Gürsu, S., Möller, A., Inglis, J.D., Göncüoğlu, M.C., Hefferan, K., Toksoy-Köksal, F., Küçük, A., and Köksal, S., 2022, Tracing the protoliths of the garnet amphibolitic and retrogressed eclogitic slices and a conceptual tectonic model for their emplacement onto the Central Menderes Massif, Turkey: New geochemical data and laser ablation-inductively coupled plasma-mass spectrometry U-Pb zircon and rutile ages: GSA Bulletin, https://doi.org/10.1130/B36339.1.

Supplemental Material

Figure S1. Geological map of A, Camlıca-Tire Klippe (Çetinkaplan 1995: Oberhansli et al. 2010; Candan et al. 2011c). B, Birgi (Candan 1996; Oberhansli et al. 2010). The stratigraphy from those studies is modified in this study.

Figure S2. Geological map of A, Yenisehir-Kiraz (Candan et al. 2001). B, Yahyaalcı-Alaşehir (Candan 1994; Candan and Dora 1998; Candan et al. 2011b). The stratigraphy from those studies is modified in this study.

Figure S3. Photomicrographs A, B, Garnet porphyroblast with amphibole inclusions in the garnet amphibolites (Grn-A). C, D, E, F, G, H rutile in the matrix is rimmed by fine-grained titanite in the garnet amphibolitic slices in Yahyaalcı-Alaşehir (Bozdağ Nappe) and Çamlıca-Tire Klippe (Çine Nappe). I, J, Sub-ophitic texture of the biotite bearing meta-gabbros (Bt-MG). K, L, R, S- Garnet porphyroblasts with amphibole inclusions in the retrogressed eclogites (REC). M, N- Rutile in the matrix overgrown by fine-grained titanite in the retrogressed eclogites (REG). O, P- Garnet porphyroblast with clinopyroxene inclusion in the retrogressed eclogites (REC). T, U- Garnet porphyroblast are rimmed by quartz crystals (REC). Grt-garnet, Ampamphibole, Cpx-clinopyroxene, Bt-biotite, Pl-plagioclase, Rt-rutile, Ttn-titanite. Abbreviations for rock-forming minerals are taken from Whitney and Evans (2010).

Figure S4. CL images of the garnet amphibolite, A- Yahyaalçı-Alaşahir area (Bozdağ Nappe), B- Çamlıca-Tire Klippe area (Çine Nappe).

Figure S5. Rutile U-Pb dating spot locations.

Table S1. GPS locations of the sample locations studied. GPS coordinates are referenced to the Garmin Etrex 30X -WGS84 database.

Table S2. The precision and accuracy of known standard reference material (STD-SO-19) and analysis of sample EC4 by AES and ICP-MS.

Table S3. Electron micro probe analyze results of the minerals of the garnet amphibolite (TKC10) and retrogressed eclogite (K1) samples. The structural formulas were calculated based on 12 anhydrous oxygen for garnet, 6 anhydrous oxygen for clinopyroxene, 23 anhydrous oxygen for calcic amphiboles. Fe2⁺ and Fe³⁺ were re-calculated from Fe^(t) by the stoichiometric method of Droop (1987).

Table S4. LA-ICP-MS trace and REE data of garnet-amphibolite-TKC10 and retrogressed eclogite-K1 samples. Concentrations in ppm, calibrated from NIST612 values by reference of Si29 to concentration of SiO₂ determined by electron micro probe analysis.

Table S5. Estimated P&T conditions of the garnet amphibolite sample (TKC10) by amphiboleplagioclase Al-Si partitioning thermo-barometric empirical equations. EPMA mineralogical analysis are from Supplementary Table S3.

Table S6. Estimated retrogression P&T conditions of retrogressed eclogite sample (K1) by amphibole-plagioclase Al-Si partitioning thermo-barometric empirical equations. EPMA mineralogical analysis are from Supplementary Table S3.

Table S7. Zircon U-Pb geochronological results of ATY3 sample (Yahyaalci-Alaşehir area of Bozdağ Nappe).

Table S8. REE data of the dated zircon spots of ATY3, TKC10 and K1 samples.

Table S9. LA-ICP-MS zircon REE data of the garnet amphibolites in Yahyaalci-Alaşehir (Bozdağ Nappe), in Çamlıca-Tire Klippe (Çine Nappe) and retrogressed eclogite in Çamlıca-Tire Klippe (Çine Nappe).

Table S10. Rutile U-Pb geochronological results of TKC10 sample (Çamlıca-Tire Klippe, Çine Nappe).

Table S11. Zircon U-Pb geochronological results of retrogressed eclogite sample (K1) in Yenişehir-Kiraz, Çine Nappe.

Table S12. Geochemical analyse results of the garnet amphibolites, biotite- bearing metagabbros and retrogressed eclogites of the Menderes Nappes, Menderes Massif, Turkey (Yahyaalçı-Alaşehir, Bozdağ Nappe; Birgi, Çamlıca-Tire Klippe, Yenişehir-Kiraz, Çine Nappe).

APPENDIX 1. SAMPLE PREPARATIONS

Geochemical analyses (major, minor, trace and rare-earth elements) were realized by lithium borate fusion on inductively coupled plasma atomic emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) at Acme Analytical Laboratories (Vancouver, Canada).

After digestion of samples with HF and HCl, REE for Nd isotope studies were enriched through 2 ml volume BioRad AG50 W-X8 (100-200 mesh) resin by using 2.5 N HCl and then collected with 6 N HCl. Neodymium was separated from other REE in 2 ml HDEHP (bisethyexyl phosphate) coated biobeads (BioRad) resin with 0.22 N HCl, and loaded on double filaments with dilute H₃PO₄. ¹⁴³Nd/¹⁴⁴Nd ratios were normalized with ¹⁴³Nd/¹⁴⁴Nd = 0.7219 and La Jolla Nd standard was measured as ¹⁴³Nd/¹⁴⁴Nd = 0.511847 ± 2 (n = 2), and no bias correction was applied. Isotopic ratios were measured with Thermo-Fisher Triton Thermal Ionization Mass Spectrometer. During the period of analyses, the AGV-2 USGS standard gave ¹⁴³Nd/¹⁴⁴Nd=0.512777±5 (n=2). T_{DM} (Model age) values were calculated after Liew and Hofmann (1988).

Garnet amphibolite samples (ATY3: UTM WGS1984 coordinate: 35S 0633891/4256486; TKC10: UTM coordinate: 35S 0583104/421404) and one retrogressed eclogite sample (K1: UTM 35S 0608553/4225878) were crushed in a jaw crusher, then in roller crusher and passed over a Gemini water table to remove lower-density minerals from the higher ones in the Sample Preparation Laboratory of Department of Geological Engineering in Middle East Technical University, Ankara-Turkey. The heavy-mineral rich residues were treated with tetrabromethane (bromoform; density, 2.89 g/cm³) to separate the higher density minerals from the bulk. After that, magnetic minerals in the last phases were removed by using a hand magnet. The remaining heavy mineral rich phases were passed through the Frantz magnetic separator at 0.2 A. 0.4 A., 0.6 A, and 1.0 A. Zircon crystals were handpicked from the zircon-rich heavy mineral separates under a binocular stereo microscope. Cathodoluminescence (CL) imaging of the grains was carried out by using a ZEISS EVO-MA10 with a Gatan Mini CL detector at the Center for Isotope Geoscience, University of Florida (USA). Euhedral/subhedral zircon grains having oscillatory zoning were selected for determining their magmatic crystallization ages. U-Pb LA-ICP-MS zircon and rutile dating studies were performed at the Isotope Geology Lab at the University of Kansas (USA) using a Thermo Fisher Scientific Element II Sector Field ICP-MS couple to a photon machine ANALYTEG.1 193 nm ArF excimer laser ablating 20 µm diameter spots. The details of the working conditions are summarized in Gürsu et al. (2017). Selected zircon references (GJ1-Jackson et al., 2004; Plešovice- Slama et al., 2008; FCSZ- and FCT- Schmitz and Bowring, 2001 for zircon U-Pb dating; R10-Luvizotta et al., 2009 and T139-6- standards for rutile U-Pb dating) were used for the calibration, accuracy, reproducibility and for determining the unknowns during the analyses. Reference zircons of the known ages dated from the GJ1, Plešovice, FCSZ and FTC yielded 601.3±1.2 Ma, 336.9±1.1 Ma, 1072.8±4.2 Ma and 28.05±0.2 Ma concordia ages during measuring the unknowns, respectively. R10 & T139-6 reference rutile standards gave 1091.6±4.3 and 522.7±4.2 Ma, respectively, and were checked for calibration, precision/accuracy and to determine the unknowns during the analyses. Within run reproducibility of the reference, materials were better than 1% on the zircon U-Pb ages, and were propagated into the uncertainty of the unknowns. No results were corrected for common lead (²⁰⁴Pb) in the study. Data processing was performed by using Iolite v2.5 (Paton et al., 2010) and VisualAge (Petrus and Kamber, 2012) operated with IGOR Pro software. Zircon and rutile age calculations were completed by using Isoplot v.4.15 (Ludwig, 2012).

Discordance percentage was determined from the following formula; If the ²⁰⁶Pb/²³⁸U dates are younger than 1000 Ma; Discordance% = $(1 - [(^{207}Pb/^{235}U_{date})/(^{206}Pb/^{238}U_{date})])*100.$

If the 206 Pb/ 238 U dates are older than 1000 Ma;

Discordance% = $(1 - [(^{207}Pb/^{206}Pb_{date})/(^{206}Pb/^{238}U_{date})])*100.$

The spots, which have higher discordance percentage ($\geq \pm 5$ %), were considered as discordant age and were ignored in the dating calculations.

Elemental mapping and 2D-line profiles together with back-scattered electron images during in-situ quantitative mineral chemistry analyses were performed using a JEOL JXA-8230 Electron Microprobe (EPMA) at Central Laboratory of METU. 20 kV accelerating voltage, 20 nA probe current and 5 um spot size were applied as the operating conditions during analyses. The analytical precision of the oxides at the level of several weight percent is approximately 1-2 % relative and, for oxides present in lower abundances (<1 wt. %), the precision is 10-20 % relative. Some of the natural and synthetic standards were used for the calibration (Na: Albite, Si: Wollastonite, Al: Al₂O₃, Mg: MgO, Fe: Hematite, Mn: Rhodonite, Ni: Ni-metal, K: Orthoclase, Ca: Wollastonite, Ti: TiO₂, Cr: Chromite, Sr: SrTiO₃, Ba: Barite). Microprobe data were reduced using PRZ (XPP-metal/oxide) procedure of the JEOL software (details in Fazeli, et al., 2017). Trace and REE analyses of the garnet and zircon minerals of the samples were performed at the Central Laboratory for Water, Minerals and Rocks at the Graz University, Austria and University of Kansas by using LA-ICP-MS. The procedure described in detail by Jedlicka et al. (2015) was used during the trace and REE analyses of the garnet minerals of garnet amphibolite and retrogressed eclogite samples.

REFERENCES CITED

Çetinkaplan, M., 1995, Geochemical, mineralogical and petrographical investigation of the eclogites in southern part of Tire area, Ödemiş-Kiraz submassif of the Menderes Massif [M.S. thesis]: İzmir, Turkey, Dokuz Eylül Üniversitesi.

Droop, G.T.R., 1987, A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria: Mining Magazine (London), v. 51, p. 431–435, https://doi.org/10.1180/minmag.1987.051.361.10.

- Fazeli, B., Khalili, M., Toksoy-Köksal, F., Esfahani, M.M., and Beavers, R., 2017, Petrological constraints on the origin of the plutonic massif of the Ghaleh Yaghmesh area, Urumieh-Dokhtar magmatic arc, Iran: Journal of African Earth Sciences, v. 129, p. 233– 247, https://doi.org/10.1016/j.jafrearsci.2016.12.014.
- Gürsu, S., Möller, A., Usta, D., Köksal, S., Ateş, Ş., Sunkari, D., and Göncüoğlu, M.C., 2017, Laser ablation inductively coupled plasma mass spectrometry U-Pb dating of detrital and magmatic zircons of glacial diamictites and pebbles in Late Ordovician sediments of the Taurides and Southeast Anatolian Autochthon Belt, Turkey: Indications for their Arabian-Nubian provenance: The Journal of Geology, v. 125, p. 165–202, https://doi.org/10.1086/690199.
- Jackson, S.E., Pearson, N.J., Griffin, W.L., and Belousova, E.A., 2004, The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology: Chemical Geology, v. 211, p. 47–69, https://doi.org/10.1016/j.chemgeo.2004.06.017.
- Jedlicka, R., Faryad, S.W., and Hauzenberger, C., 2015, Prograde metamorphic history of UHP granulites from the Moldanubian Zone (Bohemian Massif)revealed by major element and Y + REE zoning in garnets: Journal of Petrology, v. 56, no. 10, p. 2069– 2088, https://doi.org/10.1093/petrology/egv066.
- Liew, T.C., and Hofmann, A.W., 1988, Precambrian crustal components, plutonic associations, and plate environment of the Hercynian fold belt of central Europe: Indications from Nd and Sr isotopic study: Contributions to Mineralogy and Petrology, v. 98, p. 129–138, https://doi.org/10.1007/BF00402106.
- Ludwig, K.R., 2012, Isoplot/Ex Version 4.15: A Geochronological Toolkit for Microsoft Excel: Berkeley Geochronology Center Special Publication, v. 5, 75 p.
- Luvizotto, G.L., Zack, T., Meyer, H.P., Ludwig, T., Triebold, S., Kronz, A., Münker, C., Stockli, D.F., Prowatke, S., Klemme, S., Jacob, D.E., and Eynatten, H., 2009, Rutile crystals as potential trace element and isotope mineral standards for microanalysis: Chemical Geology, v. 261, no. 3–4, p. 346–369, https://doi.org/10.1016/j.chemgeo.2008.04.012.
- Paton, C., Woodhead, J.D., Hellstrom, J.C., Hergt, J.M., Greig, A., and Maas, R., 2010, Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction: Geochemistry, Geophysics, Geosystems, v. 11(3), Q0AA06, <u>https://doi.org/10.1029/2009GC002618</u>
- Petrus, J.A., and Kamber, B.S., 2012, VizualAge: A novel approach to laser ablation ICP-MS U-Pb geochronology data reduction: Geostandards and Geoanalytical Research, v. 36, p. 247–270, <u>https://doi.org/10.1111/j.1751-908X.2012.00158.x</u>. https://doi.org/10.1016/j.chemgeo.2007.11.005.
- Schmitz, M.D., and Bowring, S.A., 2001, U-Pb zircon and titanite systematics of the Fish Canyon Tuff: an assessment of high-precision U-Pb geochronology and its application to young volcanic rocks: Geochimica et Cosmochimica Acta, v. 65, p. 2571–2587, <u>https://doi.org/10.1016/S0016-7037(01)00616-0</u>.
- Sláma, J., Kosler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., and Whitehouse, M.J., 2008, Plešovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis: Chemical Geology, v. 249, p. 1–35,
- Whitney, D.L., and Evans, B.W., 2010, Abbreviations for names of rock-forming minerals: The American Mineralogist, v. 95, p. 185–187, <u>https://doi.org/10.2138/am.2010.3371</u>.

Table S1. GPS locations of the samples studied. GPS coordinates are referenced to the GarminEtrex 30X -WGS84 database.

SAMPE	LOCATIONS	UTM1984-GPS
NAMES		LOCATIONS
TKC2	ÇAMLICA-TİRE KLIPPE	358 0582351/4214192
TKC3	ÇAMLICA-TİRE KLIPPE	358 0582377/4214127
TKC4	ÇAMLICA-TİRE KLIPPE	358 0582475/4214292
TKC5	ÇAMLICA-TİRE KLIPPE	358 0582459/4214940
TKC6	ÇAMLICA-TİRE KLIPPE	358 0583475/4214960
TKC7	ÇAMLICA-TİRE KLIPPE	358 0583118/4214280
TKC8	ÇAMLICA-TİRE KLIPPE	358 0583298/4214292
TKC9	ÇAMLICA-TİRE KLIPPE	358 0583369/4214507
TKC10	ÇAMLICA-TİRE KLIPPE	35S 0583104/4214040
TKC11	ÇAMLICA-TİRE KLIPPE	358 0583150/4214135
ATY1	YAHYAALCI-ALAŞEHİR	358 0633886/4256456
ATY2	YAHYAALCI-ALAŞEHİR	358 0633883/4256443
ATY3	YAHYAALCI-ALAŞEHİR	358 0633891/4256486
ATY4	YAHYAALCI-ALAŞEHİR	358 0633820/4256444
ATY5	YAHYAALCI-ALAŞEHİR	358 0633757/4256421
ATY6	YAHYAALCI-ALAŞEHİR	358 0633679/4256441
ATY7	YAHYAALCI-ALAŞEHİR	358 0633595/4254601
ATY9	YAHYAALCI-ALAŞEHİR	358 0633517/4256493
ATY10	YAHYAALCI-ALAŞEHİR	358 0633517/4256369
ATY11	YAHYAALCI-ALAŞEHİR	358 0633559/4256317
K1	YENİŞEHIR-KİRAZ	358 0608553/4225878
K3	YENİŞEHIR-KİRAZ	358 0608372/4225822
K4	YENİŞEHIR-KİRAZ	35S 0608523/4225839
K6	YENİŞEHIR-KİRAZ	35S 0608554/4225816
K7	YENİŞEHIR-KİRAZ	35S 0608515/4225732
BÜ1	BİRGİ	358 0596308/4234662
BÜ2	BİRGİ	35S 0596473/4234661

Table S2. The precision and accuracy of known standard reference material (STD-SO-19) and analysis of sample EC4 by ICP-OES and ICP-MS. SD-standard deviations; RSD %- relative standard deviations.

