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Abstract. This paper focuses on estimating the Self-Exciting Threshold Au-
toregressive (SETAR) type time-series model under right-censored data. As is
known, the SETAR model is used when the underlying function of the relation-
ship between the time-series itself (Yt), and its p delays

(
Yt− j

)p

j=1
violates the lin-

earity assumption and this function is formed by multiple behaviors that called
regime. This paper addresses the right-censored dependent time-series prob-
lem which has a serious negative effect on the estimation performance. Right-
censored time series cause biased coefficient estimates and unqualified predic-
tions. The main contribution of this paper is solving the censorship problem for
the SETAR by three different techniques that are kNN imputation which repre-
sents the imputation techniques, Kaplan-Meier weights that is applied based on
the weighted least squares, synthetic data transformation which adds the effect
of censorship to the modeling process by manipulating dataset. Then, these so-
lutions are combined by the SETAR-type model estimation process. To observe
the behavior of the nonlinear estimators in practice, a simulation study and a real
data example are carried out. The Covid-19 dataset collected in China is used
as real data. Results prove that although the three estimators show satisfying
performance, the quality of the estimate SETAR model based on the kNN im-
putation technique dominates the other two estimators. Keywords: Censored
time-series, regime-switching model, regression analysis, imputation.

1 Introduction

In the real world, datasets examined using time-series analysis often involve issues, such
as censorship and nonlinearity, that directly prevent accurate analysis unless appropriately
solved. In practice, these problems in the datasets are generally ignored. For econometric
or financial time-series data, it is very common that the variance and autocorrelation of the
series may change, which makes it necessary to use nonlinear time-series analysis. Data
obtained during financial crises or radical changes in the economic situation of a country can
be used as examples of a nonlinear time-series. In addition, we know that due to different
reasons, including technical issues, individual mistakes, device errors, and so on, it may not
be possible to observe all data points. For instance, for a fixed period of a risk assessment
study, borrowers may join the study at various stages, and they may or may not default before
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the study ends. In this case, the observation is censored from the right randomly (see [1]).
In this example, we can see two problems, nonlinearity, and right-censorship, that need to be
solved to facilitate accurate analysis of the data.

Regarding the nonlinear time-series model, there are several types of models referred to as
bilinear models by Granger and Andersen [2]. These models include the threshold autoregres-
sive model (TAR) and its specific case Self-Exciting TAR (SETAR) proposed by Tong [3] and
discussed further by Fan and Yao [4], the smooth transition autoregressive models (STAR)
of Terasvirta and Anderson [5] and Markov-switching, introduced by Hamilton [6]. Notice
that these models are capable of reflecting the true behavior of the time-series by representing
the different regimes in it. This paper considers the estimation of the SETAR model under
right-censored time-series data. There are several important studies about estimating SETAR
models without censorship; these include Petruccelli [7], Gooijer [8], Milheiro-Oliveira [9],
Naik and Mohan [10], and Aydın and Mermi [11], among others. However, in the literature,
SETAR models are not considered under censored time-series. This paper aims to fill that
gap.

There have been several important studies about right-censored time-series models, in-
cluding Park et al. [12], Khardani et al. [13], Aydın and Yılmaz [14]. These studies do not
consider nonlinearity and instead focus on different aspects of modeling. However, useful
solution techniques are introduced for the right-censorship problem, such as synthetic data
kNN imputation, Kaplan-Meier weights (see [14]), and synthetic data transformation [15],
which is adapted to the time series modeling by [13].

The main purpose of this study is to introduce SETAR model estimation based on
the aforementioned three censorship solution techniques: kNN imputation, Kaplan-Meier
weights (KMW), and synthetic data transformation (SDT). Both the problems of nonlinearity
and censorship can be solved appropriately using these techniques, but the advantages and
disadvantages of each of the three estimation procedures are discussed to determine the best
procedure for nonlinear and right-censored time-series modeling.

The organization of the paper is as follows: Section 2 introduces the methodology of the
solution techniques for the right-censorship problem and their integration into the SETAR
model. Section 3 presents the statistical properties of the introduced model estimation. Eval-
uation metrics are given in Section 4. A simulation study and a real data case study are carried
out in Section 5. Conclusions are provided in Section 6.

