
that since its introduction in the early 1900s, U. pygmaea 
has hardly spread through riverine systems, except perhaps 
over short distances, as human-facilitated dispersal was the 
main mechanism for spread. The presence of the mudmin-
now in the Netherlands and Belgium is a consequence of 
aquaculture in earthen ponds: these ponds are emptied every 
year and sometimes mudminnows drift from these ponds to 
brooks and small rivers where they seem to survive but—so 
far— not form dense populations.

The applied SDMs identified the Oberhorstweiher popu-
lation as existing on the eastern brink of its suitable ecore-
gion in Europe, thereby suggesting that its numerous records 
in Belgium, contrasting with the scarce occurrences in other 
European countries, are the result of differences in propagule 
and colonisation pressure (Briski et al. 2012). In conjunction 
with the species' potential distribution, our dietary analysis 
suggests that climate change (due to rising eutrophication 
and availability of detritus and opportunistic algae in lakes 
and streams) or a ‘revival’ of this species’ presence in the 
pet trade could primarily result in a wider distribution out-
side of Belgium in large parts of Central Europe. Also, our 
findings on the absence of niche overlap between native and 
non-native ranges has important implications for monitor-
ing and the transferability of SDMs (Liu et al.  2022) but 
also for tracking the future distribution and impacts across 
inland waters. In the case of the Oberhorstweiher, spread is 
unlikely, primarily because the Oberhostweiher is an iso-
lated pond, and the ditches feeding into it dry up between 
the early summer and late fall, not only limiting the present 
population’s ability to spread, but also indicating that the 
population's origin was likely an intentional release (Hulme 
2007), despite U. pygmaea not being relevant in either the 
pet trade or aquaculture. Nevertheless, as an acid-tolerant 

https://inpn.mnhn.fr/espece/cd_nom/67612
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fish species, U. pygmaea clearly has an advantage over many 
native species, being able to occupy heavily anthropogeni-
cally affected or altered ecosystems (Dederen et al. 1986; 
Verreycken et al. 2010). However, concordance between 
the proportion of suitable areas for U. pygmaea within an 
ecoregion and presence of this species can be used to redi-
rect management policies, as resources for management of 
invasive species are limited.

While U. pygmaea is certainly non-native to Germany’s 
fish fauna, it lacks the potential to spread and has only a 
circumstantially relevant impact, both factors which limit 
this species’ invasive potential. However, the present find-
ings support its generalist and flexible feeding strategy and 
indicate that it may exert substantial ecological impact on 
invertebrate density and community composition, especially 
in isolated waters without predators. While management of 
isolated populations would limit resources that possibly 
could be useful elsewhere (McGeoch et al. 2016), moni-
toring of potential spread is still recommended, given the 
projected increase of non-native species, particularly for 
those that do become invasive (Pyšek et al. 2020). This is 
even more crucial in the case of opportunistic predators such 
as U. pygmaea in regions where the assemblages include 
native and endemic species (like Umbra krameri which, for 
example, due to competition and hybridisation is already 
endangered in its native region) that are already threatened 
by other environmental and anthropogenic changes, such as 
habitat fragmentation and pollution.
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