	Accuracy	Accuracy		
Major and	(Reference	(Reference	Precision	Precision
Trace	Material-	Material-	(Sample EC4)	(Sample EC4)
Elements	STD-SO-19)	STD-SO-19)	$(\pm SD)$	(± RSD %)
	$(\pm SD)$	(± RSD %)		
SiO_2	60.5±0.014	60.5 ± 0.023	50.80±0.14	50.80 ± 0.276
Al_2O_3	13.965 ± 0.049	13.965±0.351	17.30 ± 0.0	17.30 ± 0.0
Fe ₂ O ₃	7.47 ± 0.014	7.47 ± 0.187	7.39±0.1342	7.29±1.815
CaO	2.915 ± 0.007	2.915 ± 0.240	11.15 ± 0.070	11.15 ± 0.628
MgO	5.945±0.021	5.945 ± 0.353	9.45 ± 0.028	9.45 ± 0.300
Na ₂ O	4.015 ± 0.007	4.015±0.174	$2.44{\pm}0.0$	$2.44{\pm}0.0$
K ₂ O	1.275 ± 0.021	1.275 ± 1.647	$0.20{\pm}0.0$	$0.20{\pm}0.0$
MnO	0.13 ± 0.0	0.13 ± 0.0	$0.12{\pm}0.0$	$0.12{\pm}0.0$
TiO ₂	$0.70{\pm}0.0$	$0.70{\pm}0.0$	0.415 ± 0.007	0.415 ± 1.69
P_2O_5	0.315 ± 0.005	0.315 ± 1.587	$0.04{\pm}0.0$	$0.04{\pm}0.0$
Cr_2O_3	$0.4985 {\pm} 0.002$	0.4985 ± 0.401	$0.07{\pm}0.0$	$0.07{\pm}0.0$
Ba	452 ± 4.240	452±0.938	103.5 ± 3.530	103.5 ± 3.41
Co	23.6 ± 0.707	23.6±2.995	42.4 ± 0.420	$42.4{\pm}1.0$
Cs	4.35 ± 0.070	4.35±1.609	$0.5{\pm}0.0$	$0.5{\pm}0.0$
Ga	16.6±0.424	16.6±2.554	15.8 ± 0.420	15.8 ± 2.66
Hf	3.3 ± 0.0	3.3 ± 0.0	2.0 ± 0.140	$2.0{\pm}7.0$
Nb	$69.4{\pm}0.0$	$69.4{\pm}0.0$	3.95 ± 0.070	3.95±1.77
Rb	19.8±0.0	19.8 ± 0.0	9.3±0.280	9.3±3.01
Sr	304.6±2.960	304.6±0.971	153.1 ± 1.280	153.1±0.83
Та	4.8 ± 0.0	4.8 ± 0.0	2.5 ± 0.070	2.5 ± 2.8
Th	12.75±0.354	12.75±2.776	0.6 ± 0.140	0.6 ± 23.33
U	18.35±0.212	18.35 ± 1.155	$0.1{\pm}0.0$	$0.1{\pm}0.0$
V	163 ± 4.243	163 ± 2.603	272 ± 2.820	272±1.030
Zr	113.6±0.424	113.6±0.373	69.1±2.120	69.1±3.070
Y	34.35±0.495	34.35±1.441	19.35 ± 0.350	19.35 ± 1.810
La	65.5±0.566	65.5 ± 0.864	5.55 ± 0.045	5.55 ± 0.82
Ce	151.5±0.869	151.5±0.573	14.3 ± 0.420	14.3 ± 2.940
Pr	18.945 ± 0.077	18.945 ± 0.406	1.99 ± 0.021	1.99 ± 1.050
Nd	74.25±0.636	74.25±0.856	9.1±0.140	0.91 ± 1.540
Sm	13.115 ± 0.318	13.115±2.425	2.44 ± 0.09	2.44 ± 3.690
Eu	3.585 ± 0.007	3.585±0.1972	0.875 ± 0.035	0.875 ± 4.00
Gd	10.94±0.067	10.94 ± 0.612	3.045 ± 0.021	3.045 ± 0.689
Tb	1.365 ± 0.007	1.365 ± 0.5130	$0.54{\pm}0.0$	$0.54{\pm}0.0$
Dy	7.285±0.2334	7.285 ± 3.2038	3.365 ± 0.077	3.365 ± 2.288
Но	1.37 ± 0.0141	1.37 ± 1.029	0.765 ± 0.007	0.765 ± 0.915
Er	3.705 ± 0.035	3.705 ± 0.9446	2.295 ± 0.09	2.295 ± 3.921
Tm	0.505 ± 0.0212	0.505 ± 4.198	0.315 ± 0.0212	0.315 ± 6.730
Yb	3.44 ± 0.08485	3.44±2.4665	2.05 ± 0.042	2.05 ± 2.048
Lu	0.53 ± 0.01414	0.53±2.6679	0.315±0.007	0.315 ± 2.222

Table S3. Electron micro probe analyze results of the minerals of the garnet amphibolite (TKC10) and retrogressed eclogite (K1) samples. The structural formulas were calculated based on 12 anhydrous oxygen for garnet, 6 anhydrous oxygen for clinopyroxene, 23 anhydrous oxygen for calcic amphiboles. Fe2⁺ and Fe³⁺ were re-calculated from Fe^(t) by the stoichiometric method of Droop (1987).

	Garnet	Garnet	Garnet	Garnet	Garnet	Garnet
	K1-R	K1-R	K1_R	K1-F	K1-F	K1-F
Sample	6 ar	7 or	R D	11 or	12 or	12 or
Eclogite	gi	/-g1	0-gi	· ·	12-gi	13-gi
	rim	center	middle	rim	center	middle
% web						
SiO_2	38.28	38.18	38.19	38.39	38.28	38.32
TiO ₂	0.17	0.20	0.27	0.13	0.25	0.25
Al_2O_3	20.93	20.75	20.56	20.92	20.83	20.58
FeO _(t)	24.85	25.48	26.38	25.14	25.20	25.14
Fe ₂ O ₃ (calculated)	0.67	0.93	1.09	0.35	0.82	0.81
FeO (calculated)	24.24	24.64	25.40	24.82	24.46	24.41
MnO	0.64	1.01	1.00	0.51	0.95	1.04
MgO	4.69	4.74	5.01	4.86	4.91	4.92
CaO	9.77	9.18	8.24	8.93	9.17	8.83
Cr_2O_3	0.01	0.05	0.09	0.06	0.08	0.02
Total	99.40	99.68	99.85	98.97	99.75	99.18
Cations						
Si	3.00	3.00	3.00	3.02	3.00	3.02
Ti	0.01	0.01	0.02	0.01	0.01	0.01
Al	1.94	1.92	1.90	1.94	1.92	1.91
Cr	0.00	0.00	0.01	0.00	0.01	0.00
Fe ³⁺	0.04	0.06	0.06	0.02	0.05	0.05
Fe ²⁺	1.59	1.62	1.67	1.63	1.60	1.61
Mn	0.04	0.07	0.07	0.03	0.06	0.07
Mg	0.55	0.55	0.59	0.57	0.57	0.58
Ca	0.82	0.77	0.69	0.75	0.77	0.74
Total	8.00	8.00	8.00	7.99	8.00	7.99
End Members						
Almandine	52.34	53.03	54.52	53.96	52.58	52.63
Andradite	2.01	2.78	3.28	1.07	2.45	2.44
Grossular	25.67	23.07	19.88	24.30	23.25	22.87
Pyrope	18.51	18.69	19.82	19.34	19.34	19.66

				1.1.2	2.15	2.30
Uvarovite	0.03	0.17	0.27	0.18	0.26	0.05

	Срх	Срх	Срх	Срх
Sample	K1-E	K1-E	K1-E	K1-E
Retrogressed	15-cpx	19-cpx	16-cpx	16-cpx
Eclogite	inclusion	rim	rim	center
% web				
SiO ₂	56.94	53.89	54.79	59.94
TiO ₂	0.08	0.02	0.10	0.02
Al ₂ O ₃	10.90	0.69	2.45	19.18
FeO _(t)	4.40	7.47	6.29	1.36
Fe ₂ O ₃ (calculated)	0.00	0.00	0.00	0.00
FeO (calculated)	4.40	7.47	6.29	1.36
MnO	0.03	0.12	0.04	0.01
MgO	8.46	13.16	13.31	2.17
CaO	13.80	23.69	22.38	9.21
Na ₂ O	6.36	0.30	1.34	7.09
K ₂ O	0.00	0.00	0.00	0.04
Cr ₂ O ₃	0.12	0.03	0.02	0.01
Total	101.09	99.37	100.73	99.03
Cations				
Si	2.002	2.012	1.998	2.055
Ti	0.453	0.031	0.107	0.817
Al	0.453	0.031	0.105	0.817
Fe ³⁺	0.000	0.000	0.000	0.000
Fe ²⁺	0.130	0.234	0.192	0.041
Mn	0.001	0.004	0.001	0.000
Mg	0.445	0.736	0.725	0.117
Ca	0.522	0.952	0.876	0.357
Na	0.435	0.021	0.095	0.497
Κ	0.000	0.000	0.000	0.002
Cr	0.003	0.001	0.001	0.000
Total	6.00	6.00	6.00	6.00
End Members				
Pyroxene quadrilateral Jadeite	55.76	97.82	90.42	33.08
Acmite	0.00	0.00	0.00	0.00
Wollastonite	47.58	49.53	48.86	67.79
Enstatite	40.58	38.28	40.43	23.78
Ferrosilite	11.84	12.19	10.72	8.43

	Amp	Amp	Amp	Amp	Amp	Amp	Amp	
	K1-B	K1-B	K1-E	K1-B	K1-E	K1-E	K1-E	
Sample Retrogressed	1-amp	5-amp	4-amp	7-amp	8-amp	9-amp	18- amp	
Eclogite	matrix	inclusion	matrix	matrix	matrix	matrix	matrix	
% web								
SiO ₂	44.34	49.93	47.06	39.38	42.69	43.34	46.60	
TiO ₂	0.63	0.33	0.41	0.50	0.74	0.74	0.56	
Al_2O_3	12.68	9.18	11.08	19.06	14.73	12.40	11.21	
FeO _(t)	13.44	10.58	11.63	14.82	12.79	12.56	11.51	
MnO	0.11	0.098	0.134	0.096	0.11	0.12	0.084	
MgO	11.49	15.24	12.89	7.88	10.91	12.24	13.07	
CaO	11.98	11.78	10.50	11.72	11.48	11.55	11.33	
Na ₂ O	1.89	1.27	1.76	2.05	2.10	1.92	1.63	
K ₂ O	0.29	0.000	0.38	0.50	0.41	0.36	0.35	
Cr_2O_3	0.088	0.04	0.066	0.13	0.094	0.095	0.12	
NiO	0.023	0.006	0.014	0.021	0.000	0.03	0.011	
Total	96.97	98.46	95.92	96.16	96.06	95.35	96.97	
Cations								
Si	6.527	7.003	6.832	5.914	6.325	6.442	6.768	
Ti	0.070	0.035	0.045	0.056	0.083	0.083	0.061	
Al	2.200	1.517	1.896	3.374	2.572	2.172	1.919	
Fe ³⁺	0.222	0.516	0.512	0.205	0.275	0.468	0.361	
Fe^{2^+}	1.433	0.726	0.900	1.656	1.309	1.093	1.037	
Mn	0.014	0.012	0.016	0.012	0.014	0.015	0.010	
Mg	2.521	3.187	2.790	1.764	2.410	2.712	2.830	
Ca	1.890	1.770	1.633	1.886	1.822	1.839	1.763	
Na	0.539	0.346	0.495	0.597	0.603	0.553	0.459	
Κ	0.056	0.000	0.069	0.096	0.077	0.067	0.065	
Cr	0.010	0.005	0.008	0.015	0.011	0.011	0.013	
Ni	0.003	0.001	0.002	0.003	0.000	0.004	0.001	

	Garnat	Garnet	Garnat	Garnat	Garnat	Garnat	Garnat
		TKC10-					
Garnet	B	C	C	C	D	D	D
Amphibolite	15-or	1-or	2-or-m	3-9r-0	9-or-k	10-9r-0	11-or-m
% web	15 gi	1 51	2 51 111	5 51 0) gi k	10 51 0	11 gi ili
SiO ₂	38,19	38.56	38.27	37.98	38.07	38.71	38.26
TiO ₂	0.14	0.06	0.17	0.17	0.16	0.06	0.15
Al ₂ O ₃	20.51	21.04	20.82	20.83	20.74	21.07	20.60
FeO _(t)	26.14	26.88	25.49	26.22	25.69	23.44	25.00
Fe ₂ O _{3(calculated)}	1.08	0.97	0.88	0.90	1.06	0.01	1.04
FeO _(calculated)	25.16	26.01	24.70	25.41	24.74	23.43	24.06
MnO	1.13	0.36	0.53	0.66	0.57	0.77	0.96
MgO	3.35	4.99	3.66	3.33	3.75	3.49	3.98
CaO	10.48	8.67	11.02	10.76	10.86	11.59	10.67
Cr2O3	0.01	0.00	0.00	0.03	0.00	0.00	0.00
Total	100.07	100.66	100.04	100.06	99.94	99.13	99.73
Cations							
Si	3.01	3.00	3.00	2.99	2.99	3.04	3.01
Al iv	0.00	0.00	0.00	0.01	0.01	0.00	0.00
Al vi	1.91	1.93	1.93	1.93	1.92	1.95	1.91
Ti	0.01	0.00	0.01	0.01	0.01	0.00	0.01
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe ³⁺	0.06	0.06	0.05	0.05	0.06	0.00	0.06
Fe ²⁺	1.66	1.69	1.62	1.67	1.63	1.54	1.58
Mn	0.08	0.02	0.03	0.04	0.04	0.05	0.06
Mg	0.39	0.58	0.43	0.39	0.44	0.41	0.47
Ni	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Zn	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ca	0.88	0.72	0.93	0.91	0.91	0.98	0.90
Total	8.00	8.01	8.00	8.01	8.01	7.98	8.00
End Members							
Almandine	54.18	55.52	53.15	54.98	53.24	50.97	51.65
Andradite	3.26	2.86	2.61	2.68	3.16	0.04	3.13
Grossular	26.65	21.40	28.61	27.68	27.57	33.28	27.28
Pyrope	13.32	19.42	14.43	13.11	14.76	13.96	15.78
Spessartine	2.55	0.80	1.18	1.47	1.27	1.75	2.16
Uvarovite	0.04	0.00	0.01	0.08	0.00	0.01	0.00

	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp
Correct	TKC10-							TKC10-D
Amphibolite	В	TKC10-	TKC10-	TKC10-	TKC10-	TKC10-	TKC10-	13-amp
Ampinoonie	6-amp	C 4-amp	C 5-amp	C 7-amp	D 1-amp	D 2-amp	D-3-amp	matrix
% web								
SiO_2	42.42	42.63	42.52	48.48	42.83	43.54	43.14	43.37
TiO ₂	0.84	0.87	0.97	0.50	0.88	0.73	0.71	0.85
Al_2O_3	13.15	13.60	11.49	6.82	13.83	13.97	13.33	12.73
FeO _(t)	15.60	14.87	18.11	15.37	13.97	15.88	14.78	13.91
MnO	0.11	0.09	0.12	0.12	0.08	0.08	0.099	0.07
MgO	10.30	10.37	9.07	12.30	11.33	10.32	10.81	11.34
CaO	10.77	10.90	10.56	11.41	11.43	11.06	10.89	11.70
Na ₂ O	2.27	2.16	2.08	1.42	2.21	2.30	2.20	1.97
K ₂ O	0.95	1.02	0.91	0.35	0.94	0.98	0.90	0.88
Cr_2O_3	0.01	0.01	0.08	0.04	0.00	0.007	0.00	0.00
NiO	0.01	0.00	0.00	0.00	0.00	0.00	0.011	0.00
Total	98.18	98.29	97.63	98.68	99.30	100.68	98.64	98.60
Cations								
Si	6.334	6.349	6.456	7.144	6.296	6.339	6.377	6.435
Ti	0.094	0.097	0.111	0.055	0.097	0.080	0.079	0.096
Al	2.314	2.387	2.056	1.184	2.396	2.397	2.322	2.226
Fe ³⁺	0.543	0.423	0.577	0.337	0.410	0.482	0.518	0.260
Fe^{2+}	1.405	1.429	1.722	1.557	1.307	1.452	1.309	1.466
Mn	0.014	0.011	0.015	0.015	0.010	0.010	0.012	0.009
Mg	2.293	2.302	2.053	2.702	2.483	2.240	2.382	2.508
Ca	1.723	1.739	1.718	1.802	1.800	1.725	1.725	1.860
Na	0.657	0.624	0.612	0.406	0.630	0.649	0.630	0.567
К	0.181	0.194	0.176	0.066	0.176	0.182	0.169	0.166
Cr	0.001	0.001	0.010	0.005	0.000	0.001	0.000	0.000

	DI	DI	DI	D1;	DI	DI	D1;	DI
			rŋ	гij		гŋ	гŋ	
Garnet	12-fsn	D	TKC10-D	TKC10-	R 14-	TKC10-	TKC10-	R R
Amphibolite	matrix	5-fsp	4-fsp	C 6-fsp	fsp2	B 3-fsp	B 2-fsp	1-fsp
% web		0 150			100-			1 100
SiO ₂	67.31	65.75	66.57	66.54	65.5	64.77	66.39	66.52
TiO ₂	0	0	0	0	0	0	0	0
Al_2O_3	21.01	21.32	20.72	21.14	21.3	22.6	20.67	20.65
MgO	0	0	0	0	0	0	0	0
CaO	2.05	2.7	2.06	2.21	2.74	3.74	1.94	1.86
MnO	0	0	0	0	0	0	0	0
FeO _(t)	0.123	0.361	0.191	0.151	0.423	0.206	0.085	0.063
BaO	0.019	0.052	0.042	0.05	0.064	0	0	0
Na ₂ O	9.97	9.6	10.02	10.01	9.8	9.17	10.51	10.17
K ₂ O	0.208	0.243	0.167	0.195	0.213	0.241	0.205	0.236
Total	100.68	100.02	99.76	100.29	100.04	100.73	99.8	99.26
Cations								
Si	2.93	2.89	2.93	2.91	2.88	2.84	2.92	2.93
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al	0.72	0.74	0.72	0.73	0.74	0.78	0.71	1.07
Mg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ca	0.19	0.25	0.19	0.21	0.26	0.35	0.18	0.09
Mn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe	0.01	0.03	0.01	0.01	0.03	0.02	0.01	0.00
Ba	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na	1.68	1.64	1.71	1.70	1.67	1.56	1.79	0.87
Κ	0.02	0.03	0.02	0.02	0.02	0.03	0.02	0.01
Total	5.56	5.57	5.58	5.58	5.60	5.57	5.63	4.97
End Members								
An	10.20	13.45	10.20	10.87	13.38	18.39	9,26	9,18
Ab	89.80	86.55	89.80	89.13	86.62	81.61	90.74	90.82
	22.00	22.50	0, 00				2017	2 0 . 0 -

Table S4. Laser ablation-inductively coupled plasma-mass spectrometry trace and REE data of garnet-amphibolite-TKC10 and retrogressed eclogite-K1 samples. Concentrations in ppm, calibrated from NIST612 values by reference of Si29 to concentration of SiO₂ determined by electron micro probe analysis.