2 Material and Methods

To estimate the SETAR model with right-censored time-series data, the censorship needs to
be solved first because censorship solution techniques change the observations of the series.

Consider the time-series variable as {Yt}
n
t=1 with sample size n. In many cases, one may

not be able to observe all Yt values completely. Instead, some Yt values will be accurately
recorded and others incomplete or censored. Yt is censored from the right by censoring
variable Ct, which means that Yt is observed partly and is recorded as Ct. Censoring of the
response measurements occurs in different situations in business, finance, and economics. If
censored observations are ignored, the estimated time-series models are usually unreliable
regarding parameter estimates.

To express the censoring mechanism specifically, let us consider that Zt is the incomplete
(right-censored) observed time-series instead of Yt due to Ct. This case can be formulated as
follows:

Zt = min (Yt,Ct) , δt = I (Yt ≤ Ct) , (1)
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where I (.) is an indicator function that involves the information of censorship existence
and δt is a bivariate variable that involves the censoring information. From Eq. (1), it is
assumed that the censored time-series are denoted with pairs {Zt, δt), t = 1, 2, . . . , n}.

As indicated in Section 1, the TAR model considers the different regimes at different
times, meaning that the series exhibit threshold behavior (see [3, 4]). Accordingly, the
regimes in the series are determined by a threshold or transition variable S t, which depends
on threshold value m. Here, S t is one of the lags of the right-censored time-series Zt as
S t = Zt−d where d is a lag parameter. Thus, the “self-exciting” definition is realized in the
SETAR model, which is defined as follows:

Zt =

[
φ(1,0) +

∑q1

j=1
φ1, jZt− j

]
(1 − I (Zt−d > m))+

[
φ(2,0) +

∑q2

i=1
φ2, jZt−i

]
(1 − I (Zt−d > m))+εt,

(2)
where εt’s are random error terms that are independent and identically distributed with

zero mean and constant variance σ2
ε. φ1 =

{
φ1, j, j = 1, . . . , q1

}
and φ2 =

{
φ2,i, i = 1, . . . , q2

}
are coefficients of the SETAR models to be estimated with autoregressive degrees, where
q1 and q2 are degrees of the lower and upper regimes of the autoregressive (AR) model,
respectively. Notice that threshold variable S t depends on the lag (d) and threshold (m),
which should therefore be chosen suitably (See [16]). In Eq. (2), the SETAR model is
provided with two regimes.

The main interest here is estimating the vectors of autoregressive coefficients Φ (m) =(
φT

1 , φ
T
2

)
of model Eq. (2) for both regimes. In this matter, Tong [3] proposed a maximum

likelihood estimator (MLE) under the assumption of normally distributed error terms and
uses the Akaike information criterion (AIC) to choose the threshold constant (m) and optimal
lag (d). However, MLE works well only when both regimes of Eq. (2) are first-order autore-
gressive models, which limits the advantages of the SETAR model (see [17]). On the other
hand, [7] and [17] show that the conditional least squares (CLS) estimate ofΦ (m) =

(
φT

1 , φ
T
2

)
has consistency for SETAR models with different autoregressive degrees and the number of
regimes. Also, [11] applied this method to the different data examples successfully. This
study, therefore, focuses on the CLS approach for right-censored SETAR model estimation.

Let us rewrite model Eq. (2) as follows:

Zt = φT
1 X1tI (Zt−d ≤ m) + φT

2 X2tI (Zt−d > m) + εt, (3)

where X1t =
(
1,Zt−1, . . . ,Zt−q1

)
, X2t =

(
1,Zt−1, . . . ,Zt−q2

)
are covariate matrices that

are formed by the lags of the dependent variable φ1 =
(
φ(1,0), . . . , φ(1,q1)

)
and φ2 =(

φ(2,0), . . . , φ(2,q1)

)
are the vectors of the coefficients for lower and upper regimes of Eq. (3)

and εt’s are the stationary random error terms with a constant variance.
Model Eq. (3) can be simply written and given by

Zt = XT
t (m)Φ (m) + εt (m) , 1 ≤ t ≤ n, (4)

where Xt (m) =
[
XT

t I (Zt−d ≤ m) ,XT
t I (Zt−d > m)