			GAR	NET AMPHI	BOLITE (T	KC10)			RETROGRESSED ECLOGITE (K1)					
(ppm)	TK18	TK17	TK14	TK12	TK4	TK11	TK10	TK9	TK47	TK49	TK51	TK53	TK54	
Li7	12.98	13.17	13.59	11.4	15.26	14.37	12.83	11.11	5.62	5.37	6.59	4.86	6.25	
Be9	0.087	< 0.105	< 0.00	< 0.082	<0.198	< 0.064	<0.090	0.038	<0.113	< 0.101	< 0.115	0.041	< 0.106	
B11	1.1	1.11	0.91	0.93	<0.62	<0.58	<0.57	<0.62	<0.66	0.56	0.72	<0.47	<0.59	
A127	100716	109907	113131	92837	113199	115512	113072	113275	116362	105051	98053	94057	116790	
Si29	179029	179029	179029	179029	179029	179029	179029	179029	179029	179029	179029	179029	179029	
P31	36.65	47.18	40.81	27.61	36.77	31.24	33.6	45.48	22.36	40.04	55.14	33.4	37.82	
Ca43	66386	74119	76328	62403	74292	77482	75153	73812	65932	60805	54769	53416	65734	
Ti49	1258.6	1642	1350.01	1017.76	1139.32	1187.58	1133.87	1168.03	696	1783	2946	1700	1122	
V51	139.02	118.59	143.83	157.1	156.7	175.85	167.13	139.61	85.02	131.95	156.26	115.65	97.47	
Cr53	19.96	7.17	13.54	30.17	15.85	17.12	17.36	23.26	220.24	460.77	663.78	417.33	306.13	
Mn55	6712.86	8114.91	4579.88	3249.24	3791.15	3789.87	3701.57	3663.3	3366.4	4709.63	5719.69	3929.51	3475.13	
Co59	20.51	22.56	23.41	18.28	22.92	23.45	22.52	23.02	40.81	35.91	36.9	33.81	42.09	
Ni60	0.94	0.31	0.227	0.3	0.305	0.307	0.27	0.289	4.25	6.57	10.87	24.99	84.7	
Cu65	1.52	0.6	<0.58	0.76	< 0.53	< 0.51	< 0.51	<0.48	9.22	21.68	23.79	27.27	136.17	
Zn66	46.53	47.5	57.95	42.02	49.99	49.76	49.72	49.16	47.04	39.06	37.37	36.46	49.96	
Ga71	7.6	8.29	8.79	6.93	8.54	8.85	8.77	8.4	6.15	5.6	4.83	4.72	5.81	
Rb85	0.705	< 0.172	< 0.160	< 0.136	< 0.153	< 0.141	< 0.154	< 0.156	< 0.192	< 0.155	< 0.149	< 0.136	0.294	
Sr88	2.16	1.025	0.414	0.683	0.067	0.088	0.074	0.106	0.0316	0.233	0.233	0.496	0.418	
Y89	130.76	139.36	90.38	75.91	80.86	81.22	91.46	110.17	64.69	46.23	19.46	70.51	65.8	
Zr90	7.49	10.08	8.54	6.11	5.83	5.94	6.28	8.81	3.44	3.78	9.89	2.54	16.3	
Nb93	< 0.0192	0.112	<0.0194	0.0091	0.0165	< 0.0242	< 0.0097	< 0.0141	< 0.0171	0.125	0.321	0.208	0.11	
Cs133	< 0.114	0.142	<0.113	< 0.090	<0.113	< 0.105	< 0.095	< 0.102	< 0.123	< 0.110	0.135	< 0.093	0.223	
Ba137	11.73	3.94	< 0.108	0.951	< 0.085	< 0.078	< 0.094	< 0.096	0.147	0.98	0.91	1.77	2.44	
Hf178	0.096	0.141	0.15	0.139	0.117	0.128	0.12	0.152	0.12	0.113	0.293	0.089	0.523	
Ta181	0.0094	< 0.0121	< 0.0104	< 0.0083	< 0.0082	0.0085	< 0.0074	0.0066	0.0117	< 0.0114	0.0253	0.0164	0.0118	
Pb208	3.07	0.353	0.068	0.498	0.085	0.034	0.037	< 0.031	0.035	0.149	0.191	0.396	2.47	
Th232	0.0075	< 0.0146	< 0.0118	< 0.0114	< 0.0113	0.0058	< 0.0114	< 0.0105	< 0.0088	< 0.0125	< 0.0103	0.0064	< 0.0058	

U238	< 0.0050	< 0.0090	< 0.0072	< 0.0070	0.0057	< 0.0078	< 0.0063	< 0.0102	< 0.0054	0.0045	< 0.0090	< 0.0073	< 0.0071
La139	0.081	0.033	0.093	0.154	< 0.0104	0.025	0.026	0.014	0.0113	0.0213	0.0682	0.076	0.126
Ce140	0.129	0.097	0.342	0.299	< 0.0142	0.0434	0.0289	0.0685	< 0.0157	0.0327	0.047	0.0368	0.067
Pr141	0.0308	0.0207	0.021	0.0594	0.0057	< 0.0121	0.0105	0.0151	< 0.0113	0.0077	0.0229	0.0195	0.0333
Nd146	0.398	< 0.051	0.193	0.274	0.089	0.101	0.134	0.117	0.054	0.06	0.097	0.076	0.269
Sm147	0.49	0.267	0.424	0.633	0.568	0.543	0.63	0.573	0.081	0.044	0.114	0.058	0.137
Eu153	0.344	0.37	0.639	0.501	0.677	0.678	0.647	0.744	0.039	0.055	0.05	0.068	0.072
Gd157	3.63	4.03	4.92	4.43	5.64	5.83	5.6	6.01	0.844	0.466	0.779	0.727	0.751
Tb159	1.769	1.918	1.905	1.664	1.98	2.084	2.094	2.23	0.582	0.293	0.259	0.507	0.579
Dy163	18.76	18.98	15.25	13.92	14.93	15.1	17.28	18.61	8.35	4.76	2.73	7.73	8.52
Ho165	4.9	5.27	3.54	2.98	3.07	3.07	3.56	4.18	2.43	1.537	0.706	2.6	2.5
Er166	15.46	16.74	9.62	8.12	8.47	8.24	9.9	12.54	8.02	5.43	2.34	8.73	8.01
Tm169	2.19	2.5	1.369	1.089	1.14	1.123	1.228	1.688	1.185	0.853	0.324	1.288	1.109
Yb172	15.29	18.07	8.95	7.06	7.45	7.34	8.22	11.41	7.03	6.01	2.57	8.72	7.5
Lu175	2.27	2.63	1.39	1.035	1.045	1.053	1.177	1.69	1.146	0.802	0.365	1.149	1.037

 Table S5. Estimated P&T conditions of the garnet amphibolite sample (TKC10) by amphibole-plagioclase Al-Si partitioning thermo-barometric empirical

 equations. EPMA mineralogical analysis are from Supplementary Table 3.

							Amphibol	e Minerals			
		Sar	nple No	ТКС-10-В-	TKC-10-C-	TKC-10-C-	TKC10-C7-	TKC10-D1-	TKC10-D2-	TKC10-D3-	TKC10-D-
				6	4-amp	5-amp	amp	amp	amp	amp	13-amp
			XT1 Si	0.587	0.588	0.618	0.779	0.575	0.587	0.597	0.607
			XT1 Al	0.413	0.412	0.382	0.221	0.425	0.413	0.403	0.393
		Analysis	XM2 AI	0.334	0.371	0.267	0.148	0.349	0.374	0.358	0.326
			ХА К	0.181	0.194	0.177	0.176	0.176	0.182	0.170	0.166
			XA 🗆	0.407	0.432	0.464	0.455	0.383	0.422	0.447	0.422
			XA Na	0.412	0.374	0.359	0.369	0.440	0.396	0.383	0.411
		X Ab	Y Ab			Те	emperature (°C)			
	TKC10-12-fsp-matrix	0.887	0.00	635	627	655	629	642	613	617	622
	TKC10-D-5-fsp	0.853	0.00	641	633	660	634	648	619	622	628
	TKC10-D-4-fsp	0.889	0.00	634	627	654	629	642	613	616	622
Plagioclase	TKC10-C-6-fsp	0.881	0.00	636	628	656	630	643	614	618	623
	TKC10-B14-fsp2	0.856	0.00	640	633	660	634	648	619	622	627
	TKC10-B3-fsp	0.805	0.00	650	642	669	642	658	628	631	637
	TKC10-B2-fsp	0.897	0.00	633	625	653	627	640	612	615	620
	TKC10-B1-fsp	0.896	0.00	633	626	653	628	640	612	615	620
			T(°C)	613	619	613	614	619	631	612	612
							Pressure (kb)			
			P (kbar)	9	10	8	8	9	10	10	10

3.

 Table S6. Estimated retrogression P&T conditions of retrogressed eclogite sample (K1) by amphibole-plagioclase Al-Si partitioning thermo-barometric empirical

equations. EPMA mineralogical analysis are from Supplementary Table 3.

				Amphibole							
			Sample No	K1-B-1-	K1-E-4-	K1-B-7-	K1-E-9-	K1-E-18-			
				amp	amp	amp	amp	amp			
			XT1 Si	0.630	0.711	0.476	0.580	0.692			
			XT1 AI	0.370	0.289	0.524	0.420	0.308			
		Analysis	XM2 AI	0.358	0.372	0.637	0.445	0.344			
			ХАК	0.054	0.071	0.096	0.077	0.065			
			XA 🗆	0.549	0782	0.462	0.521	0.726			
			XA Na	0.397	0.148	0.442	0.402	0.210			
					Τe	emperature (°	°C)				
		X Ab	Y Ab								
	K1-E-B9-py-k	0.746	0.00	628	569	655	618	605			
Plagioclase	K1-E6-py-k	0.743	0.00	628	569	656	618	605			
	K1-E19-py-k	0.783	0.00	621	564	646	611	599			
	K1-E17-py-k	0.764	0.00	624	566	651	614	602			
			T(°C)	621	564	646	611	599			
						Pressure (kb)					
			P (kb)	11	11	13	11	11			

		Apparent Ages	\$									
SAMPLE NUMBERS	²⁰⁷ Pb/ ²³⁵ U ± (2SE)	$^{206}{ m Pb}/^{238}{ m U}$ \pm (2SE)	²⁰⁷ Pb/ ²⁰⁶ Pb ± (2SE)	$^{207}{ m Pb}/^{235}{ m U} \pm (2{ m SE})$	$^{206}{ m Pb}/^{238}{ m U}$ \pm (2SE)	²⁰⁷ Pb/ ²⁰⁶ Pb ± (2SE)	Discor- dance %	U (ppm)	2SE	Th (ppm)	2SE	Th/U
ATY3- GARNET AMPHIBOLITE												
ATY3-17	0.514±0.017	0.0595±0.0019	$0.0626 {\pm} 0.0017$	421.1±12	373±12	688±58	11.4	508	27	139	28	0.27
ATY3-156	0.516 ± 0.028	$0.0598 {\pm} 0.0013$	0.0638 ± 0.0036	421±19	374.2±8.1	730±110	11.1	404.9	8.2	233.8	3.8	0.58
ATY3-90	0.57±0.019	0.06279 ± 0.0011	0.0662 ± 0.0016	458±12	392.5±6.9	807±50	14.3	134.7	7	61.5	2.6	0.46
ATY3-172m	0.5144±0.012	$0.06395 {\pm} 0.0011$	0.05817 ± 0.00089	421.1±8.2	399.5±6.8	540±34	5.1	443	14	168.2	5.7	0.38
ATY3-174	0.5368±0.012	0.06627 ± 0.0011	0.05894 ± 0.00094	436.1±8.2	413.6±6.4	568±34	5.2	587	45	389	32	0.66
ATY3-02	0.536±0.017	$0.0663 {\pm} 0.0014$	$0.0584{\pm}0.0011$	436±11	414.7±8.9	557±43	4.9	243.9	9.7	142.6	3	0.58
ATY3-161	0.573±0.024	0.07 ± 0.0018	0.0607 ± 0.0021	460±15	435.9±11	619±74	5.2	432	24	183	8	0.42
ATY3-171r	0.583±0.017	0.0704 ± 0.0015	0.0599±0.0013	466.3±11	438.7±8.9	596±45	5.9	657.6	9.4	794	21	1.21
ATY3-96	0.604±0.018	0.0757±0.0014	0.0581 ± 0.0014	480.6±11	470.3±8.4	526±51	2.1	161.1	5.8	93.6	1.2	0.58
ATY3-52r	0.621±0.017	0.0772 ± 0.0016	0.05892 ± 0.00086	490.4±11	479.1±9.6	570±28	2.3	965	44	448	20	0.46
ATY3-17b	0.641±0.019	0.0785 ± 0.0022	$0.0594{\pm}0.0011$	502.3±12	487±13	576±40	3.0	444	27	158	22	0.36
ATY3-153	0.658 ± 0.02	0.0804±0.0016	0.0597±0.0015	512.7±12	498.6±9.4	583±55	2.8	246	17	124	8	0.50
ATY3-92	0.669±0.017	0.0808 ± 0.0014	0.0597±0.0012	519.7±10	500.8±8.2	590±43	3.6	241	15	167.8	8.8	0.70
ATY3-116m	0.659±0.018	0.08141 ± 0.0013	0.0583 ± 0.0012	514.2±11	504.5±7.5	553±46	1.9	199	10	90.2	3.7	0.45
ATY3-15	0.655±0.017	0.0815 ± 0.0018	0.0581 ± 0.0011	511.5±11	504.9±11	537±43	1.3	873	85	256	18	0.29
ATY3-105c	0.6593±0.014	$0.08173 {\pm} 0.0014$	0.05854 ± 0.00079	514±8.8	506.4±8.2	546±29	1.5	684	77	646	83	0.94
ATY3-35	0.654±0.017	0.0818±0.0021	0.0581±0.0013	511±11	507±13	545±43	0.8	1127	84	361	12	0.32
ATY3-14	0.654±0.017	0.08223±0.0014	0.0579±0.0011	510.6±10	509.4±8.5	518±42	0.2	401	52	163	11	0.41
ATY3-24	0.6703±0.016	0.08239 ± 0.0013	0.05931 ± 0.00093	520.6±9.6	510.3±7.8*,**	574±35	2.0	502	19	338.6	7.5	0.67

Table S7. Zircon U-Pb geochronological results of garnet amphibolite sample -ATY3 (Yahyaalci-Alaşehir area of Bozdağ Nappe), Menderes Massif, Turkey.

ATY3-177c	$0.663 {\pm} 0.015$	0.08301 ± 0.0013	$0.05798 {\pm} 0.00084$	516.2±8.9	514±8.0*,**	535±31	0.4	381	22	194	11	0.51
ATY3-12	0.673±0.016	$0.0832 {\pm} 0.0018$	$0.0583 {\pm} 0.00096$	523.4±10	515±11*,**	545±38	1.6	2800	210	357	26	0.13
ATY3-175	0.674 ± 0.022	0.08321 ± 0.0014	0.059 ± 0.0017	524±13	515.2±8.3*,**	551±63	1.7	213.8	9.8	160.4	7.6	0.75
ATY3-125	0.664±0.016	0.08372 ± 0.0013	$0.05804 {\pm} 0.0008$	518±9.6	518.3±8.0*,**	528±30	-0.1	456	21	36	1.2	0.08
ATY3-109	0.6821±0.016	0.08464 ± 0.0014	0.05865 ± 0.00084	527.7±9.5	523.7±8.1*,**	557±33	0.8	332	20	223	12	0.67
ATY3-136	0.682 ± 0.022	0.0846 ± 0.0016	$0.058 {\pm} 0.0019$	527±13	523.7±9.5*,**	522±75	0.6	141	14	77	10	0.55
ATY3-39c	0.683±0.017	0.08465 ± 0.0014	$0.0588 {\pm} 0.0012$	528.2±10	523.8±8.6*,**	562±46	0.8	558	14	343.7	9.6	0.62
ATY3-10	0.681 ± 0.017	0.08486 ± 0.0014	$0.05834 {\pm} 0.001$	528.3±9.9	525±8.6*,**	536±38	0.6	243.2	6.1	81.4	2.5	0.33
ATY3-103	0.6908 ± 0.016	0.085 ± 0.0017	$0.0589 {\pm} 0.0012$	533.1±9.6	525.9±9.9*,**	559±45	1.4	385	20	237	13	0.62
ATY3-161b	$0.695 {\pm} 0.025$	$0.0853 {\pm} 0.0015$	$0.0587 {\pm} 0.0016$	535±15	527.7±9.1*,**	550±59	1.4	175	11	107.6	7.1	0.61
ATY3-132r	0.68 ± 0.02	$0.0854 {\pm} 0.0016$	$0.0584{\pm}0.0015$	526.4±12	528.4±9.6*,**	557±51	-0.4	222.1	8.1	151	11	0.68
ATY3-29	0.682 ± 0.018	$0.08549 {\pm} 0.0015$	$0.058 {\pm} 0.0011$	528.3±10	528.8±8.8*,**	532±41	-0.1	285	55	8.48	0.4	0.03
ATY3-21	0.699±0.018	$0.0856 {\pm} 0.0017$	$0.05975 {\pm} 0.00098$	537.3±11	529.4±10*,**	587±36	1.5	261	15	197	16	0.75
ATY3-70	$0.695 {\pm} 0.018$	$0.08587 {\pm} 0.0015$	$0.0588{\pm}0.0011$	536.5±11	531.1±8.8*,**	553±41	1.0	470	39	331	28	0.70
ATY3-133c	0.691±0.021	$0.0857 {\pm} 0.0016$	0.05850.0013	533±13	531.1±9.1*,**	554±50	0.4	289	11	184.5	9	0.64
ATY3-106	0.692±0.019	0.0861 ± 0.0016	$0.0581 {\pm} 0.0013$	534.9±11	532.1±9.6*,**	538±48	0.5	354	16	211	11	0.60
ATY3-149	0.699±0.016	0.08614 ± 0.0015	$0.05918{\pm}0.00084$	538.1±9.8	532.7±8.6*,**	570±31	1.0	683	26	485	20	0.71
ATY3-91	0.699 ± 0.022	0.08616 ± 0.0015	0.059 ± 0.0015	538±13	532.8±8.6*,**	568±54	1.0	89.2	3.1	35.7	1.3	0.40
ATY3-03	0.702 ± 0.016	0.08646 ± 0.0014	0.05861 ± 0.00099	539.8±9.8	534.5±8.2*,**	546±37	1.0	383	17	238.9	3.9	0.62
ATY3-27	$0.697 {\pm} 0.018$	$0.0868 {\pm} 0.0021$	$0.0586{\pm}0.0011$	536.5±11	536±13*,**	547±40	0.1	3050	350	1029	40	0.34
ATY3-116r	$0.705 {\pm} 0.018$	0.08674 ± 0.0014	$0.0588 {\pm} 0.0012$	543.6±11	536.2±8.2*,**	558±44	1.4	233	11	105.5	4	0.45
ATY3-111	0.7007 ± 0.014	0.08683 ± 0.0013	0.05845 ± 0.00066	539.1±8.5	536.7±7.7*,**	547±25	0.4	907	36	764	24	0.84
ATY3-147c	0.713±0.017	0.0869 ± 0.0014	$0.05971 {\pm} 0.001$	546.2±10	537.1±8.1*,**	597±37	1.7	256	23	121	10	0.47
ATY3-52r_b	0.714 ± 0.018	0.08706 ± 0.0014	$0.05935 {\pm} 0.00096$	547±10	538.1±8.5*,**	575±36	1.6	565	22	289	11	0.51
ATY3-84	0.7068 ± 0.016	0.08712 ± 0.0015	$0.05878 {\pm} 0.00088$	542.6±9.5	538.4±8.9*,**	562±34	0.8	354	10	221.4	8.5	0.63
ATY3-62	0.7029±0.016	0.08716±0.0015	$0.05886 {\pm} 0.00094$	540.3±9.6	538.7±8.7*,**	557±35	0.3	422	38	268	22	0.64