]
, and as mentioned above, Φ (m) =(

φT
1 , φ

T
2

)
. For determined m values, CLS estimates Φ̂ (m) =

(
φ̂T

1 , φ̂
T
2

)
can be obtained as

follows:

Φ̂ (m) =
∑n

t=1

[
XT

t (m) Xt (m)
]−1 ∑n

t=1

[
XT

t (m) Zt

]
, (5)

Notice that the estimation of Eq. (4) depends on the optimal values of m and d param-
eters. Choosing m and d is achieved by calculating εt. From equation Eq. (5) , ε̂t (m) =
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Zt − Xt (m)Φ (m) and the variance of the model is obtained as σ̂2
ε (m) = n−1 ∑n

t=1 ε̂
2
t (m). In

addition, determining the threshold variable Zt−d and optimal lag d is an important problem
to be solved. Therefore, regarding the SETAR model, m and d are selected by minimizing
σ̂2
ε (m) by doing an appropriate grid search in the following minimization problem:(

m̂, d̂
)

= arg min σ̂2
ε (m, d) ,m ∈ Z+, d ∈ Z+, (6)

where m̂andd̂ are the chosen threshold and lag parameters and the lag parameter should
ensure the condition d < (q1, q2). Instead of optimizing Eq. (6) , as shown by [18], AIC is
used to choose optimal m and d as below:

AIC
(
m̂, d̂

)
= n1 ln

(
σ2
ε1

(m, d)
)

+ n2 ln
(
σ2
ε2

(m, d)
)

+ 2 (q1 + 1) + 2 (q2 + 1) , (7)

where n1 and n2 are the sample sizes in lower and upper regimes, respectively. Similarly,
σ2
ε1

and σ2
ε2

are the variances of these regimes. It should also be noted that the selection
of

(
m̂, d̂

)
is realized in three steps that are discussed by [19]. Thus, after the selection of(

m̂, d̂
)

using Eq. (7) , Φ̂ (m) is obtained using Eq. (5) . However, due to right-censored time-
series Zt, equation Eq. (5) cannot be used directly. Therefore, the following three solution
techniques are introduced: KMW, SDT, and kNN imputation.

2.1 Kaplan-Meier Weights

This section introduces adapting the SETAR model estimation given in Eq. (5) based on
right-censored time-series Zt. To overcome the right-censored observations, KMW is used,
as suggested and discussed by [18] and [20], respectively. In the case of SETAR model
estimation, the weight matrix W is added to equation Eq. (5). Here, the Kaplan-Meier
weights are given by:

W(t) =
δ(t)

n − t + 1

∏t−1

j=1

(
n − j

n − j + 1

)δ(t)

, (8)

where W = diag
(
W(1), . . . ,W(n)

)
is n × n diagonal matrix computed based on{

Z(1) ≤ Z(2) ≤ . . . ≤ Z(n)
}
. δ(t) denotes the values of δt in Eq. (1) related to ordered values

Z(t)’s. Then, using Eq. (8), equation Eq. (5) is rewritten as follows:

Φ̂W (m) =
∑n

t=1

[
XT

t (m) WXt (m)
]−1 ∑n

t=1

[
XT

t (m) WZt

]
, (9)

where Φ̂W (m) denotes the estimated coefficients based on KMW. Accordingly, a fitted
model is obtained with Eq. (9) and Eq. (5):

ẐW
t = XT

t (m) Φ̂W (m) , 1 ≤ t ≤ n, (10)

where ẐW
t denotes the fitted values obtained by KMW. Hence, the right-censored SETAR

model is estimated by the modified estimator Φ̂W (m) based on KMW.