ATY3-99r	$0.707 {\pm} 0.016$	$0.0872 {\pm} 0.0015$	$0.05959 {\pm} 0.00088$	542.5±9.8	538.9±9.0*,**	589±31	0.7	382	21	243	9.6	0.64
ATY3-141c	$0.708 {\pm} 0.017$	$0.08719 {\pm} 0.0015$	$0.05883 {\pm} 0.001$	544.7±9.9	538.9±8.9*,**	559±36	1.1	391	19	253.7	9.5	0.65
ATY3-176r	0.693±0.021	0.0872 ± 0.0016	0.0584 ± 0.0015	534±13	538.9±9.3*,**	547±56	-0.9	278	12	190.1	7	0.68
ATY3-65	0.7001±0.016	0.08726 ± 0.0014	$0.05855 {\pm} 0.00084$	538.7±9.4	539.3±8.6*,**	552±31	-0.1	437	26	125.4	6	0.29
ATY3-110	0.718±0.02	$0.08739 {\pm} 0.0015$	0.0594 ± 0.0015	550±12	540.1±9.0*,**	581±54	1.8	134.9	5.6	89.5	2.4	0.66
ATY3-87	0.7102±0.016	$0.08739 {\pm} 0.0014$	0.05904 ± 0.00073	544.6±9.3	540.6±8.6*,**	565±27	0.7	520	50	311	29	0.60
ATY3-63	0.706±0.017	0.0876 ± 0.0013	0.05867 ± 0.00099	542.8±9.8	541.3±8.0*,**	564±37	0.3	259.3	8.1	111.2	1.9	0.43
ATY3-131	0.71 ± 0.017	0.08763 ± 0.0014	$0.0588 {\pm} 0.00084$	546±9.6	541.4±8.0*,**	558±31	0.8	343	21	243	17	0.71
ATY3-165	0.706 ± 0.017	0.0876 ± 0.0016	$0.05878 {\pm} 0.00097$	543.2±10	541.5±9.4*,**	558±35	0.3	420	25	252.7	9	0.60
ATY3-128r	0.72 ± 0.02	0.0877 ± 0.0016	$0.0594{\pm}0.0014$	551.6±12	541.7±9.3*,**	577±53	1.8	233	15	117.9	5.6	0.51
ATY3-48c	0.703±0.019	$0.0877 {\pm} 0.0018$	$0.0582{\pm}0.0011$	540±11	542±11*,**	558±38	-0.4	949	60	563	39	0.59
ATY3-37r	0.71 ± 0.017	$0.08775 {\pm} 0.0014$	$0.05882{\pm}0.00081$	544.5±9.9	542.2±8.3*,**	561±31	0.4	532	30	349	15	0.66
ATY3-56m	$0.708 {\pm} 0.017$	$0.08779 {\pm} 0.0015$	$0.05855 {\pm} 0.00094$	542.9±10	542.4±8.8*,**	550±36	0.1	346	16	247.9	8.9	0.72
ATY3-72	0.714 ± 0.018	$0.0878 {\pm} 0.0015$	$0.0589 {\pm} 0.0012$	546.8±11	542.5±8.7*,**	561±43	0.8	171	12	86.3	4.7	0.50
ATY3-16	0.696±0.021	$0.0879 {\pm} 0.0019$	$0.0575 {\pm} 0.0015$	536.9±12	542.9±11*	513±58	-1.1	133	4.8	55.3	1.6	0.42
ATY3-135	0.7013±0.016	$0.08787 {\pm} 0.0014$	$0.05819{\pm}0.00091$	540.2±9.6	542.9±8.1*	540±33	-0.5	490	40	249	25	0.51
ATY3-40r	0.7072±0.015	$0.08796 {\pm} 0.0014$	$0.05795 {\pm} 0.00083$	542.9±8.9	543.4±8.5*	522±31	-0.1	380	42	260	33	0.68
ATY3-115	$0.705 {\pm} 0.017$	$0.088 {\pm} 0.0017$	$0.0581 {\pm} 0.0011$	541.6±10	543.4±9.8*	523±42	-0.3	201	11	88.4	2.7	0.44
ATY3-77r	0.71±0.017	$0.08798 {\pm} 0.0014$	0.05841 ± 0.00096	544.5±10	543.5±8.5*	547±35	0.2	313	22	208	13	0.66
ATY3-89	0.72±0.018	$0.088 {\pm} 0.0016$	$0.05947 {\pm} 0.001$	550.9±11	543.5±9.2*	577±37	1.3	209	12	66.3	2.9	0.32
ATY3-42c	0.7133±0.016	0.08799 ± 0.0015	$0.05887 {\pm} 0.0008$	546.5±9.6	543.6±8.9*	559±30	0.5	507	20	351.1	8.7	0.69
ATY3-75	0.706±0.02	$0.088 {\pm} 0.0014$	$0.0583{\pm}0.0014$	542.8±12	543.7±8.4*	526±54	-0.2	143.4	8.3	98.4	5.2	0.69
ATY3-83	0.715±0.017	0.08801 ± 0.0014	$0.05874 {\pm} 0.00085$	547.2±9.9	543.7±8.4*	561±31	0.6	373	25	272	16	0.73
ATY3-04	$0.707 {\pm} 0.019$	0.088 ± 0.0016	$0.0584{\pm}0.0011$	542.5±11	543.9±9.7*	555±45	-0.3	316	17	25.1	1.3	0.08
ATY3-82	0.717 ± 0.018	0.08793±0.0015	$0.05903 {\pm} 0.001$	548.6±11	544±9.0*	568±38	0.8	187	18	77.9	7	0.42
ATY3-107	0.721±0.018	$0.0881 {\pm} 0.0016$	$0.0594 {\pm} 0.0014$	550.7±11	544.2±9.4*	589±50	1.2	323	21	217	12	0.67

ATY3-150	0.716 ± 0.017	0.08821 ± 0.0015	$0.05893 {\pm} 0.001$	548.7±9.8	544.9±8.7*	566±37	0.7	225	18	117.6	9	0.52
ATY3-88	0.7167 ± 0.015	$0.08828 {\pm} 0.0014$	$0.05859 {\pm} 0.00071$	548.5±9.1	545.3±8.4*	553±26	0.6	749	32	671	21	0.90
ATY3-126	0.7111±0.016	0.08829 ± 0.0014	0.05845 ± 0.00085	545.1±9.5	545.4±8.1*	548±32	-0.1	449	27	331	15	0.74
ATY3-127	0.722 ± 0.017	$0.08833 {\pm} 0.0014$	0.05929 ± 0.00085	552.4±10	545.6±8.5*	584±32	1.2	266	11	195.8	4	0.74
ATY3-41m	0.714 ± 0.017	$0.0883 {\pm} 0.0015$	0.05827 ± 0.001	546.8±10	545.7±9.2*	539±39	0.2	482	17	340.9	6.6	0.71
ATY3-68c	0.7154 ± 0.015	$0.08834 {\pm} 0.0013$	0.05902 ± 0.00074	549±9.5	545.7±7.8*	564±28	0.6	832	45	616	25	0.74
ATY3-117	$0.721 {\pm} 0.018$	0.0884 ± 0.0016	$0.0593{\pm}0.0011$	551.2±11	546.2±9.3*	573±39	0.9	505	20	368	12	0.73
ATY3-154	0.7059±0.016	$0.08844 {\pm} 0.0015$	0.05789 ± 0.00082	542.9±10	546.2±8.8*	522±31	-0.6	355	21	215	16	0.61
ATY3-147r	0.7059±0.016	$0.08844 {\pm} 0.0014$	$0.0576 {\pm} 0.00088$	542.8±9.4	546.3±8.2*	514±33	-0.6	353	27	241	14	0.68
ATY3-113	0.7201±0.016	0.0885 ± 0.0016	$0.05927 {\pm} 0.00084$	551.9±9.7	546.5±9.5*	579±31	1.0	384	22	311	15	0.81
ATY3-93	0.721 ± 0.017	$0.0885 {\pm} 0.0016$	$0.05955 {\pm} 0.00098$	550.7±10	546.6±9.8*	587±35	0.7	260	13	139.5	6.8	0.54
ATY3-79	$0.709 {\pm} 0.018$	0.08842 ± 0.0014	$0.05834 {\pm} 0.001$	544.6±11	546.8±8.4*	547±40	-0.4	159.8	9.9	103.2	4.8	0.65
ATY3-143	0.714 ± 0.024	$0.0885 {\pm} 0.0021$	0.059 ± 0.0019	549±13	547±12*	579±69	0.4	139	6.3	1.71	0.14	0.01
ATY3-121c	0.7139±0.016	$0.08861 {\pm} 0.0014$	$0.05858{\pm}0.00077$	546.7±9.3	547.3±8.1*	550±29	-0.1	372	17	144.8	4.3	0.39
ATY3-100c	0.7186±0.016	$0.08864 {\pm} 0.0015$	$0.05912 {\pm} 0.00087$	549.6±9.4	547.4±8.7*	570±33	0.4	388	17	259.1	7.6	0.67
ATY3-130	0.7222±0.016	$0.0887 {\pm} 0.0015$	$0.05869 {\pm} 0.00074$	551.8±9.4	547.8±8.8*	55328	0.7	950	170	581	47	0.61
ATY3-57C	$0.719 {\pm} 0.017$	$0.08873 {\pm} 0.0015$	$0.05884 {\pm} 0.00087$	551.3±10	548±8.8*	564±31	0.6	345	17	273	11	0.79
ATY3-54c	0.719 ± 0.017	$0.0888 {\pm} 0.0015$	0.05882 ± 0.00088	550.7±9.7	548.2±9.1*	566±31	0.5	305	19	173	10	0.57
ATY3-55r	$0.706 {\pm} 0.018$	$0.0888 {\pm} 0.0016$	$0.058 {\pm} 0.0011$	543±11	548.5±9.3*	539±41	-1.0	210	4.5	120	5.8	0.57
ATY3-36	0.725 ± 0.021	$0.0889 {\pm} 0.002$	$0.0594{\pm}0.0016$	552.7±12	548.6±12*	574±57	0.7	166	14	18.9	0.51	0.11
ATY3-104r	0.7255±0.016	$0.08884 {\pm} 0.0014$	$0.05935 {\pm} 0.0008$	554.4±9.7	548.6±8.5*	576±29	1.0	657	35	509	20	0.77
ATY3-140r	0.716 ± 0.017	$0.08883 {\pm} 0.0014$	$0.05881 {\pm} 0.00089$	547.8±9.9	548.6±8.4*	557±32	-0.1	302	22	151	16	0.50
ATY3-67r	$0.7198 {\pm} 0.015$	$0.08891 {\pm} 0.0014$	$0.05873 {\pm} 0.00064$	550.9±8.8	549±8.2*	560±23	0.3	815	57	579	30	0.71
ATY3-125b	$0.729 {\pm} 0.048$	0.0889 ± 0.0026	$0.0593 {\pm} 0.0035$	554±29	549±15*	550±130	0.9	57.8	1.5	22.82	0.74	0.39
ATY3-166	0.72±0.015	0.08891±0.0014	$0.05889 {\pm} 0.00074$	550.5±9.0	549±8.4*	563±28	0.3	607	28	183.2	6.1	0.30
ATY3-47m	$0.714{\pm}0.017$	0.0889 ± 0.0017	0.05808 ± 0.00076	546.9±10	549.2±9.8*	530±28	-0.4	949	42	644	25	0.68

ATY3-137r	0.7133±0.016	$0.08893 {\pm} 0.0015$	$0.05793 {\pm} 0.00093$	547.4±10	549.2±8.7*	523±35	-0.3	378	16	374	15	0.99
ATY3-120r	0.7259±0.015	$0.08897 {\pm} 0.0013$	$0.05885 {\pm} 0.0007$	554.5±9.0	549.4±7.8*	567±27	0.9	583	30	439	20	0.75
ATY3-159	0.725±0.019	$0.08901 {\pm} 0.0015$	$0.0591 {\pm} 0.0011$	553.1±11	549.7±8.7*	568±40	0.6	247.2	8.8	154.1	6.5	0.62
ATY3-124	0.729 ± 0.018	$0.08903 {\pm} 0.0014$	$0.0596 {\pm} 0.0011$	555.4±11	549.8±8.5*	582±39	1.0	375	21	249	11	0.66
ATY3-162	0.7236±0.015	$0.08905 {\pm} 0.0013$	$0.05917 {\pm} 0.00067$	553.1±9.0	549.9±7.8	570±25	0.6	843	56	652	29	0.77
ATY3-112	0.713±0.019	0.0891 ± 0.0019	$0.0583{\pm}0.00098$	546.2±11	550.1±11*	536±37	-0.7	340	38	235	26	0.69
ATY3-163	0.724 ± 0.018	0.0892 ± 0.0015	$0.05925 {\pm} 0.0009$	552.5±10	550.5±9.2*	576±32	0.4	548	28	405	16	0.74
ATY3-167	0.725 ± 0.02	0.0892 ± 0.0018	$0.05898 {\pm} 0.00094$	553.1±12	550.5±11*	567±33	0.5	518	20	358.3	8.5	0.69
ATY3-38m	0.7252±0.016	0.08926 ± 0.0014	$0.05848 {\pm} 0.00082$	553.6±9.2	551.1±8.4*	552±31	0.5	468	18	306.8	9.9	0.66
ATY3-53m	0.723±0.016	0.08929 ± 0.0015	$0.05866 {\pm} 0.0009$	552.2±9.5	551.3±8.6*	550±33	0.2	750	34	487	16	0.65
ATY3-139	0.718±0.019	0.08932 ± 0.0014	$0.05854 {\pm} 0.00099$	549.9±11	551.5±8.4*	549±36	-0.3	287	18	201	10	0.70
ATY3-138c	$0.7199{\pm}0.017$	$0.08947 {\pm} 0.0014$	$0.05886 {\pm} 0.00084$	552±9.8	552.4±8.3*	558±32	-0.1	526	29	395	18	0.75
ATY3-46r	0.7246±0.016	$0.08961 {\pm} 0.0014$	0.059 ± 0.00085	553.2±9.3	553.2±8.4*	564±32	0.0	1065	47	756	29	0.71
ATY3-134	0.729±0.018	0.08962 ± 0.0015	$0.05884 {\pm} 0.00096$	555.5±11	553.2±8.9*	556±36	0.4	412	27	225	17	0.55
ATY3-86	0.7231±0.016	$0.08963 {\pm} 0.0014$	$0.05858{\pm}0.00087$	552.2±9.7	553.3±8.5*	556±33	-0.2	318	20	223	11	0.70
ATY3-01	0.737±0.025	$0.0897 {\pm} 0.0018$	$0.0596 {\pm} 0.0018$	562±15	553.5±11*	609±68	1.5	89.9	8.6	19.8	2.2	0.22
ATY3-15b	0.724±0.017	$0.0897 {\pm} 0.0016$	$0.05883 {\pm} 0.00092$	552.5±10	554±9.6*	557±34	-0.3	407	12	103	11	0.25
ATY3-33	0.7228±0.015	0.08982 ± 0.0013	$0.05875 {\pm} 0.0007$	552.2±8.7	554.4±7.9*	557±26	-0.4	721	68	504	37	0.70
ATY3-151	0.72±0.018	$0.08981 {\pm} 0.0015$	$0.0581 {\pm} 0.0013$	551.5±11	554.4±9.1*	541±47	-0.5	274	20	173	14	0.63
ATY3-122r	0.732 ± 0.021	0.09 ± 0.0017	$0.0594{\pm}0.0015$	558.4±13	555.3±10*	578±53	0.6	121.4	6.5	54.1	3.6	0.45
ATY3-170	0.726±0.018	$0.08998 {\pm} 0.0015$	$0.05857 {\pm} 0.00098$	553.6±11	555.3±8.9*	550±38	-0.3	229.6	9.9	127	4	0.55
ATY3-142	0.732±0.016	0.09022 ± 0.0014	$0.05911 {\pm} 0.00071$	557.5±9.2	556.8±8.3*	568±26	0.1	1037	68	781	50	0.75
ATY3-168r	0.719±0.018	0.0906 ± 0.0015	$0.05785 {\pm} 0.001$	550.6±11	559±9.0*	525±38	-1.5	216	13	145.4	6.6	0.67
ATY3-158	0.746 ± 0.022	0.09101 ± 0.0015	$0.0597 {\pm} 0.0013$	565.4±13	561.5±9.0*	591±46	0.7	139	9.8	70.2	5.6	0.51
ATY3-85	0.7401 ± 0.017	0.09153±0.0015	$0.05884 {\pm} 0.00077$	562.1±9.7	564.6±8.8*	563±28	-0.4	391	21	215	10	0.55
ATY3-35b	0.756±0.023	0.09-24±0.0026	0.0602 ± 0.0013	571±14	570±15	608±48	0.2	306	40	140	15	0.46

ATY3-48c_b	0.762 ± 0.024	$0.0935 {\pm} 0.0022$	$0.0599 {\pm} 0.0018$	576±13	576±13	585±66	0.0	103.5	7.5	50.3	4.8	0.49
ATY3-07	0.803±0.021	0.0959±0.0021	0.06099 ± 0.00085	598.3±12	590.1±12	637±30	1.4	585	90	108	11	0.18
ATY3-06	0.862 ± 0.02	0.103 ± 0.0017	0.0607 ± 0.00068	631±11	632±10	628±24	-0.2	796	61	162	18	0.20

The discordance % of the analyses, determined from the following formula; For ${}^{206}Pb/{}^{238}U$ dates younger than 1.0 Ga, discordance $\% = (1 - [({}^{207}/{}^{235}U_{date})/({}^{206}Pb/{}^{238}U_{date})]*100$; for ${}^{206}Pb/{}^{238}U_{date})]*100$. * Used for discordia diagram, ** Used for calculation of likely crystallization concordia age of the protholit,

LA-ICP-MS zircon ATY3-GARNET	n REE dat AMPHIB	ta OLITE									
Sample Numbers	La-	Ce-	Pr-	Nd-	Sm-	Eu-	Gd-	Dy-	Er-	Yb-	Lu-
Used in	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Concordia	11	11	11	11	11	11	11	11	11	11	11
Diagram											
ATY3-24	0.090	4.51	0.041	0.84	1.81	0.337	11	55.30	96.90	206	36.20
ATY3-177c	0.0089	4.31	0.297	2.72	3.59	0.72	18.9	88	148	282	48.70
ATY3-12	0.0010	29.90	0.237	4.56	10.70	0.32	63.60	344	557	1130	163
ATY3-175	0.0050	3.52	0.104	1.16	1.67	0.55	11.30	52.20	93	194	35.80
ATY3-125	0.018	0.92	0.012	0.090	0.21	0.080	0.73	7.50	20.50	75.90	13.80
ATY3-109	0.005	4.50	0.183	2.25	3.34	0.61	18.90	84.40	137	262	42.90
ATY3-136	0.003	3.26	0.086	1.37	2.10	0.39	11.50	51.10	87.10	180.30	30.60
ATY3-39c	0.003	4.33	0.162	2.51	3.46	0.74	16.90	72.80	124.5	261	41.70
ATY3-10	0.015	4.09	0.11	2.23	3.17	0.75	15.80	59	96	191	30.9
ATY3-103	0.02	3.27	0.054	0.59	1.06	0.226	5.20	30.70	53.4	120	20.70
ATY3-161b	0.0018	1.56	0.011	0.39	0.44	0.13	2.90	16.40	29.10	66.60	11.70
ATY3-132r	0.035	4.10	0.175	1.82	1.94	0.44	11.50	58.60	102	225	37.80
ATY3-29	0.002	0.234	0.011	0.182	1.17	0.072	10.31	95.50	184	405	66.60
ATY3-21	0.013	3.06	0.087	0.41	0.81	0.21	6.80	24.9	46.30	93.60	18.7
ATY3-70	0.0013	8.36	0.044	1.24	2.47	0.351	14.40	80	150	332	57.90
ATY3-133c	0.035	4.78	0.042	1.26	2.26	0.44	10.80	59.30	99	217	35.90
ATY3-106	0.012	4.27	0.088	0.83	2.00	0.51	12.90	58.80	100.90	201.60	33.90
ATY3-149	0.048	9.14	0.401	3.45	4.84	0.75	24.90	116.8	200	416	64.20
ATY3-91	0.060	2.61	0.061	0.63	1.04	0.19	7.70	32.60	57.10	127.30	23.40
ATY3-03	0.029	5.10	0.079	1.10	2.18	0.48	12	59.50	114	247	45.50
ATY3-27	0.030	9.00	0.148	1.57	2.85	0.66	15.80	89.50	166	374	64.90
ATY3-116r	0.014	3.28	0.043	0.52	1.08	0.203	6.60	36.10	66.80	145	24.40
ATY3-111	0.008	10.98	0.410	4.06	5.87	1.08	31.20	157	291	559	91.50
ATY3-147c	0.0113	4.55	0.097	0.67	2.11	0.46	11.40	55.50	88.70	181.80	30.50
ATY3-52r	0.0052	5.28	0.102	0.93	1.73	0.33	9.01	42.40	77.60	162	28.10
ATY3-84	0.013	4.03	0.043	0.33	1.67	0.34	11.10	47.90	82.50	157.30	26.70
ATY3-62	0.0011	4.08	0.169	1.71	2.48	0.59	15.10	63.80	114.50	236.60	39.40
ATY3-99r	0.014	4.52	0.214	2.38	3.00	0.78	16.50	69	115.40	232.10	37.97
A1Y3-141c	0.024	3.23	0.269	2.09	3.28	0.57	14.60	64.30	108.90	218.90	34.50
ATY3-65	0.0048	2.13	0.104	0.69	1.16	0.243	5.75	30.50	54.70	130.60	24.60
ATY3-110	0.012	2.08	0.038	0.46	1.25	0.388	8.42	39.50	60.50	115.80	19.03
AIY3-8/	0.020	5.78	0.237	2.35	3.32	0.72	17.10	/9.60	133.40	268	46.20
ATY2 121	0.0011	4.08	0.169	1./1	2.48	0.59	15.10	03.80	114.50	230.00	39.40
AIY3-131 ATV2 165	0.045	2.91	0.129	0.29	1.07	0.33	8.70	38 69 10	05.10	128.60	21.20
AII3-103	0.0037	5.00 2.41	0.220	1.39	2.78	0.38	10.30	08.10	26.20	233	30.30
$\begin{array}{c} A \mid Y \mid 3 - 1 \neq 0 \\ A \mid \mathbf{T} \mid \mathbf{Y} \mid 2 \neq 0 \\ A \mid \mathbf{T} \mid \mathbf{Y} \mid 2 \neq 0 \\ A \mid \mathbf{T} \mid \mathbf{Y} \mid 1 \neq 0 \\ A \mid \mathbf{T} \mid \mathbf{Y} \mid 1 \neq 0 \\ A \mid \mathbf{T} \mid \mathbf{Y} \mid 1 \neq 1 \\ A \mid \mathbf{T} \mid \mathbf{Y} \mid 1 \neq 1 \\ A \mid \mathbf{T} \mid \mathbf{Y} \mid 1 \neq 1 \\ A \mid \mathbf{T} \mid \mathbf{Y} \mid 1 \neq 1 \\ A \mid \mathbf{T} \mid \mathbf{Y} \mid 1 \neq 1 \\ A \mid \mathbf{T} \mid \mathbf{Y} \mid 1 \neq 1 \\ A \mid \mathbf{T} \mid \mathbf{Y} \mid 1 \neq 1 \\ A \mid \mathbf{T} \mid \mathbf{Y} \mid 1 \neq 1 \\ A \mid \mathbf{T} \mid \mathbf{Y} \mid 1 \neq 1 \\ A \mid \mathbf{T} \mid 1 \mid 1 \mid 1 \neq 1 \\ A \mid 1 \mid \mathbf$	0.0030	2.41	0.001	0.03	0.02	0.094	2.98	18.00	30.20	83 256	14./1
ATV2 27r	0.0055	4.10	0.119	2.09	2.30	0.30	20.80	04	121	230	41.60 58.00
ATV2 56m	0.0090	2.72	0.271	3.22 2.50	2.75	0.89	20.80	90.40 70.70	110.50	240	28 50
ATV2 72	0.0039	5.72 2.48	0.198	2.39	5.55 0.57	0.75	10.20	70.70	20.20	255	36.30 15.25
I A ICP MS ziroot	0.030	2.40	0.075	0.28	0.57	0.129	4.03	21.60	39.20	94.70	15.55
TKC10-Garnet An	nphibolite	: :									
TKC10-68	0.0143	6.43	0.195	3.09	4.58	0.56	21.60	78.60	107.40	188	30.60
TKC10-107	0.009	2.92	0.0097	0.225	0.36	0.072	1.87	10.58	20.88	48.70	8.30
TKC10-30	0.0122	5.27	0.134	1.99	3.46	0.477	17.90	62.90	94.50	169	27
TKC10-04	0.0024	5.38	0.055	1.09	2.06	0.362	14.81	64.90	100.20	191.50	30.40
TKC10-91	0.012	3.99	0.036	0.65	0.99	0.258	6.05	29.42	48.20	102.20	17.55
TKC10-19	0.0154	7.06	0.334	4.80	6.35	0.764	23.60	78	107.40	191.80	31.60