2.2 Synthetic Data Transformation

Another solution for a right-censored time-series is synthetic data transformation (SDT),
which is an unbiased way to transform right-censored Zt to synthetic variable ZtĜ to make
equivalent their expected values as E (Zt) � E

(
ZtĜ

)
(see [21]). Similar transformation tech-

niques have been studied by [22, 23], and [24]. The SDT procedure proposed by [15] can be
shown as:
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ZtG =
δtZt

1 −G (Zt)
=

δtZt

Ḡ (Zt)
, (11)

where G is the distribution function of censoring variable Ct. However, in real-world
applications, because G is generally unknown, instead of G, [15] suggested using its Kaplan-
Meier estimator Ĝ, which is given by arbitrary data point r:

Ĝ (r) = 1 −
n∏

t=1

( n − t
n − t + 1

)I[Z(t)≤r,δ(t)=0]
, (r ≥ 0) , (12)

where
{
Z(t), δ(t)

}n
t=1 is ordered observation pairs as mentioned after equation (2.8). Note

that, due to the main property of the SDT, it is clear that E
(
ZtĜ

)
= E (Yt) = XT

t (m) Φ̂SDT (m)
where Φ̂SDT (m) is the modified estimator ofΦ (m) based on the SDT approach. Accordingly,
the estimator and fitted model can be obtained as follows:

Φ̂S DT (m) =
∑n

t=1

[
XT

t (m) Xt (m)
]−1 ∑n

t=1

[
XT

t (m) ZĜ

]
, (13)

and

ẐS DT
t = XT

t (m) Φ̂S DT (m) , 1 ≤ t ≤ n, (14)

where ẐS DT
t values are fitted values obtained based on the SDT technique.

2.3 kNN Imputation

kNN imputation for a right-censored time-series is introduced by [14] to overcome the right
censorship. The main function of kNN imputation is to replace the right-censored observa-
tions with their kNN estimates. Notice that for any censored point, imputation is realized
by an averaged value of k uncensored nearest neighbors. For a detailed discussion of kNN
imputation, see [24] and [14]. Notice that the kNN imputation technique does not need any
distributional assumption and does not touch uncensored observations, as in KMW and SDT.
These properties are the main difference between kNN imputation from the other two solu-
tion methods. In this paper, to measure the distance between the neighbors, a commonly used
Euclidean distance is used, which can be given by:

D (Z1,Z2) =

√∑n

t=1
|Z1t − Z2t |

2, (15)

An algorithm provided for kNN imputation by [14] is given below in table 1.
From the algorithm given in table 1, the estimator and fitted model based on kNN impu-

tation are provided by:

Φ̂k (m) =
∑n

t=1

[
XT

t (m) Xt (m)
]−1 ∑n

t=1

[
XT

t (m) Zk
]
, (16)

and

Ẑk
t = XT

t (m) Φ̂k (m) , 1 ≤ t ≤ n, (17)

where Ẑk
t ’s are the fitted values of the SETAR model obtained based on the kNN imputa-

tion technique.
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Table 1. k-NN imputation for right censored data

Input. Right-censored time-series Zt; Censoring indicator δt associated with Zt

Number of nearest neighbors k; Determined lagged Z
′

t s : Zt−1, . . . ,Zt−p to calculate distances.
Output: Imputed dataset Zk

t c
1: Begin
2: for (t = 1ton) do
3: if (δt = 0) do (if data point is censored)
4: for ( j = 1ton) do
5: Find the distances between Zt−p1 and Zt−p2 for each censored data point with (2.15)
6: Sort the distances from small to large
7: for ( j = 1tok) do
8: Take the first uncensored k values of Zt associated to sorted distances
9: Calculate the tth imputed value

(
Zk

t

)
with the average of nearest k records of Zt

10: Replace the imputed value
(
Zk

t

)
with censored data point (Zt, δt = 0)

11: Return Zk
t

12: End.

3 Evaluation Metrics

This section is prepared to present the evaluation metrics for the introduced three SETAR
model estimates based on the given three censorship solution techniques. The fits of these
models are notated as ẐW

t , ẐS DT
t and Ẑk

t . For our purposes, three commonly used metrics
in time-series analysis are preferred. These are root means squared error (RMS E), mean
squared error (MS E) and mean absolute percentage error (MAPE). Calculations of these
measurements are given based on joint notation

{
Ẑt

}n

t=1
of the mentioned three fitted values:

MS E
(
Ẑt

)
= n−1

∑n

t=1

(
Zt − Ẑt

)2
, (18)

RMS E
(
Ẑt

)
=

√
n−1

∑n

t=1

(
Zt − Ẑt

)2
, (19)

MAPE
(
Ẑt

)
= n−1

∑n

t=1

∣∣∣∣∣∣∣∣
(
Zt − Ẑt

)
Zt

.100

∣∣∣∣∣∣∣∣ , (20)

By using these criteria, a comparison of the three model estimates is realized and the
effect of censorship on the estimated SETAR models is measured.