Table S8. Laser ablation-inductively coupled plasma-mass spectrometry zircon REE data of the garnet amphibolites (Yahyaalci-Alaşehir, Bozdağ Nappe and Çamlıca-Tire Klippe, Çine Nappe) and retrogressed eclogite in Yenişehir-Kiraz, Çine Nappe, Menderes Massif, Turkey.

TKC10-74	0.0032	5.02	0.059	1.30	2.00	0.317	9.42	38.50	61.20	121.30	20.67
TKC10-89	0.0112	6.26	0.047	0.84	1.62	0.235	8.360	35.80	56	113.70	18.92
TKC10-84	0.0036	2.86	0.0113	0.207	0.49	0.098	2.41	12.64	23	55.50	9.08
TKC10-108	0.0073	3.65	0.036	0.79	1.23	0.327	7.14	28.80	45.50	93.10	14.51
TKC10-70	0.0010	2.63	0.0158	0.313	0.534	0.12	2.98	14.94	27.11	65.20	10.84
TKC10-05	0.0033	4.79	0.074	1.10	1.96	0.318	9.45	37.10	55.10	113.60	19.23
TKC10-55	0.0073	4 05	0.042	0.90	1 55	0.213	8 60	34	52.10	105 30	17.10
TKC10-81	0.032	6.85	0.307	4 62	5 87	0.76	24	86	122.50	225 50	36.10
TKC10-27	0.0015	3.94	0.0241	0.57	0.90	0.125	5 42	24 30	42 60	93.60	16 69
TKC10-72	0.0013	5.77	0.0271	0.828	1.55	0.123	8.02	33.10	52 20	105 30	17.81
TKC10-02	0.0079	3.69	0.0317	0.520	1.08	0.129	5.25	22 32	36.50	79 50	13.88
TKC10-02	0.0017	3.07	0.0317	0.38	0.366	0.127	2.20	12.52	20.30	53 70	0.46
TKC10-00	0.0010	J.JJ 1 15	0.015	0.227	1.01	0.072	7.04	36.80	60.70	122	21.25
TKC10-22	0.0024	4.452	0.0302	0.525	1.01	0.100	10.56	41.60	64.00	122	21.25
TKC10-10	0.0030	4.55	0.048	0.74	0.84	0.274	10.50	18 40	21.40	72 20	20.10
TKC10-90	0.0109	5.10 4.12	0.037	0.43	0.04	0.140	4.30	22.02	31.40 41.50	01 70	12.30
TKC10-101	0.001	4.12	0.029	0.439	0.82	0.17	4.42	23.03	41.50	91.70	10.01
TKC10-97	0.0003	3.11	0.040	0.//	1./2	0.232	8.34	39.30	01.90	110.00	20.34
TKC10-28	0.022	/.06	0.288	4.49	5.18	0.551	24	80	111.90	203.70	34.10
1KC10-62	0.049	6.21	0.441	5.51	6.04	0.66	22.9	75.50	108.10	196.70	31.80
TKC10-105	0.0051	3.50	0.0172	0.409	0.66	0.201	3.71	18.70	33.80	76.40	12.94
TKC10-60	0.0032	3.90	0.029	0.433	0.98	0.192	5.56	23	39.60	85.70	14.45
TKC10-03	0.0021	4.97	0.076	1.68	2.96	0.332	13.80	46.80	67.60	130	20.70
TKC10-73	0.0046	4.81	0.053	1.16	2.71	0.346	14.20	56.30	87.40	162.20	27.40
TKC10-117	0.0098	4.00	0.025	0.371	0.91	0.173	4.98	22.90	43.10	93.80	16.59
TKC10-52	0.0025	5.01	0.046	0.65	1.43	0.19	7.69	35.90	61.60	126.60	21.20
TKC10-106	0.011	4.73	0.044	0.62	1.09	0.183	5.19	23.80	45.30	101.40	17.11
TKC10-111	0.006	3.90	0.035	0.401	0.82	0.122	4.62	20.64	36.90	80.10	13.38
TKC10-67	0.0005	6.33	0.135	2.01	4.37	0.49	21.20	78.60	113.80	205.30	32.70
TKC10-104	0.080	7.45	0.374	5.24	5.63	0.699	23.35	92.50	164.20	313	50.70
TKC10-116	0.0120	4.78	0.026	0.665	1.45	0.215	7.40	33.60	55.10	115	19.83
TKC10-115	0.0012	3.08	0.0062	0.244	0.402	0.083	2.54	13.40	24.61	54.40	9.70
TKC10-114	0.0170	3.12	0.0109	0.269	0.50	0.083	2.91	14.77	27.60	61	10.55
TKC10-56	0.0362	7.16	0.404	5.26	6.26	0.776	23.70	77.90	112.70	206	32.80
TKC10-77	0.0065	3.95	0.0212	0.466	1.00	0.202	6.75	29.83	52.20	110.10	18.64
TKC10-66	0.0133	2.70	0.031	0.56	0.89	0.158	4.07	19.30	32.70	68.80	12.41
TKC10-06	0.0428	7.48	0.416	5.24	6.33	0.694	23.49	78.60	111.20	212.80	33.40
TKC10-54	0.0092	1.98	0.0199	0.28	0.35	0.112	4 40	20.50	39	69	12
TKC10-113	0.0140	3 73	0.023	0.64	1.08	0.244	5.83	26.30	44 10	94 70	15.98
TKC10-59	0.0039	4 79	0.0436	0.76	1.60	0.255	8.00	34 10	53.60	107 20	17.36
TKC10-63	0.0092	5.09	0.0363	0.76	1.01	0.235	6.00	33 20	54 50	114 90	18.61
TKC10-05	0.0072	7 42	0.0303	1 28	6.44	0.225	24	83	113 00	211 30	22
TKC10-110	0.0210	3 10	0.275	0.338	0.44	0.879	24	14 71	25.80	58 10	10.63
TKC10-05	0.003/	6.15	0.0078	1.536	1 70	0.110	2.92 9.87	37 70	∠3.00 62.20	122 50	20.73
TKC10-79	0.0008	7.06	0.123	1.51	6.02	0.295	9.07 74 5	87	110.60	202 70	20.75
TKC10-07 TKC10-76	0.0130	1.00	0.272	4.03 0.502	0.03	0.705	∠+. <i>3</i> 6.06	02 27 20	110.00	202.70	16 71
TKC10-/0	0.0018	4.38	0.0292	0.505	U.9/	0.103	0.00	21.30	40.00	77.20 212 00	10./1
TKC10-103	0.048	0.92	0.314	4.52	5.58	0.783	21.8	/0.30	114.80	213.80	54.80 10.72
1 KC10-64	0.0066	3.05	0.0253	0.322	0.447	0.070	3.29	15.54	26.20	61.30	10.72
TKC10-112	0.0012	4.14	0.023	0.56	1.17	0.195	8.00	38.10	65.20	130	21.70
<u>1KC10-109</u>	0.010	4.88	0.070	1.26	2.62	0.324	11	41.60	66.60	130	20.20
LA-ICP-MS zirce K1-Retrogressed	on REE dat Eclogite	a									
K1-23	0.031	2.66	0.167	3.82	6.64	0.35	35.40	202	327	630	104
K1-28	0.036	0.243	0.004	0.037	0.053	0.058	2.82	21	62.5	203	44
K1-3	0.035	0.021	0.008	0.06	0.017	0.056	0.73	3.89	13.90	56.6	15.30
K1-34	0.12	0.25	0.017	0.34	1.58	0.060	14	150 90	335	830	144.80
K1-35	0.12	0.392	0.060	0.79	2.30	0.060	24	189	381	872	142
K1-53	0.56	0.372 0.342	0.014	0.45	1 74	0 1 2 2	14 70	110 10	243 10	524	82.60
K1-58	0.032	3 3 5	0.035	0.45	3 44	0.155	24 70	156	325	725	126
K 1_60r	0.032	0.54	0.035	0.95	2 20	0.04/	21.70 21.10	167.5	325	720	110
K1 70m	0.023	0.34	0.055	0.01	2.30 1.70	0.020	21.10 15 100	107.5	251	127 571	80.60
K1- /0111	0.071	0.340	0.031	0.70	1./2	0.029	13.100	120.3	233	5/4	07.00

K1-79r	0.0063	0.44	0.085	0.74	2.63	0.126	20.9	177	347	769	126.
K1-80m	0.0010	0.439	0.036	0.45	2.45	0.093	18	152	313	688	109.
K1-83r	0.0061	0.45	0.045	0.73	2.86	0.103	24.20	191	374	824	126.
K1-84c	0.023	0.81	0.25	2.80	5.40	0.041	33.20	243	467	1050	164.
K1-2	0.0290	2.10	0.005	0.039	0.24	0.370	4.40	59	169	550	106
K1-85m	0.0114	0.44	0.038	0.53	2.68	0.038	20.40	184.1	377	842	136
K1-88	0.030	4.80	0.24	3.9	7.50	0.305	41.30	208	358	730	115

	Isotopic Ratios				Apparent Ages							
SAMPLE NUMBERS	²⁰⁷ Pb/ ²³⁵ U ± (2SE)	²⁰⁶ Pb/ ²³⁸ U ± (2SE)	²⁰⁷ Pb/ ²⁰⁶ Pb ± (2SE)	²⁰⁷ Pb/ ²³⁵ U ± (2SE)	²⁰⁶ Pb/ ²³⁸ U ± (2SE)	$^{207}{ m Pb}/^{206}{ m Pb}$ $\pm (2{ m SE})$	Discor- dance %	U (ppm)	2SE	Th (ppm)	2SE	Th/U
TKC10 GARNET AMPHIBOLITE												
ТКС10-99	0.599±0.019	0.0751±0.0012	0.0584±0.0022	475±12	466.5±7*	502±80	1.8	44.6	2.4	30.2	1.6	0.68
TKC10-33	0.648±0.037	0.0807±0.016	0.0586±0.0034	511±21	500.1±9.6*	560±110	2.1	65.8	2.5	40.7	1.3	0.62
TKC10-32	0.621±0.018	0.078±0.0011	0.0585±0.0016	490±11	484.2±6.4*	550±64	1.2	124.3	5.8	155.8	6.2	1.25
TKC10-48	0.656±0.019	0.0812±0.0012	0.0585±0.0018	511±12	502.9±7.1*	540±68	1.6	82.9	4.3	94.5	4.6	1.14
ТКС10-94	0.663±0.018	0.0814±0.0015	0.0593±0.0018	516±11	504.2±8.9*	563±67	2.3	123.8	3.4	154.5	3.8	1.25
TKC10-87	0.65±0.017	0.0815±0.0011	0.058±0.0016	510. 3±9.8	504.9±6.3*	514±64	1.1	90.5	5.7	128.3	8.4	1.42
TKC10-42	0.668±0.024	0.0815±0.0011	0.0599±0.0022	517±15	505.2±6.7*	569±80	2.3	54.1	3.5	45.9	3	0.85
TKC10-86	0.664±0.02	0.0817±0.0012	0.0597±0.002	518±13	506.5±7.1*	585±70	2.2	58.6	3.2	68.4	3.7	1.17
TKC10-46	0.651±0.02	0.08162±0.00098	0.0582±0.0017	507±12	505.7±5.8*	508±62	0.3	74.9	5	59.9	3.3	0.80
TKC10-17	0.657±0.035	0.082±0.0018	0.0579±0.003	510±21	508±11*	520±110	0.4	39.2	1.1	22.8	0.37	0.58
TKC10-43	0.669±0.018	0.08241±0.00089	0.0589±0.0016	521±11	510.4±5.3*	557±58	2.0	66.6	3.1	74.4	2.9	1.12
TKC10-25	0.682±0.021	0.0832±0.00098	0.0602±0.0023	527±13	515.2±5.8	593±84	2.2	82.7	3.9	89.9	3.8	1.09
TKC10-33	0.683±0028	0.0833±0.0018	0.0591±0.0021	529±17	516±11*	541±80	2.5	37.1	1.6	27.9	1.8	0.75
TKC10-82	0.676±0.014	0.08338±0.0094	0.0592±0.0013	524. 9±8.9	516.2±5.6*	571±49	1.7	106.7	5.7	131	6.2	1.23
TKC10-92	0.655±0.024	0.0835±0.0019	0.0561±0.0025	511±15	517±11*	440±98	-1.2	62.5	2.6	47.8	2	0.76
TKC10-13	0.678±0.029	0.0837±0.0011	0.0588±0.0017	524±12	518.1±6.4*	555±60	1.1	93	4.6	140.7	7.5	1.51
TKC10-23	0.681±0.016	0.0839±0.001	0.0595±0.0015	528±10	519.1±5.9*	578±55	1.7	92.6	5	85.9	3.2	0.93

Table S9. Zircon U-Pb geochronological results of garnet amphibolite sample-TKC10 (Çamlıca-Tire Klippe, Çine Nappe), Menderes Massif, Turkey.

TKC10-31	0.672±0.015	0.08404±0.00091	0.059±0.0015	523.1±9.3	520.1±5.4*	594±50	0.6	105.5	5.1	126	6	1.19
TKC10-24	0.676±0.025	0.0841±0.001	0.0583±0.0022	522±15	520.6±5.9*	553±85	0.3	66.8	3.4	88.5	3.9	1.32
ТКС10-93	0.684±0.02	0.0841±0.0012	0.059±0.0017	529±12	520.6±7.1*	559±60	1.6	71.4	5.6	77.9	6.3	1.09
TKC10-36	0.676±0.014	0.0842±0.001	0.0583±0.0013	525.7±8.3	521.8±6.1*	559±60	0.7	104.4	6.8	137.4	8.4	1.32
TKC10-102	0.688±0.024	0.0843±0.0013	0.0588±0.0019	529±14	521.8±7.6*	522±51	1.4	47.3	3.2	55.5	3.5	1.17
TKC10-20	0.672±0.032	0.0843±0.0018	0.0574±0.0032	520±19	522±11*	555±70	-0.4	45.65	0.6	39.51	0.5	0.87
TKC10-34	0.678±0.021	0.0844±0.0012	0.0587±0.0017	527±13	523.4±7.3*	510±130	0.7	60.8	6.6	56.3	7.4	0.93
TKC10-15	0.686±0.017	0.0845±0.0011	0.0582±0.0015	529±10	522.8±6.7*	538±64	1.2	56.4	3.5	40	1.4	0.71
TKC10-40	0.681±0.014	0.0845±0.00092	0.059±0.0013	526. 7±8.4	522.9±5.5*	531±600	0.7	113.7	6.6	148.4	8	1.31
TKC10-41	0.669±0.012	0.0845±0.00086	0.0572±0.0012	519.4±7.6	523.2±5.1*	552±48	-0.7	104.5	6.7	136.3	8.2	1.30
TKC10-14	0.678±0.019	0.0846±0.0011	0.0592±0.0018	529±11	523.5±6.8*	498±44	1.0	73.1	4.6	99.6	6.2	1.36
TKC10-98	0.67±0.028	0.0846±0.0014	0.058±0.0027	520±17	523.6±8.2*	556±66	-0.7	34.3	2.2	23.8	1.5	0.69
TKC10-16	0.672±0.015	0.0846±0.00075	0.0576±0.0013	520.8±9	523.7±4.5*	503±99	-0.6	95.5	3.6	110.9	3.9	1.16
TKC10-49	0.692±0.016	0.0847±0.0012	0.0583±0.0015	534.2±9.3	523.9±7.1*	505±48	1.9	107	5.1	92.7	3.5	0.87
TKC10-37	0.689±0.021	0.0847±0.001	0.0589±0.0017	532±12	524.2±6.2*	559±57	1.5	57.1	4.1	43.9	2.9	0.77
TKC10-07	0.686±0.017	0.0848±0.00084	0.0583±0.0016	530.9±9.9	524.4±5*	547±66	1.2	148.1	5.4	160.1	6.1	1.08
TKC10-18	0.696±0.017	0.0850±0.00097	0.0595±00017	538±11	525.8±5.8*	550±58	2.3	76.4	3	79	3.9	1.03
TKC10-35	0.687±0.019	0.085±0.0012	0.0577±0.0017	531±12	527±7.4*	575±62	0.8	67.9	4.6	49.1	3.3	0.72
TKC10-85	0.681±0.015	0.0851±0.00082	0.058±0.0014	526.5±9.3	526.4±4.9*	508±65	0.0	78	3.9	80.7	3.8	1.03
TKC10-39	0.694±0.0018	0.0851±0.0015	0.0598±0.0018	534±11	526.5±8.8*	516±53	1.4	81.6	4.4	105.3	5.7	1.29
TKC10-47	0.693±0.022	0.0851±0.0012	0.0587±0.0019	534±13	527.4±7.1*	578±66	1.2	52.1	3.9	32.3	2.2	0.62
TKC10-83	0.696±0.017	0.0852±0.001	0.0596±0.0017	539±10	527.3±6.1*	550±68	2.2	66.9	3.3	63.3	2.9	0.95
TKC10-26	0.691±0.017	0.0853±0.001	0.0599±0.0015	533±10	527.4±6.1*	585±59	1.1	117.2	7.1	144.7	6.6	1.23
TKC10-44	0.692±0.013	0.0853±0.001	0.0588±0.0011	533.3±7.8	527.7±6*	602±49	1.1	182	11	183.9	8.9	1.01