4 Numerical Studies

4.1 Simulation Study

The purpose of this section is to investigate the performances of the censorship solution meth-
ods on SETAR model estimation using simulation evidence. Accordingly, right-censored,
stationary times-series and SETAR models as in Eq. (2) are generated as follows based on
the work of Chan and Tsay [25]:

Zt =

{
0.3 − 0.7Zt−1 − 0.4Zt−2 + εt, i f Zt−d ≤ m = 0.8
1.2 + 0.5Zt−1 + 0.1Zt−2 + εt, i f Zt−d > m = 0.8 , (21)
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Figure 1. Scatter plot of Zt to observe the low and high regimes and censoring levels for different
configurations

where Zt is obtained by censoring variable Ct which is generated based on µY t and σ2
Yt

.
Hence, pair of time-series (Zt, δt) is obtained as mentioned in Eq. (1). To clearly express the
model parameters and related matrices, model Eq. (21) should be written in harmony with
equation Eq. (3) as:

Zt = φT
1 X1tI (Zt−d ≤ 0.8) + φT

2 X2tI (Zt−d > 0.8) + εt, (22)

where X1t = (1,Zt−1,Zt−2) and X2t = (1,Zt−1,Zt−2), φ1 = (0.3, 0.7, 0.4)T and φ2 =

(1.5,−0.5,−0.2)T . Note that error terms are generated i.i.d. as εt

sim
(
µε = 0, σ2

ε = 0.5
)
. Accordingly, our aim here is to estimate Φ (m) = (φ1, φ2) under dif-

ferent scenarios by using pairs (Zt, δt) and related censoring solution techniques. Therefore,
in our simulation study, the performances of ẐW

t , ẐS DT
t , and Ẑk

t are measured based on how
they converge to the real vector of parameters Φ (m). To achieve this, the performance met-
rics given in equations (3.1-3.3) are used. In this simulation study, we generate 500 random
samples of size n = 50, 100, and200 and censoring levels CL = 5%and, 20%.

The obtained results are presented in the following tables and figures. Figure 1 presents
the generated dataset for four configurations. As can be seen in panels (b) and (d), the right-
censored observations distort the data structure. Also, the lower and upper regimes can be
seen clearly. It can be said that censorship makes it challenging to detect the threshold value
(m), which indicates the separation of the regimes.

In table 2, the nonlinearity test results for right-censored time-series Zt are provided.
Here, Tsay’s F-test for nonlinearity is used under type-I error α = 0.05. The calculation of
the F-statistic and further details are provided by Tsay (1986) [26]. The null hypothesis of
the test is as follows:

H0 : Zt follows some AR process
H1 : Zt has a nonlinear structure
According to table 2, due to the p-value (p = 0.020) being smaller than α = 0.05, H0 is

rejected and it is accepted that Zt has a nonlinear structure. After deciding the nonlinearity
of the series, the optimal pair of

(
m̂, d̂

)
should be selected. To achieve this, a grid search is

carried out based on AIC. The results are provided in table 3 and Figure 2.
Figure 2 presents a grid search for a single generated SETAR series from a determined

configuration. The autoregressive degrees of low and high regimes (q1, q2) are generally
chosen as q1 = 1, q2 = 2 or q1 = 2, q2 = 1. The optimal threshold value takes a value
between m = 0.4 and m = 2.70. Notice that if panels (b) and (c) are carefully inspected, the
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Table 2. Nonlinearity test for Zt

n CL F-statistic p-value

50 5% 2.575 0.020*
20% 4.349 p<0.001*

100 5% 2.120 0.008*
20% 2.019 0.0416*

200 5% 8.259 p<0.001*
20% 2.252 p<0.001*

Note: H0 is rejected with 95% confidence.

Figure 2. Grid search with AIC for d and m

censoring level affects the choice of the optimal threshold value (m) significantly. Therefore,
results prove that a high level of censorship makes it difficult to decide the regimes. Therefore,
the range of m is wide. We expect to solve this problem using the three censorship solution
techniques, KMW, SDT, and kNN.

From table 3, the optimally chosen orders of low and high regimes (q̂1, q̂2) of the SETAR
models to be estimated, the threshold value (m̂), and the delay of the threshold variable (d̂)
are presented for all simulation configurations. Notice that, based on AIC, the behavior of m̂
and (q̂1, q̂2) can be observed according to sample size and censoring level. Therefore, it is
obvious that under heavy censorship, m is selected far from the real value of m = 0.8. On
the other hand, when n = 200, AIC selects both (q̂1, q̂2) and (̂m) more accurately than other
configurations. After obtaining the optimal parameters of SETAR models, the estimation can
be realized.

Tables 4-5 involve the estimated autoregressive coefficients for both low and high
regimes. In both tables, it can be observed that SDT and kNN obtained similar estimates,
whereas KMW estimates relatively smaller coefficients. The difference between KMW and
the others is that the weight matrix in KMW makes estimates more stable than kNN and
SDT. These inferences are ensured by the scores of tables 4-5. The changes in estimated
coefficients from lower to higher censoring levels are smaller for KMW compared to the SDT
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Table 3. Selection of d and m based on AIC criterion

n CL q̂1 q̂2 m̂ d̂ AIC
(
m̂, d̂

)
50 5% 2 1 2.12 0 151.38

20% 2 1 1.39 0 149.09

100 5% 2 1 1.47 0 290.01
20% 2 1 2.68 0 340.42

200 5% 2 2 0.43 0 658.89
20% 2 2 1.83 0 707.20

Table 4. Estimated low-regime coefficients and associated statistics of right-censored S ET AR (2, 1)
and S ET AR (2, 2) models

Low regime
KMW SDT KNN

n CL φ01; φ11; φ21 φ01; φ11; φ21 φ01; φ11; φ21

50 5% -0.07;-0.05;0.01 0.46;-0.26;-0.01 0.41;-0.40;-0.13
20% -0.07; -0.03;0.01 0.56;-0.11;0.22 0.46;-0.20;-0.09

100 5% -0.07;-0.06;-0.01 0.46;-0.38;-0.07 0.42;-0.49;-0.20
20% -0.10;-0.04;0.01 0.48;-0.28;0.08 0.34;-0.47;-0.15

200 5% -0.10;-0.07;-0.01 0.32;-0.52;-0.20 0.34;-0.59;-0.30
20% -0.07; -0.04;-0.01 0.49;-0.20;0.07 0.38;-0.41;-0.14

Table 5. Estimated high-regime coefficients and associated statistics of censored S ET AR (2, 1) and
S ET AR (2, 2) models

High regime
KMW SDT kNN

φ02; φ12; φ22 φ02; φ12; φ22 φ02; φ12; φ22

0.24;0.36; – 1.83;0.23; – 1.15;0.31; –
0.21;0.34; – 1.87; 0.31; – 1.58; 0.19; –
0.21;0.35; – 1.04;0.36; – 0.58;0.36; –
0.20;0.29; – 1.10; 0.33; – 0.73; 0.31; –

0.17;0.29;0.30 0.36;0.42;0.36 0.10;0.43;0.45
0.16;0.27;0.27 1.18;0.33;0.16 0.39;0.36;0.41

and kNN methods. Although KMW is more robust against censorship, the performance scores
given in table 6 show that its performance is worse than kNN and SDT. Hence, one may select
the KMW-based SETAR model estimation for more stable estimates but for low performance.
On the other hand, kNN and SDT give qualified results but they are affected by censorship
more than KMW.

Table 6 presents the scores of the evaluation metrics MAPE, RMSE, and MSE, respec-
tively, for all simulation configurations. The best scores are indicated in bold. At first glance,
the two expected results can be observed. These are the incremental change in performance
when n increases, and the negative effect of high censoring levels on the methods. The results
show that kNN dominates the other two methods in general, but there are some points to be
emphasized. SDT shows good performance in terms of MAPE criterion when n = 50 and
n = 200. Also, when CL = 5%, even though kNN gives the best results, SDT is right behind.
However, for CL = 20%, SDT fails most of the time, and it is affected by the censoring
level more than kNN and KMW. Note that, as mentioned above, the values of KMW increase
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less as the censoring level increases in terms of MAPE. Additionally, because kNN has no
restrictions and is a fully nonparametric technique, it seems kNN has a good strength against
censorship that can be understood from the MSE and RMSE values. Figure 3 introduces
barplots of the scores provided in table 6. The mentioned inferences can be easily observed
from the figure.