TKC10-45	0.693±0.024	0.0853±0.0013	0.058±0.0021	533±14	527.7±7.9*	549±41	1.0	49.8	2.4	57.2	4.2	1.15
TKC10-53	0.692±0.017	0.0853±0.0012	0.0586±0.0015	533±10	527.8±6.9*	506±81	1.0	81.3	7.8	92.5	8.2	1.14
TKC10-58	0.681±0.013	0.0854±0.00081	0.0578±0.0013	526.6±7.7	528±4.8*	553±57	-0.3	117.6	5.8	140.6	6.3	1.20
TKC10-29	0.697±0.015	0.0856±0.00094	0.0597±0.0015	537±9	529.2±5.6*	531±47	1.5	92.3	3.8	106.3	5.6	1.15
TKC10-21	0.678±0.015	0.0857±0.00088	0.0582±0.0013	525.99±	529.8±5.2*	593±54	-0.7	102.8	5.1	101	4.5	0.98
TKC10-50	0.678±0.02	0.0857±0.0011	0.0571±0.0017	525±12	529.8±6.4*	525±49	-0.9	78.2	3.6	102.5	4.7	1.31
TKC10-72	0.696±0.02	0.0858±0.00098	0.0585±0.0017	535±12	530.6±5.8*	495±68	0.8	86.6	3.8	89.8	3.2	1.04
TKC10-71	0.695±0.019	0.0858±0.00085	0.0589±0.0016	534±11	530.7±5*	546±65	0.6	72.2	3.9	69	3.1	0.96
TKC10-61	0.69±0.014	0.08583±0.0009	0.0584±0.0013	531.9±8.3	530.7±5.5*	548±58	0.2	104.9	3.7	135.1	5.2	1.29
TKC10-57	0.696±0.017	0.0858±0.00095	0.0592±0.0017	536±10	530.9±5.6*	557±50	1.0	78.4	4.7	85.6	4.8	1.09
TKC10-38	0.692±0.019	0.0859±0.0012	0.0582±0.0016	533±11	531.2±7.1*	547±61	0.3	75.5	5.5	70	12	0.93
TKC10-95	0.699±0.014	0.0859±0.0009	0.0587±0.0013	537.4±8.5	531.2±5.3*	533±61	1.2	162.3	9.7	233	12	1.44
TKC10-01	0.679±0.022	0.0859±0.0011	0.057±0.0019	525±13	531.3±6.4*	540±47	-1.2	75.5	5.5	85.5	7.1	1.13
TKC10-100	0.69±0.018	0.0859±0.0012	0.0582±0.0016	531±11	531.4±6.9*	480±74	-0.1	77	3.1	97.9	5.1	1.27
TKC10-96	0.688±0.019	0.0859±0.00094	0.0581±0.0016	532±11	531.2±5.6*	521±59	0.2	62.3	5.2	82.6	7.6	1.33
TKC10-68	0.691±0.014	0.086±0.0013	0.0586±0.0015	532.8±8.6	531.8±7.6*,**	538±62	0.2	130.6	9.8	171	14	1.31
TKC10-107	0.69±0.0129	0.0861±0.0014	0.0588±0.0023	531±17	532±8.1*,**	552±53	-0.2	38.3	1.7	23.28	0.7	0.61
TKC10-30	0.692±0.016	0.0861±0.001	0.0596±0.0016	533±9.7	532.2±6*,**	535±89	0.2	87	5.7	108.4	6.6	1.25
TKC10-04	0.694±002	0.0861±0.0011	0.0583±0.0016	534±12	532.6±6.4*,**	601±56	0.3	115.3	5.1	143.1	6.2	1.24
TKC10-91	0.702±0.027	0.0862±0.014	0.0583±0.0016	534±12	532.6±6.4*,**	543±63	1.5	62.2	3.4	65	2.9	1.05
TKC10-19	0.69±0.017	0.0862±0.0012	0.059±0.0023	541±15	532.7±8.3*,**	548±82	0.0	92.7	4.5	118.5	5.1	1.28
TKC10-74	0.683±0.02	0.0862±0.0011	0.0587±0.0017	533±10	533±7.2*,**	531±63	-0.8	51.2	2.9	60.3	3	1.18
TKC10-89	0.7±0.016	0.0863±0.0009	0.0574±0.0017	529±12	533.2±6.4*,**	523±65	0.9	89.6	5.1	85.9	4.4	0.96
TKC10-84	0.713±0.024	0.0863±0.0013	0.0586±0.0015	538. 1±9.3	533.3±5.5*,**	550±55	2.3	46.1	2.3	30.9	1.4	0.67

TKC10-108	0.693±0.034	0.0863±0.0013	0.0592±0.0022	546±14	533.6±7.5*,**	537±81	-0.3	36.4	1.5	40.2	1.7	1.10
TKC10-70	0.694±0.026	0.0863±0.0013	0.0572±0.0029	532±21	533.6±8*,**	480±110	0.2	34.3	1.6	22.4	1.1	0.65
TKC10-05	0.7±0.022	0.08639±0.001	0.0581±0.0024	535±16	533.7±7.5*,**	537±89	0.5	52.3	3	61.2	3.1	1.17
TKC10-55	0.695±0.022	0.0864±0.0012	0.0589±0.002	537±13	534.1±5.9*,**	543±76	0.6	47.1	2	39.8	1.3	0.85
TKC10-81	0.702±0.015	0.08645±0.001	0.0584±0.0021	537±13	533.9±6.9*,**	544±75	0.9	109.4	5.8	141.8	6.6	1.30
TKC10-27	0.715±0.002	0.0865±0.0011	0.0591±0.0014	539.2±13	534.5±5.2*,**	563±55	2.2	77.9	3.3	59.5	2.4	0.76
TKC10-78	0.691±0.014	0.0865±0.0009	0.0606±0.0022	547±9.3	535±6.7*,**	621±78	-0.5	109.9	6.9	104	6.5	0.95
TKC10-02	0.7±0.022	0.0866±0.0012	0.0581±0.0012	532.6±8.6	535±5.4*,**	524±43	0.7	53.4	3.6	41.4	2.3	0.78
TKC10-08	0.709±0.036	0.0868±0.0015	0.0591±0.002	539±13	535.2±7.1*,**	561±76	1.0	58.3	2	37.8	1.2	0.65
TKC10-22	0.686±0.016	0.0869±0.0008	0.0582±0.0029	542±22	536.5±9*,**	510±110	-1.5	107.9	5.4	130.4	4.6	1.21
TKC10-10	0.691±0.022	0.0869±0.0017	0.0579±0.0014	529.1±9.4	536.9±5* <i>,</i> **	505±52	-0.8	120.8	4	162.3	5.2	1.34
ТКС10-90	0.706±0.027	0.0869±0.0016	0.0585±0.0017	533±13	537±10*,**	539±63	0.5	37.7	1.4	34.2	4	0.91
TKC10-101	0.696±0.021	0.0869±0.0012	0.0583±0.0024	540±16	537.3±9.2*,**	523±90	-0.3	57.3	3.4	42.9	2.3	0.75
TKC10-97	0.708±0.021	0.08691±0.001	0.0588±0.0019	536±13	537.4±7.2*,**	534±71	0.8	95.4	4.7	89.9	3.5	0.94
TKC10-28	0.708±0.015	0.08697±0.0083	0.059±0.0018	542±12	537.9±5.8*,**	539±65	1.2	115	6.4	150.8	8	1.31
TKC10-62	0.7±0.016	0.087±0.001	0.0598±0.0013	544±8.9	537.5±4.9*,**	601±48	0.1	100.3	4.3	117.9	6.5	1.18
TKC10-105	0.695±0.024	0.087±0.0012	0.0583±0.0015	537.9±9.7	537.6±5.9*,**	518±56	-0.3	44.7	3.1	46.6	2.5	1.04
TKC10-60	0.687±0.022	0.087±0.0013	0.058±0.0021	536±15	537.6±7.3*,**	507±78	-1.3	47.4	1.5	40.8	2.2	0.86
TKC10-03	0.69±0.015	0.0871±0.00091	0.0567±0.0019	531±13	537.7±7.8*,**	463±76	-1.2	95.5	7.6	134.7	9.9	1.41
TKC10-73	0.698±0.017	0.08708±0.0008	0.0577±0.0014	531.7±9.2	538.2±5.4*,**	500±52	-0.4	87.9	6.5	105.3	8.5	1.20
TKC10-10	0.703±0.028	0.0871±0.0017	0.0578±0.0014	536±10	538.2±4.9*,**	532±54	0.2	72.6	2.9	96.7	2.9	1.33
TKC10-117	0.681±0.026	0.0872±0.0011	0.0583±0.0025	539±17	538±10*,**	511±96	-2.6	60.3	2.9	51.6	2	0.86
TKC10-52	0.703±0.018	0.0872±0.0012	0.0561±0.0023	525±16	538.8±6.8*,**	443±90	0.0	69.2	3.6	61.3	2.5	0.89
TKC10-106	0.689±0.023	0.0872±0.0012	0.0582±0.0016	539±11	539±7*,**	528±61	-1.5	63.5	5.1	81.2	9.5	1.28

TKC10-111	0.71±0.017	0.0872±0.0011	0.0577±0.0022	531±14	539±6.8*,**	495±81	0.9	75	4.2	71.3	3.5	0.95
TKC10-67	0.708±0.02	0.0873±0.0011	0.059±0.0016	544±10	539±6.3*,**	581±59	0.5	64	3.5	49.6	2.5	0.78
TKC10-104	0.707±0.013	0.0873±0.0012	0.0586±0.0018	542±12	539.3±6.4*,**	514±60	0.6	132.4	5.3	139.4	4.6	1.05
TKC10-116	0.687±0.023	0.0873±0.0018	0.0596±0.0014	542.8±7.8	539.5±6.9*,**	589±53	-1.9	67.5	2	54.3	1.3	0.80
TKC10-115	0.706±0.028	0.0874±0.0013	0.0576±0.0024	530±14	540±11*,**	520±85	0.5	58.5	3	38.6	1.7	0.66
TKC10-114	0.705±0.023	0.0874±0.0011	0.0588±0.0024	543±16	540.1±7.5*,**	552±94	-0.1	52	2.8	36	1.8	0.69
TKC10-56	0.71±0.014	0.08745±0.0009	0.0584±0.0019	540±14	540.3±6.6*,**	512±70	0.7	111.4	4.1	132.3	5.4	1.19
TKC10-77	0.714±0.02	0.0876±0.0014	0.0586±0.0011	544.1±8.4	540.4±5.4*,**	565±45	0.9	106.4	6.2	93.5	5.2	0.88
TKC10-66	0.691±0.023	0.0877±0.0015	0.0599±0.0019	546±12	541.1±8.6*,**	594±67	-1.8	58.4	6.2	70.3	9	1.20
TKC10-06	0.714±0.037	0.0877±0.0013	0.0569±0.002	532±14	541.6±8.8*,**	483±79	-0.7	66.7	1.8	64.9	1.6	0.97
TKC10-54	0.715±0.019	0.0877±0.0012	0.0591±0.0032	538±15	542±7.9*,**	504±85	0.7	61.5	1.7	63.8	3.9	1.04
TKC10-113	0.707±0.021	0.0877±0.001	0.0595±0.0018	543±13	542.1±6.2*,**	557±66	0.2	62	3.3	69.7	3.5	1.12
ТКС10-59	0.72±0.019	0.08784±0.00098	0.0593±0.0017	551±12	543.5±5.7*,**	560±64	1.4	72.9	4.4	77.9	3.8	1.07
TKC10-63	0.714±0.018	0.0879±0.0011	0.0584±0.0016	547±11	542.8±6.6*,**	546±59	0.8	73.2	2.8	66.5	1.6	0.91
TKC10-110	0.716±0.018	0.0879±0.0011	0.059±0.0014	548±10	543.1±6.4*,**	572±52	0.9	106.6	6.5	148.5	8	1.39
TKC10-65	0.708±0.019	0.08795±0.00092	0.0574±0.0016	542±11	543.3±5.5*,**	502±60	-0.2	70.8	4.6	67.3	6.3	0.95
TKC10-79	0.718±0.017	0.0882±0.0012	0.06±0.0015	550±10	544.5±7*,**	595±52	1.0	124.9	4.5	136.1	4.2	1.09
TKC10-69	0.7±0.021	0.0883±0.0012	0.0578±0.0016	534±11	545.2±7.2*,**	502±56	-2.1	101.6	5.3	141.3	7.7	1.39
TKC10-76	0.713±0.019	0.0884±0.0013	0.0588±00015	548±11	546±7.6*,**	556±55	0.4	59.1	4.2	49.5	4.1	0.84
TKC10-103	0.71±0.02	0.0884±0.0097	0.0586±0.0019	543±12	546±5.7*,**	522±69	-0.6	79.7	3.9	89.5	3.6	1.12
TKC10-64	0.712±0.021	0.0887±0.0011	0.0583±0.0018	547±13	547.8±6.4*,**	524±67	-0.1	60.7	2.8	42.3	1.4	0.70
TKC10-112	0.72±0.017	0.0889±0.0011	0.0588±0.0016	549±10	548.8±6.6*,**	546±60	0.0	66.7	1.8	54.4	3.7	0.82
TKC10-109	0.71±0.021	0.0889±0.0011	0.0576±0.0018	543±13	548.9±6.6*,**	498±72	-1.1	60.2	1.2	52.5	1.8	0.87
TKC10-92	0.724±0.021	0.09±0.0015	0.0579±0.0019	554±13	555.3±8.7*	525±71	-0.2	76.9	3.7	102.3	5.3	1.33

*used for calculation of likely crystallization Concordia age of the protoliths,

The discordance % of the analyses, determined from the following formula; For $^{206}\text{Pb}/^{238}\text{U}$ dates younger than 1.0 Ga, discordance $\% = (1 - [(^{207}/^{235}\text{U}_{date})/(^{206}\text{Pb}/^{238}\text{U}_{date})]^* 100$; for $^{206}\text{Pb}/^{238}\text{U}$ dates older than 1.0 Ga, discordance $\% = (1 - [(^{207}/^{206}\text{Pb}/^{238}\text{U}_{date})]^* 100$; for $^{206}\text{Pb}/^{238}\text{U}$ dates older than 1.0 Ga, discordance $\% = (1 - [(^{207}/^{206}\text{Pb}/^{238}\text{U}_{date})]^* 100$; for $^{206}\text{Pb}/^{238}\text{U}$ dates older than 1.0 Ga, discordance $\% = (1 - [(^{207}/^{206}\text{Pb}/^{238}\text{U}_{date})]^* 100$; for $^{206}\text{Pb}/^{238}\text{U}$ dates older than 1.0 Ga, discordance $\% = (1 - [(^{207}/^{206}\text{Pb}/^{238}\text{U}_{date})]^* 100$; for $^{206}\text{Pb}/^{238}\text{U}_{date}$ older than 1.0 Ga, discordance $\% = (1 - [(^{207}/^{206}\text{Pb}/^{238}\text{U}_{date})]^* 100$; for $^{206}\text{Pb}/^{238}\text{U}_{date}$ older than 1.0 Ga, discordance $\% = (1 - [(^{207}/^{206}\text{Pb}/^{238}\text{U}_{date})]^* 100$; for $^{206}\text{Pb}/^{238}\text{U}_{date}$ older than 1.0 Ga, discordance $\% = (1 - [(^{207}/^{206}\text{Pb}/^{238}\text{U}_{date})]^* 100$; for $^{206}\text{Pb}/^{238}\text{U}_{date}$ older than 1.0 Ga, discordance $\% = (1 - [(^{207}/^{206}\text{Pb}/^{238}\text{U}_{date})]^* 100$; for $^{206}\text{Pb}/^{238}\text{U}_{date}$ older than 1.0 Ga, discordance $\% = (1 - [(^{207}/^{206}\text{Pb}/^{238}\text{U}_{date})]^* 100$; for $^{206}\text{Pb}/^{238}\text{U}_{date}$ older than 1.0 Ga, discordance $\% = (1 - [(^{207}/^{206}\text{Pb}/^{238}\text{U}_{date})]^* 100$; for $^{206}\text{Pb}/^{238}\text{U}_{date}$ older than 1.0 Ga, discordance $\% = (1 - [(^{207}/^{206}\text{Pb}/^{238}\text{U}_{date})]^* 100$; for $^{206}\text{Pb}/^{238}\text{U}_{date}$ older than 1.0 Ga, discordance $\% = (1 - [(^{207}/^{206}\text{Pb}/^{238}\text{U}_{date})]^* 100$; for $^{206}\text{Pb}/^{238}\text{U}_{date}$ older than 1.0 Pb/^{238}\text{U}_{date} older than 1.0 Pb/^{238}\text{U}_{date} older than 1.0 Pb/^{238}\text{U}_{date} older than 1.0 Pb/^{238}\text{U}_{date} older than 1.0 Pb/^{238}\text{U}_{date} older than 1.0 Pb/^{238}\text{U}_{date} older than 1.0 Pb/^{238}\text{U}_{date} older than 1.0 Pb/^{2 $_{date})/(^{206}Pb/^{238}U_{date})])*100.$

* Used for discordia diagram, ** Used for calculation of likely crystallization concordia age of the protholit,