Table 6. MSE, RMSE and MAPE scores for estimated models

MAPE RMSE MSE
n CL KMW SDT kNN KMW SDT kNN KMW SDT kNN

50 5% 2.686 1.680 2.361 0.219 0.171 0.156 2.355 1.449 1.205
20% 4.568 3.228 3.978 0.244 0.229 0.158 2.941 2.655 1.232

100 5% 1.784 1.713 1.210 0.151 0.113 0.104 2.262 1.297 1.092
20% 3.708 2.840 2.579 0.169 0.153 0.105 2.856 2.386 1.116

200 5% 1.035 0.838 1.109 0.103 0.078 0.073 2.134 1.232 1.080
20% 2.099 1.657 2.549 0.118 0.106 0.072 2.771 2.279 1.163

Figure 3. Barplots of performance scores given in table 6

In figure 4, fitted S ET AR (2, 1) and S ET AR (2, 2) models are given with generated cen-
sored time-series (Zt) and the completely observed series (Yt). In these panels, horizontal
dashed lines denote the optimally chosen threshold value (m) for each configuration. It is
obvious that the regimes are determined correctly in the SETAR model, and the three fits
represent the data well. In detail, the poor performance of the KMW fit can be distinguished
from kNN and SDT, especially in panels (b) and (d), due to heavy censorship. The closeness
of kNN and SDT is also observed. Note that to save space, only certain configurations are
illustrated in the figure. However, the performances of the methods can be monitored from
tables 4-5 and table 6. The simulation results show that all three censorship solution methods
work well with SETAR, and they can be easily integrated into each other. Regarding the
comparison, kNN produces the best results SDT and KMW shows satisfying results under
specific conditions. KMW also has a different advantage, which is it diminishes the effect of
the censoring level on the estimation performance.

4.2 Case Study: Covid-19 Data from China

This section is prepared to provide inferences for behaviors of the introduced estimators for
the SETAR model for the real dataset which involves right-censored observations. In this
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Figure 4. Fitted models versus completely observed time-series (Yt). The black horizontal line denotes
the chosen optimal “m” which separates the regimes (see table 3)

context, their performances are compared to the simulation results. Covid-19 data from China
was selected for this purpose. The dataset consists of 104 data points and two variables
provided by Afshin and Jorge (2020). In this study, the modeling procedure is realized for
the variables of the number of recovered patients from Covid-19 (recover) as a right-censored
time-series and the censoring level is 6.73%. Accordingly, SETAR model statistics based on
the modeling procedures are provided in the following tables and figures.

Figure 5. Scaled recover series against time with three panels: (a) Right-censored Zt, (b) ZtĜ obtained
by SDT, (c) Zk

t obtained by kNN imputation

To test the stationarity of the Covid-19 series, the ADF test is made, and the results are
shown in table 7. Accordingly, it is seen that the data is stationary when its 4th lag. Hence,
the remaining analysis is realized accordingly to ensure the stationarity assumption.

Table 7. Augmented Dickey-Fuller test results for the Covid-19 series

Variable t-statistics Lag-order p-value
Zt -1.701 4 0.701

ZtĜ -1.519 4 0.776
Zk

t -1.600 4 0.742
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Table 8 involves Tsay’s nonlinearity test results, which are needed to prove that the Covid-
19 time-series are adequate for the SETAR type model and also that the optimal SETAR
model parameters are determined by AIC. As can be seen, nonlinearity is validated for raw
(incomplete) series Zt, transformed series by SDT, ZtĜ and imputed by kNN Zk

t . Tsay’s F-
statistic and the p-values show that the null hypothesis, which claims that the mentioned
series follows some AR process, is strongly rejected. Thus, associated SETAR parameters
(q1, q2), m, and d are determined in table 8. From that, the suitable model for the Covid-19
dataset is selected as S ET AR (1, 1) .

Table 8. Tsay’s nonlinearity test for Zt and determination of m and d with AIC

n CL Tsay’s F-statistic p-value m d q1 q2 AIC
Zt

104 6.73%
6.565 p<0.001 -0.74 0 1 1 -183.65

ZtĜ 4.358 p<0.001 -0.72 0 1 1 -122.129
Zk

t 2.376 0.0024 -0.67 0 1 1 -144.216

The estimated coefficients for S ET AR (1, 1) are given in table 8 for low and high regimes
for all three methods. The best scores are indicated in bold. As in the simulation study, the
coefficients of KMW are different from the other two due to Kaplan-Meier weights. This
difference is also seen in Table 9, which includes the values of performance criteria. No-
tice that SDT and kNN provide closer results and S ET AR (1, 1) gives the smallest MSE and
RMSE values, whereas SDT gives smaller MAPE values. These results show that the intro-
duced estimators produce coherent behaviors in both the real data example and the simulation
study. Figure 6 includes the barplots of the values given in table 10 to illustrate the difference
between the performances of the methods more easily.

Table 9. Results obtained from S ET AR (1, 1) models based on three censorship solution methods

KMW SDT kNN

Low φ̂10 -0.196 -0.045 -0.047
φ̂11 0.155 0.967 1.025

High φ̂20 0.039 0.002 0.008
φ̂21 0.172 0.873 0.873

Table 10. Performance scores for the estimates

KMW SDT kNN
MAPE 1.154 0.729 0.996
RMSE 0.039 0.022 0.019
MSE 0.159 0.053 0.040

In figure 7, fitted S ET AR (1.1) models obtained by the three methods are given. As in
the simulation study, threshold values (m) for the three methods are illustrated by horizontal
lines. One can here see the low and high regimes easily. In this example, the low regime
represents the beginning of the Covid-19 pandemic with right-censored observations, and the
high regime indicates the time when the disease peaked and then descended. In the figure,
imputed values of kNN can be seen in the censored region of the series. Also, the fits of kNN
and SDT are closer to each other, as previously mentioned, and KMW shows its difference by
representing the real series worse than the other two methods. However, it should be noted
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Figure 6. Barplots of performance scores

that although KMW performs worse than the other two methods in this example, it still can
handle the right-censored data well, which is explained in the simulation study.

Figure 7. Right-censored S ET AR (1, 1) model fits estimated based on the three censorship solution
techniques

5 Conclusions

This paper aims to show SETAR-type model estimation when the time-series are right-
censored. In particular, the censorship solutions KMW, S DT , and kNN imputation methods
are combined with the SETAR estimation procedure, and their performances are inspected
practically. To achieve this purpose, a simulation study and a real-data case study are pro-
vided. Based on the results of both studies, the following conclusions are obtained:

• Regarding SETAR models and right-censored nonlinear time-series, it is proven that cen-
sorship highly affects the accuracy of the estimations by manipulating data. In Table 3, one
can see how the optimal parameter selection of SETAR is affected by the censoring level.

• Especially for the threshold value (m) selection, if the high regime involves more censored
observations, then the detection of the regimes may be challenging. It is found that kNN
and SDT-based SETAR model estimations solve the problem better than the method.
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• Although KMW gives worse SETAR fits than kNN and SDT, it has a stability advantage
on estimated models that are demonstrated in the simulation study. In addition, under
low censoring levels, kNN and SDT give very close results, which are also ensured by the
Covid-19 data example. However, under heavily censored data, kNN dominates the other
methods and gives the best performance scores.

As a result, this paper suggests that under right-censored data, the SETAR model is suc-
cessfully modeled based on the censorship solution techniques and it is seen that kNN impu-
tation works well for all simulation configurations and the Covid-19 example.

In the future, as a continuation of this study, it is planned to study non-parametric and
semi-parametric estimation methods to make predictions with less risk in the estimation of
right-censored SETAR models in the future. In addition, it is planned to use different criteria
for the selection of threshold value (m) and lag parameter (d) shown in Eq. (6) and analyze
the results, which are selected to determine the upper and lower regimes.
The research of Professor S. Ejaz Ahmed was supported by the Natural Sciences and the Engineering

Research Council (NSERC) of Canada.
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