		Isotopic Ratios			Apparent Ag	es					
SAMPLE NUMBERS	²⁰⁷ Pb/ ²³⁵ U ± (2SE)	$^{206}{ m Pb}/^{238}{ m U}$ \pm (2SE)	$^{207}{ m Pb}/^{206}{ m Pb}$ $\pm (2{ m SE})$	²⁰⁷ Pb/ ²³⁵ U ± (2SE)	²⁰⁶ Pb/ ²³⁸ U ± (2SE)	$^{207}{ m Pb}/^{206}{ m Pb}$ $\pm (2{ m SE})$	Discor- dance %	U (ppm)	2SE	Pb (ppm)	2SE
TKC10-GARNET AMPHIBOLITE											
TK4102-K-41	0.099±0.039	0.00458 ± 0.00069	0.08±0.15	87±36	29.4±4.4*	400±1200	66	0.954	0.024	0.084	0.067
TK4102-D-682	$0.106{\pm}0.071$	0.0049 ± 0.0012	$0.11 \pm .0.22$	71±63	31.2±7.6*	-6000±6000	56	0.481	0.013	0.107	0.096
TK4102-J-312	$0.126{\pm}0.043$	$0.00512{\pm}0.00069$	0.267 ± 0.099	110±35	32.9±4.4*	800±1300	70	1.111	0.023	0.078	0.064
TK4102-J-332	0.19±0.1	$0.00541 {\pm} 0.00076$	$0.04{\pm}0.2$	123±34	34.7±4.9*	1200±2600	72	1.033	0.03	0.132	0.075
TK4102-D-672	0.21 ± 0.11	$0.0056 {\pm} 0.0017$	0.43 ± 0.24	200±88	36±11*	900±2900	82	0.417	0.012	0.08	0.16
TK4102-L-222	0.23±0.15	$0.0058 {\pm} 0.002$	0.25±0.39	170±120	37±13*	700±4500	78	0.2874	0.0068	0.21	0.16
TK4102-L-262	$0.21{\pm}0.11$	0.006 ± 0.0017	0.3 ± 0.34	155±91	38±11*	-4200±3600	75	0.3367	0.0082	0.076	0.058
ТК4102-Н-072	0.2±0.12	$0.0059{\pm}0.0018$	0.2 ± 0.25	210±100	38±11*	-6700 ± 5800	82	0.293	0.01	0.09	0.065
ТК4102-Н-062	0.25±0.13	0.006 ± 0.0015	$0.02{\pm}0.31$	187±89	38.7±9.7*	-700±5300	79	0.447	0.017	0.083	0.078
TK4102-C-552	0.276±0.092	0.0061 ± 0.0012	0.57 ± 0.47	196±66	39.3±7.7 *	-2400±6400	80	0.541	0.022	0.31	0.12
ТК4102-К-452	0.175±0.041	$0.00618 {\pm} 0.00067$	0.246 ± 0.074	158±34	39.7±4.3*	2270±640	75	1.554	0.041	0.421	0.097
TK4102-M-512	0.11±0.057	0.0062 ± 0.0015	$0.06{\pm}0.2$	101±49	40±9.6*	-5000±6300	60	0.522	0.017	0.04	0.12
TK4102-K-422	0.139±0.043	$0.00633 {\pm} 0.0008$	0.206±0.099	123±38	40.6±5.1*	1540±790	67	1.223	0.039	0.35	0.11
ТК4102-Н-082	0.221±0.1	$0.0065 {\pm} 0.0015$	0.16±0.25	220±91	41.4±9.8*	-3500±4500	81	0.344	0.014	0.023	0.048
TK4102-D-692	0.29±0.11	$0.0065 {\pm} 0.0019$	0.31±0.23	263±99	42±12*	2400±2400	84	0.517	0.015	0.3	0.2
TK4102-J-362	$0.07{\pm}0.093$	$0.0067 {\pm} 0.0016$	0.2±0.39	42±91	43±10*	-3200±4300	-2	0.47	0.012	0.11	0.14
TK4102-D-652	0.57±0.2	0.0082 ± 0.0026	0.21±0.72	360±80	52±17*	600±3100	86	0.4503	0.0072	0.29	0.13
TK4102-E-752	0.41±0.2	$0.0081 {\pm} 0.0021$	0.36±0.67	260±160	52±14*	1800±4000	80	0.2546	0.0088	0.23	0.17
TK4102-J-322	$0.26{\pm}0.073$	$0.0085 {\pm} 0.0035$	$0.323 {\pm} 0.07$	202±35	54±21*	3110±390	73	1.497	0.049	0.49	0.18
TK4102-E-722	0.53±0.25	$0.0086 {\pm} 0.002$	0.53±0.23	360±130	55±13*	3300±1600	85	0.499	0.015	0.52	0.16
TK4102-E-742	0.48±0.29	0.0091 ± 0.0034	0.16±0.25	290±160	58±22*	-6300±5500	80	0.1734	0.0049	0.02	0.12
TK4102-G-192	0.28±0.15	0.0097 ± 0.0035	0.15±0.2	220±110	62±23*	-2700±4100	72	0.2298	0.008	-0.009	0.084
TK4102-H-102	0.69±0.41	$0.0107 {\pm} 0.004$	0.3±0.46	370±200	68±25*	-100±4400	82	0.1334	0.0047	0.141	0.071
TK4102-C-562	0.96±0.1	$0.0114 {\pm} 0.0015$	0.78 ± 0.14	673±52	73.1±9.5*	4830±380	89	0.564	0.018	0.92	0.11

Table S10. Rutile U-Pb geochronological results of garnet amphibolite sample-TKC10 (Çamlıca-Tire Klippe, Çine Nappe), Menderes Massif, Turkey.

TK4102-H-152	1.15 ± 036	0.0121 ± 0.0042	0.67 ± 0.85	660±150	77±27*	600 ± 6200	88	0.1452	0.0049	0.155	0.069
TK4102-L-292	0.71 ± 0.12	$0.0126{\pm}0.0019$	0.6 ± 0.18	553±74	81±12*	4100±540	85	0.453	0.015	0.52	0.14
TK4102-L-302	1.5 ± 0.3	$0.0156{\pm}0.0024$	$0.72{\pm}0.1$	850±110	100±15*	4650±280	88	0.576	0.016	1.25	0.32
TK4102-M-532	1.41 ± 0.12	$0.0167 {\pm} 0.0013$	0.602 ± 0.056	898±49	106.7±8.2*	4450±150	88	0.609	0.018	1.43	0.15
TK4102-C-542	1.62 ± 0.27	$0.0182{\pm}0.0034$	0.77 ± 0.19	950±110	116±22*	4810±470	88	0.354	0.014	0.99	0.21
ТК4102-Н-122	3.34 ± 0.41	$0.0385 {\pm} 0.0064$	0.8 ± 0.2	1453±91	242±39*	5300±1200	83	0.1774	0.0079	0.77	0.11
TK4102-J-342	5.49±0.83	$0.0505 {\pm} 0.0072$	0.772 ± 0.028	1810 ± 110	315±43*	4909±62	83	1.743	0.062	12.3	1.7
TK4102-L-232	15.9±1.5	$0.156{\pm}0.017$	0.846 ± 0.045	2871±95	926±20*	5060±100	68	0.2661	0.0088	6.07	0.63
TK4102-I-042	36.9±5.2	$0.352{\pm}0.052$	0.79±0.13	3660±130	1980±230*	4930±300	46	0.044	0.0032	1.98	0.52
TK4102-C-57b	24.4±2.2	$0.203 {\pm} 0.013$	$0.871 {\pm} 0.063$	3271±87	1188±69*	5120±140	64	0.415	0.013	17.1	1.8
TK4102-F-482	27.8±2.5	$0.269{\pm}0.028$	0.745 ± 0.08	3396±96	1520±140*	4810±190	55	0.0611	0.0033	2.82	0.25
TK4102-J-392	37.8±2.7	$0.314{\pm}0.024$	$0.873 {\pm} 0.047$	3694±69	1740±120*	5130±110	53	0.1108	0.0035	5.86	0.37
TK4102-I-04c	39.8±2.8	$0.333 {\pm} 0.023$	0.836 ± 0.049	3763±72	1868±100*	5040±110	50	0.3185	0.0099	16.1	1.1
TK4102-D-70b	39.8±5.5	$0.346{\pm}0.054$	$0.858 {\pm} 0.048$	3710±140	1880±250*	5090±110	49	0.342	0.016	31.3	6.1
TK4102-I-042	36.9±5.2	$0.352{\pm}0.052$	0.79±0.13	3660±130	1980±230*	4930±300	46	0.044	0.0032	1.98	0.52
TK4102-A-62b	62.7±7.8	$0.581 {\pm} 0.08$	$0.801 {\pm} 0.068$	4190±120	2900±320*	5000±140	31	0.1793	0.0055	22	3.5
TK4102-D-69b	76±5.7	0.66 ± 0.037	0.829 ± 0.039	4404±75	3270±140*	5029±89	26	0.335	0.023	53.4	1.4
TK4102-B-592	75.6±9.4	$0.668 {\pm} 0.072$	$0.841 {\pm} 0.036$	4400±130	3320±270*	5054±82	25	0.1606	0.0064	19.9	1.8

The discordance % of the analyses, determined from the following formula; For ²⁰⁶Pb/²³⁸U dates younger than 1.0 Ga, discordance %=(1-[(^{207/235}U_{date})/(²⁰⁶Pb/²³⁸U_{date})]*100; for ²⁰⁶Pb/²³⁸U dates older than 1.0 Ga, discordance %=(1-[(^{207/206}Pb date)/(²⁰⁶Pb/²³⁸Udate)])*100. *, ^a -Used for discordia diagram.

		Isotopic Ratios			Apparent Age	S						
SAMPLE NUMBERS	$^{207}{ m Pb}/^{235}{ m U}$ \pm (2SE)	$^{206}{ m Pb}/^{238}{ m U}$ \pm (2SE)	$^{207}{ m Pb}/^{206}{ m Pb}$ \pm (2SE)	²⁰⁷ Pb/ ²³⁵ U ± (2SE)	$^{206}{ m Pb}/^{238}{ m U}$ \pm (2SE)	²⁰⁷ Pb/ ²⁰⁶ Pb ± (2SE)	Discor- dance %	U (ppm)	2SE	Th (ppm)	2SE	Th/U
K1 RETROGRESSED ECLOGITE												
K1-47r	0.0895±0.0027	0.01343±0.00023	0.0482 ± 0.0012	87±2.5	86±1.5*	111±52	1.1	441	18	167.2	3.8	0.38
K1-47c	$0.0933 {\pm} 0.0037$	0.01263±0.00024	0.0543±0.0022	85±3.4	80.9±1.5*	368±83	4.8	500	28	234	15	0.47
K1-43	0.276±0.0057	0.0386±0.0019	0.0459 ± 0.0091	244±46	244±12*	10±360	0.0	15.4	1.8	1.64	0.26	0.11
K1-31	0.36±0.13	0.0453 ± 0.0049	$0.049{\pm}0.017$	294±91	285±30*	180±600	3.1	3.83	0.28	0.245	0.052	0.06
K1-25	0.412±0.059	0.0541 ± 0.0022	0.0549 ± 0.0073	349±50	340±14*	300±260	2.6	6.77	0.37	0.595	0.051	0.09
K1-81r	0.437±0.02	0.0569±0.0013	$0.0565 {\pm} 0.0023$	373±14	356.6±7.9*	486±91	4.4	59.5	5.6	7.45	0.88	0.13
K1-82c	0.503±0.024	0.0642 ± 0.0014	0.0574 ± 0.0027	412±16	401.2±8.7*	460±100	2.6	33.3	3.5	3.04	0.3	0.09
K1-02	0.559±0.051	0.0745 ± 0.0026	$0.0553 {\pm} 0.0058$	469±34	465±16*	410±200	0.9	9.31	0.92	0.7	0.14	0.08
K1-62	0.63±0.033	0.0769 ± 0.002	$0.0585 {\pm} 0.0027$	495±21	477±12*	530±100	3.6	98.8	2.4	11.09	0.36	0.11
K1-77	0.629±0.055	0.0773 ± 0.0027	$0.058{\pm}0.0055$	505±31	480±16*	560±180	5.0	8.24	0.9	0.721	0.071	0.09
K1-39	0.625±0.021	0.0776±0.0016	$0.0591{\pm}0.002$	494±13	481.8±9.4*	567±76	2.5	93.7	5.7	10.8	0.86	0.12
K1-59	0.656 ± 0.048	0.0794±0.0026	$0.0581 {\pm} 0.0044$	504±29	492±15*	530±160	2.4	13.5	1.4	1.76	0.12	0.13
K1-36	0.637±0075	0.0796 ± 0.0037	0.0594 ± 0.0072	498±47	493±22*	450±240	1.0	6.79	0.21	0.655	0.043	0.10
K1-42	0.654±0.019	0.0797 ± 0.0017	$0.0596 {\pm} 0.0015$	510.8±12	495.2±9.7*	588±55	3.1	181.4	5	22.01	0.52	0.12
K1-78	0.653±0.054	0.08 ± 0.0024	0.0591 ± 0.0049	502±33	496±14*	490±170	1.2	14.94	0.59	1.574	0.086	0.11
K1-89	0.674±0.057	0.08±0.0023	$0.061 {\pm} 0.0053$	520±37	496±14*	560±180	4.6	9.35	0.65	1.097	0.092	0.12
K1-64	0.666 ± 0.047	0.0802 ± 0.0029	0.0607±00043	516±29	497±17*	570±50	3.7	13.99	0.48	0.987	0.045	0.07
K1-00	0.6375±0.013	$0.08071 {\pm} 0.0013$	0.05745 ± 0.00067	500.7±8.2	500.3±7.6*	506±26	0.1	760	39	130	29	0.17

Table S11. Zircon U-Pb geochronological results of retrogressed eclogite sample-K1 (Yenişehir-Kiraz, Çine Nappe), Menderes Massif, Turkey.

K1-13	0.6 ± 0.03	0.081 ± 0.0023	$0.0557{\pm}0.0028$	479±18	503±13*	410±100	-5.0	21.37	0.99	1.426	0.061	0.07
K1-03	0.672 ± 0.074	0.0826 ± 0.0028	$0.0612{\pm}0.008$	508±44	511±17*,**	510±220	-0.6	5.42	0.22	0.552	0.029	0.10
K1-08	0.661 ± 0.025	0.0826 ± 0.0015	$0.0588{\pm}0.0019$	523±16	511.4±8.9*,**	551±70	2.2	251	11	31.4	3.4	0.13
K1-29	0.664 ± 0.018	$0.083 {\pm} 0.0014$	$0.0584{\pm}0.0012$	518.1±11	514±8.3*,**	547±43	0.8	301	18	32.6	3.3	0.11
K1-67	0.703 ± 0.063	0.0832 ± 0.0034	$0.0633 {\pm} 0.006$	535±38	515±20*,**	620±200	3.7	14.5	1.3	1.81	0.13	0.12
K1-04	0.669 ± 0.018	$0.08365 {\pm} 0.0014$	$0.058 {\pm} 0.0012$	519.6±11	517.9±8.2*,**	536±45	0.3	133.5	9.1	17.6	1.6	0.13
K1-79r	0.688±0.019	0.0842 ± 0.0017	$0.0608 {\pm} 0.0016$	532.7±12	521.1±10*,**	618±57	2.2	155.2	6.7	21	1.9	0.14
K1-28	0.693 ± 0.082	$0.0853 {\pm} 0.0027$	$0.0586{\pm}0.0065$	542±47	528±16*,**	560±210	2.6	7.75	0.73	0.701	0.077	0.09
K1-62	0.69±0.023	$0.0851 {\pm} 0.0016$	$0.0583{\pm}0.0018$	532±14	528.3±9.2*,**	519±68	0.7	73.2	3.8	8.37	0.54	0.11
K1-61	$0.68 {\pm} 0.031$	$0.0855 {\pm} 0.0019$	$0.0569 {\pm} 0.0026$	526±19	528.6±11*,**	477±97	-0.5	28.5	1.2	2.62	0.11	0.09
K1-72m	0.688±0.023	$0.0855 {\pm} 0.0019$	$0.0591{\pm}0.0018$	531±14	529±12*,**	557±67	0.4	143.5	2.9	16.57	0.55	0.12
K1-19	0.721±0.045	$0.0857 {\pm} 0.0021$	$0.0616{\pm}0.0038$	545±27	530±13*,**	590±130	2.8	14.7	1.6	0.85	0.1	0.06
K1-01	0.679 ± 0.04	0.0859 ± 0.0022	$0.059{\pm}0.0038$	526±25	531±13*,**	520±130	-1.0	16.6	1.6	1.52	0.15	0.09
K1-58	0.693±0.017	$0.08608 {\pm} 0.0013$	$0.05895 {\pm} 0.00091$	534.6±10	532.3±7.9*,**	559±34	0.4	238.2	6.2	28.82	0.91	0.12
K1-37	0.69±0.021	$0.08617 {\pm} 0.0015$	$0.0585 {\pm} 0.0017$	532.1±12	532.8±8.8*,**	542±62	-0.1	97.2	2.7	11.74	0.39	0.12
K1-76	$0.7{\pm}0.063$	0.0862 ± 0.0025	$0.0573 {\pm} 0.0049$	534±36	533±15*,**	440±170	0.2	8.91	0.63	0.426	0.024	0.05
K1-75	$0.691 {\pm} 0.016$	$0.08631 {\pm} 0.0014$	$0.05839{\pm}0.001$	533.1±9.7	533.7±8.3*,**	547±35	-0.1	346	9.4	31.02	0.36	0.09
K1-83r	0.692 ± 0.017	0.08632 ± 0.0014	$0.05815 {\pm} 0.001$	533.7±10	534.3±8*,**	542±38	-0.1	199.8	3.1	21.54	0.56	0.11
K1-23	0.704 ± 0.022	$0.0867 {\pm} 0.002$	$0.0588{\pm}0.0012$	541±13	535.9±12*,**	557±45	0.9	215.2	8.6	43.7	1.6	0.20
K1-35	$0.7{\pm}0.019$	$0.0871 {\pm} 0.0019$	0.05756 ± 0.00099	537.9±12	538.4±11*,**	515±38	-0.1	206	20	21.4	1.1	0.10
K1-69r	0.711 ± 0.018	$0.0874 {\pm} 0.0015$	$0.0593{\pm}0.0012$	545.6±11	540.1±8.7*,**	567±44	1.0	120.3	3.7	11.11	0.2	0.09
K1-85m	0.696±0.018	0.08745 ± 0.0015	$0.0571{\pm}0.0011$	535.7±11	540.4±8.6*,**	490±42	-0.9	156.9	5.3	17.4	1.5	0.11
K1-70m	0.713±0.019	$0.08756 {\pm} 0.0014$	$0.0588{\pm}0.0012$	546.7±11	541±8.4*,**	556±43	1.0	153.8	7.1	10.5	0.58	0.07
K1-34	0.712 ± 0.017	$0.08758 {\pm} 0.0014$	$0.05942 {\pm} 0.00098$	546±10	541.2±8.1*,**	580±35	0.9	299	20	41.1	4.4	0.14
K1-80m	0.711 ± 0.018	0.08761 ± 0.0014	$0.0591{\pm}0.0012$	546.8±11	541.4±8.6*,**	570±41	1.0	158.3	7.1	25.1	2.5	0.16

K1-74	0.702 ± 0.019	$0.0877 {\pm} 0.0016$	$0.058 {\pm} 0.0014$	540.7±12	542±9.6*,**	532±52	-0.2	114.3	6.6	13.32	0.74	0.12
K1-71r	0.701 ± 0.018	0.08814 ± 0.0014	0.058±0.0013	539.1±11	544.5±8.5*,**	524±49	-1.0	162.1	4.7	21.72	0.8	0.13
K1-84c	0.718±0.018	0.08815 ± 0.0015	0.05911 ± 0.00094	550.1±11	544.6±8.8*,**	577±35	1.0	198	6.4	19.52	0.63	0.10
K1-15	0.752 ± 0.064	0.0882 ± 0.0026	0.0621 ± 0.0052	564±36	545±15*,**	620±180	3.4	8.8	0.23	0.651	0.035	0.07
K1-88	0.714±0.022	0.0883 ± 0.0017	$0.0588 {\pm} 0.0012$	547±13	545.5±10*,**	553±47	0.3	416	31	159	24	0.38
K1-50	0.686 ± 0.062	0.0885 ± 0.003	0.0564 ± 0.005	528±36	546±18*,**	420±160	-3.4	9.53	0.91	0.822	0.079	0.09
K1-53	0.736 ± 0.027	0.0885 ± 0.0033	$0.0605 {\pm} 0.0018$	559±16	546±19*,**	627±67	2.3	307	11	152.8	5.3	0.50
K1-87	0.726±0.019	0.0886 ± 0.0016	0.0599±0.0011	553.9±11	547.3±9.5	591±39	1.2	143.1	7.3	13.52	0.32	0.09
K1-60	0.73±0.018	$0.08879 {\pm} 0.0014$	$0.0596 {\pm} 0.0011$	556.4±11	548.4±8.4	589±40	1.4	247.1	4.6	6.04	0.45	0.02
K1-12	0.714 ± 0.018	$0.0891 {\pm} 0.0017$	$0.05759 {\pm} 0.00091$	546.8±11	550.2±9.9	512±35	-0.6	291	25	21	1.6	0.07
K1-66	0.715±0.063	0.0888 ± 0.0032	$0.057 {\pm} 0.0053$	535±38	551±20	440±190	-3.0	12.9	2.8	1.24	0.31	0.10
K1-40	$0.7282 {\pm} 0.016$	$0.08969 {\pm} 0.0013$	0.059260.00074	555.2±9.5	553.7±7.9	573±27	0.3	360	31	27.4	2.1	0.08
K1-14	0.726±0.018	$0.08983 {\pm} 0.0015$	$0.0588 {\pm} 0.0012$	553.9±11	554.5±9	553±44	-0.1	192.4	4.1	31.08	0.73	0.16
K1-55	0.73±0.027	0.09 ± 0.0028	$0.05817 {\pm} 0.001$	556±16	555±17	533±38	0.2	340	23	24.1	0.88	0.07
K1-09	0.731 ± 0.019	0.0902 ± 0.0017	$0.059{\pm}0.0011$	556.6±11	556.4±10	569±42	0.0	350	16	28.2	1.8	0.08
K1-54	0.735±0.018	$0.0904{\pm}0.0015$	$0.0592{\pm}0.00094$	559.3±10	557.9±8.9	574±35	0.3	294	13	24.24	0.81	0.08
K1-42	0.74±0.031	0.0905 ± 0.0023	$0.06{\pm}0.0018$	561±18	558±14	593±67	0.5	124.6	3.4	17.79	0.84	0.14
K1-46	0.756±0.059	0.0906 ± 0.0023	$0.0603 {\pm} 0.0044$	568±33	559±13	590±150	1.6	16.4	1.3	1.273	0.086	0.08
K1-26	0.736±0.019	0.09081 ± 0.0014	$0.0585{\pm}0.0013$	560.3±11	560.3±8.5	546±46	0.0	129.7	2.8	18.77	0.49	0.14
K1-24	$0.738 {\pm} 0.018$	0.09087 ± 0.0014	$0.05933 {\pm} 0.00099$	560.8±10	560.6±8.4	577±36	0.0	252.9	8.3	25.41	0.91	0.10
K1-41	0.769±0.031	$0.0911 {\pm} 0.0018$	0.0613 ± 0.0022	582±17	562.1±10	654±75	3.4	49	2.7	4.17	0.21	0.09
K1-72m	0.751 ± 0.023	0.092 ± 0.0019	$0.0595 {\pm} 0.0015$	568±14	567.3±11	584±60	0.1	110.2	2.8	28.4	1.3	0.26
K1-08	0.803 ± 0.035	$0.0953 {\pm} 0.002$	0.0614 ± 0.0026	598±19	586.9±12	663±95	1.9	129	14	37.3	2.7	0.29
K1-38	0.788 ± 0.018	0.09632±0.0015	$0.05976 {\pm} 0.00083$	590.8±10	592.8±8.8	597±29	-0.3	567.4	5.7	211.3	4.5	0.37
K1-41	0.37±0.19	0.0433 ± 0.0072	0.052±0025	300±140	273±45	70±840	9.0	7.6	1.7	0.44	0.16	0.06

K1-43	0.415±0.025	0.0459 ± 0.0012	$0.0569 {\pm} 0.0035$	353±17	289.2±7.5	530±130	18.1	24.68	0.87	2.5	0.17	0.10
K1-73	0.46±0.015	$0.05826{\pm}0.0011$	$0.0577 {\pm} 0.0017$	387.1±11	365±6.6	504±65	5.7	94.3	9.2	12.7	1	0.13

The discordance % of the analyses, determined from the following formula; For $^{206}Pb/^{238}U$ dates younger than 1.0 Ga, discordance %= $(1-[(^{207/206}Pb/^{238}U_{date})]^*100$; for $^{206}Pb/^{238}U$ dates older than 1.0 Ga, discordance %= $(1-[(^{207/206}Pb/^{238}Udate)])^*100$. * Used for discordia diagram, ** Used for calculation of likely crystallization concordia age of the protholit,

Table S12. Geochemical analyse results of the garnet amphibolites, biotite-bearing meta-gabbros and retrogressed eclogites of the Menderes Nappes,

Menderes Massif, Turkey (Yanyaalçi-Alaşenir, Bozdag Nappe; Birgi, Çamilca-Tire Klippe, Yenişenir-Kiraz, Çine Nappe	Menderes I	Massif, Tu	ırkey (Yahyaal	çı-Alaşehir, Boz	dağ Nappe; Birg	i, Çamlıca-Tire Klippe	e, Yenişehir-Kiraz, Çine N	appe).
--	------------	------------	----------------	------------------	-----------------	------------------------	----------------------------	--------

Sample Definition	Garnet Amphi- bolite	Garnet Amphi- bolite	Garnet Amphi- bolite	Garnet Amphi- bolite	Garnet Amphi- bolite	Biotite- Bearing Meta- Gabbro BU-1	Biotite- Bearing Meta- Gabbro BU-2	Biotite- Bearing Meta- Gabbro	Biotite- Bearing Meta- Gabbro	Biotite- Bearing Meta- Gabbro	Biotite- Bearing Meta- Gabbro FC-8	Red. Eclogite	Red. Eclogite	Red. Eclogite	Red. Eclogite	Red. Eclogite
Numbers	Tire	Tire	Tire	Tire	Tire	Birgi	Birgi	Tire	Tire	Tire	Çine	Kiraz	Kiraz	Kiraz	Kiraz	Kiraz
SiO ₂ (%)	67.10 0.78	51.20 3.12	55.90 2.42	47.90 2.14	47.50 3.81	48.90 0.79	53.10 1.19	51.50 0.86	50.80 1.37	51.60 1.04	65.70 0.78	49.90 1.25	49.32 1.58	49.47 1.23	50.36 1.29	49.50 1.28
$Al_2O_3(\%)$	14.40	15.50	15.20	15.10	13.80	18.60	16.60	16.20	16.00	16.50	15.20	15.50	14.65	15.43	14.49	14.89
$Fe_2O_3(\%)$	6.37	13.60	12.10	15.50	17.70	9.14	12.90	8.64	12.50	9.68	7.99	10.10	12.50	11.63	11.28	11.80
MnO (%)	0.09	0.20	0.18	0.23	0.26	0.13	0.20	0.15	0.19	0.16	0.05	0.14	0.20	0.17	0.16	0.18
MgO (%)	2.66	3.81	3.13	6.33	4.94	9.31	6.56	8.96	7.94	8.27	2.71	7.56	7.72	6.95	7.50	7.72
CaO(%)	1.23	5.8/	6.0/	9.11	/./4 2.64	10.50	0.33	11.30	9.39	9.40	0.64	11.60	9.96	11.48	10.53	10.//
$K_{2}O(\%)$	2.74	5.04 0.03	5.57 0.01	2.94	2.04	2.40	5.24 0.51	2.25	2.04	2.44	2.00	2.87	5.25 0.18	2.78	2.99	2.45
$R_{2}O(70)$ P ₂ O ₅ (%)	0.21	0.55	0.51	0.33	0.45	0.40	0.23	0.20	0.28	0.58	0.00	0.23	0.13	0.14	0.20	0.10
$Cr_2O_3(\%)$	0.01	0.01	0.01	0.01	0.01	0.04	0.02	0.008	0.05	0.02	0.02	0.05	0.035	0.054	0.044	0.045
LOI (%)	1.24	0.53	0.30	0.16	0.60	0.15	0.48	0.13	0.21	0.49	1.47	0.16	0.3	0.4	0.8	1.0
Trace																
(ppm)																
Ba	602	494	866	159	340	173	540	168	261	288	1668	183	148	27	70	128
Co	17.8	32.9	22.7	49.8	43.3	49.1	31.2	38.1	47.8	44.1	15.1	44.8	36.2	45.5	49.4	45.0
Cs	4.3	0.4	0.6	0.3	0.7	0.7	0.1	0.1	0.1	1.0	7.0	0.3	0.2	0.1	0.1	0.1
Ga	18.2	21.0	19.7	21.3	21.0	15.8	21.4	14.3	17.9	15.5	21.3	19.2	16.9	15.2	14.3	15.9
Hf	6.1	6.2	5.4	3.0	11.8	1.9	3.4	1.7	3.5	2.7	4.7	2.0	2.9	2.2	2.1	2.4
Nb	11.4	30.3	18.4	6.2	29.6	3.6	11.6	5.0	9.6	7.4	11.8	1.3	2.0	1.7	1.8	1.9
Kb Su	102.2	1/.9	18.2	6.3	8.0	15.6	2.7	3.3	3.8	11.1	104.6	3.9	2.4	0.6	2.9	1.9
Sr Ta	100.1	310.3 1 7	200.7	140.1	323.0	105.4	255.7	209.1	104.2	194.4	191.1	180.0	100.8	155.7	110.7	157.1
Ta Th	0.9	1./	1.1	0.4	1./	0.2	0.0	0.3	0.0	0.0	1.0	0.1	0.1	0.1	0.1	0.1
III II	1. 4 2.7	0.3	0.3	0.1	1.4	0.1	0.2	0.2	0.2	0.7	28	0.2	0.2	0.2	0.2	0.2
v	116	303	163	451	406	159	209	216	227	192	182	300	334	268	305	308
Ŵ	0.7	0.5	0.6	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.6	0.5	1.1	0.7	1.5	0.5
Zr	216.8	256.5	217.3	115.1	196.9	75.2	134.7	63.2	146.0	103.6	177.1	74.2	107.2	88.7	79.0	80.3
Y	45.4	39.8	37.2	29.7	52.8	17.8	20.4	15.6	27.9	20.9	34.2	28.9	39.6	29	30.4	33.4
Ti	4676	18704	14508	12829	22841	4736	7134	5156	8213	6235	4676	7493	9470	7373	7732	7672
							-									

Table 2 (Continue)

Sample Definition	Garnet Amphi -bolite	Garnet Amphi- bolite	Garnet Amphi- bolite	Garnet Amphi- bolite	Garnet Amphi- bolite	Biotite- Bearing Meta- Gabbro	Biotite- Bearing Meta- Gabbro	Biotite- Bearing Meta- Gabbro	Biotite- Bearing Meta- Gabbro	Biotite- Bearing Meta- Gabbro	Biotite- Bearing Meta- Gabbro	Red. Eclogite	Red. Eclogite	Red. Eclogite	Red. Eclogite	Red. Eclogite
Sample	TKC-1	TKC-3	TKC-5	TKC-10	TKC-11	BU-1	BU-2	TKC-7	TKC-8	TKC-9	EC-8	K1	K3	K4	K6	K7
Numbers	Tire	Tire	Tire	Tire	Tire	Birgi	Birgi	Tire	Tire	Tire	Çine	Kiraz	Kiraz	Kiraz	Kiraz	Kiraz
REE (ppm)																
La	35	32.4	35.2	9.1	27.6	7.2	22.6	8.5	15.6	11.5	38.0	2.8	3.9	3.3	2.9	2.7
Ce	71.1	71.6	80.9	22.5	63.6	16.2	44.5	18.6	34.9	25.2	68.3	9.3	12.2	10.0	9.0	8.6
Pr	8.54	9.72	10.81	3.03	9.81	2.24	5.36	2.55	4.57	3.18	9.12	1.77	2.07	1.70	1.52	1.44
Nd	33.2	43.0	43.1	14.0	46.5	9.9	20.4	11.9	20.3	13.2	34.3	9.4	11.6	9.4	8.2	8.4
Sm	6.65	9.15	8.49	3.76	10.68	2.48	4.03	2.81	4.54	3.31	6.48	3.56	3.82	2.99	2.73	2.91
Eu	1.28	2.06	2.37	1.35	2.89	0.77	1.84	0.98	1.28	1.12	1.10	1.55	1.38	1.09	1.05	1.11
Gd	6.82	9.41	8.35	4.81	11.12	2.74	4.22	2.97	5.16	3.66	5.92	5.28	5.39	4.27	4.14	4.32
Tb	1.19	1.35	1.23	0.83	1.77	0.50	0.66	0.49	0.84	0.63	0.92	0.91	1.0	0.78	0.78	0.82
Dy	8.16	7.86	6.97	5.42	10.22	3.18	4.00	3.00	5.20	4.00	5.67	5.59	6.82	4.91	5.13	5.56
Но	1.72	1.56	1.39	1.17	2.08	0.71	0.81	0.62	1.09	0.87	1.25	1.10	1.51	1.07	1.15	1.23
Er	4.90	4.29	3.86	3.44	5.77	2.06	2.58	1.89	3.13	2.51	3.78	3.21	4.42	3.22	3.41	3.71
Tm	0.70	0.56	0.54	0.48	0.83	0.28	0.37	0.26	0.45	0.37	0.56	0.46	0.63	0.46	0.51	0.56
Yb	4.45	3.68	3.48	3.01	5.29	1.85	2.64	1.60	2.85	2.14	3.63	3.00	4.04	2.93	3.13	3.39
Lu	0.66	0.56	0.55	0.46	0.83	0.28	0.42	0.24	0.43	0.33	0.56	0.45	0.64	0.47	0.47	0.54
∑REE	499.37	197.2	207.24	73.36	198.99	50.39	114.43	56.41	100.34	72.02	179.59	48.38	59.42	46.59	44.12	45.29
Nb/Th	1.00	12.63	7.36	5.17	74.00	1.89	58.00	25.00	48.00	10.57	1.01	6.5	10.0	8.5	9.0	9.5
Nb/Zr	0.05	0.12	0.08	0.05	0.06	0.05	0.09	0.08	0.07	0.07	0.07	0.02	0.019	0.019	0.023	0.024
Nb/Ta	12.67	17.82	16.73	15.50	17.41	18.00	19.33	16.67	16.00	12.33	11.80	13	20	17	18	19
Zr/Yb	48.72	69.70	62.44	38.24	93.93	40.65	51.02	39.50	51.23	48.41	48.79	24.73	26.53	30.27	25.24	23.69
Ti/Zr	21.57	72.92	66.76	111.46	45.97	62.98	52.96	81.58	56.25	60.18	26.40	101.00	88.34	83.12	97.87	95.54
Th/Zr	0.05	0.01	0.01	0.01	0.00	0.03	0.00	0.00	0.00	0.01	0.07	0.00	0.002	0.002	0.003	0.002
Y/Zr	0.21	0.16	0.17	0.26	0.11	0.24	0.15	0.25	0.19	0.20	0.19	0.39	0.37	0.33	0.38	0.42
(La/Yb) _N	53.43	5.98	6.87	2.05	29.23	2.64	5.82	3.61	3.72	3.65	7.11	0.63	0.69	0.81	0.66	0.57
(La/Sm) _N	32.87	2.21	2.59	1.51	13.31	1.81	3.50	1.89	2.15	2.17	3.66	0.49	0.61	0.66	0.63	0.55
(Gd/Yb) _N	1.24	2.07	1.94	1.29	1.70	1.20	1.29	1.50	1.46	1.38	1.32	1.42	1.05	1.06	1.13	1.11
(Eu/Eu) _N	0.62	0.68	0.85	0.97	0.68	0.90	1.36	1.05	0.80	0.98	0.54	1.09	0.93	0.93	0.95	1.0

Sample Definition	Garnet Amphibolite	Garnet Amphibolite	Garnet Amphibolite	Garnet Amphibolite	Garnet Amphibolite	Garnet Amphibolite	Garnet Amphibolite	Garnet Amphibolite	Garnet Amphibolite
Sample	ATY-1	ATY-9	ATY-3	ATY-4	ATY-5	ATY-6	ATY-7	ATY-10	ATY-11
Numbers	Alaşehir	Alaşehir	Alaşehir	Alaşehir	Alaşehir	Alaşehir	Alaşehir	Alaşehir	Alaşehir
SiO ₂ (%)	51.90	53.10	50.90	52.50	50.10	53.50	50.00	52.40	52.50
TiO ₂ (%)	0.70	0.57	0.42	0.88	1.03	0.47	0.86	0.70	0.42
$Al_2O_3(\%)$	13.40	16.10	17.30	18.00	15.70	16.80	16.60	16.00	16.30
Fe ₂ O ₃ (%)	8.43	7.22	7.42	4.29	10.70	6.40	9.17	7.28	6.78
MnO (%)	0.14	0.14	0.12	0.08	0.18	0.11	0.16	0.13	0.13
MgO (%)	10.40	8.34	9.47	7.16	8.15	8.09	8.46	8.65	9.16
CaO (%)	11.00	11.30	11.20	12.20	10.70	12.30	11.20	11.10	12.30
Na ₂ O (%)	2.40	2.02	2.44	2.65	1.98	1.76	2.39	2.87	1.96
K2O (%)	0.24	0.19	0.01	0.05	0.49	0.003	0.21	0.15	0.16
$P_2O_5(\%)$	0.08	0.04	0.04	0.06	0.12	0.04	0.02	0.02	0.01
$Cr_2O_3(\%)$	0.06	0.04	0.07	0.04	0.05	0.06	0.06	0.05	0.06
LOI (%)	1.21	1.07	0.97	1.08	1.09	0.85	1.03	0.85	0.98
Trace									
(ppm)									
Ba	40	169	21	109	97	105	70	73	38
Co	27.9	24.5	28.5	14.0	46.2	22	27.1	30.1	25.2
Cs	0.1	1.0	0.1	0.1	0.2	0.1	0.1	0.1	0.1
Ga	13.8	14.3	13.8	15.7	14.6	13.9	15.0	14.0	13.9
Hf	0.7	1.4	0.5	1.3	1.0	0.6	1.3	0.5	0.5
Nb	2.2	1.0	0.6	4.9	3.1	0.6	2.4	0.9	1.3
Rb	3.8	4.5	2.6	1.0	7.8	0.6	2.0	1.5	1.5
Sr	259.4	218.7	263.5	395.3	180.4	225.2	235.7	289.8	222.0
Та	0.2	0.1	0.1	0.4	0.2	0.1	0.2	0.1	0.1
Th	0.2	0.5	0.2	1.2	0.3	0.2	0.3	0.3	0.2
U	0.4	0.1	0.1	0.5	0.1	0.1	0.1	0.1	0.1
V	242	285	199	130	258	275	233	323	207
W	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Zr	22.7	59.9	14.8	53.6	40.7	16.5	46.9	12.1	13.3
Y	11.8	13.5	9.4	15.1	13.3	8.4	15.0	11.8	10.1
Ti	4197	3417	2518	5276	6175	2818	5156	4197	2518

m 1 1	. /	a	>
loh	a ((`ontinu	۵١
מט		Comunu	C I
	(- /

Sample Definition	Garnet Amphibolite	Garnet Amphibolite	Garnet Amphibolite	Garnet Amphibolite	Garnet Amphibolite	Garnet Amphibolite	Garnet Amphibolite	Garnet Amphibolite	Garnet Amphibolite
Sample	ATY-1	ATY-9	ATY-3	ATY-4	ATY-5	ATY-6	ATY-7	ATY-10	ATY-11
Numbers	Alaşehir	Alaşehir	Alaşehir	Alaşehir	Alaşehir	Alaşehir	Alaşehir	Alaşehir	Alaşehir
REE (ppm)									
La	2.7	2.6	2.0	5.5	5.1	7.4	3.5	1.4	1.4
Ce	6.4	6.8	4.6	12.8	10.1	13.2	9.2	4.3	4.1
Pr	1.02	1.08	0.70	1.78	1.56	1.53	1.32	0.70	0.65
Nd	5.0	5.3	3.4	7.8	7.0	6.9	5.9	3.6	3.5
Sm	1.37	1.66	0.99	2.25	1.76	1.50	1.85	1.35	1.17
Eu	0.65	0.78	0.57	0.91	1.02	0.79	0.83	0.79	0.57
Gd	1.58	2.03	1.28	2.35	2.32	1.74	2.50	1.66	1.48
Tb	0.29	0.36	0.25	0.40	0.39	0.28	0.44	0.33	0.28
Dy	2.02	2.38	1.73	2.55	2.41	1.65	2.84	2.21	1.86
Но	0.43	0.53	0.39	0.55	0.52	0.37	0.58	0.46	0.39
Er	1.34	1.45	1.11	1.68	1.56	1.02	1.79	1.48	1.25
Tm	0.20	0.22	0.17	0.24	0.22	0.13	0.23	0.21	0.17
Yb	1.30	1.45	1.11	1.55	1.48	0.92	1.56	1.38	1.01
Lu	0.23	0.21	0.16	0.26	0.21	0.14	0.23	0.21	0.16
∑REE	24.53	26.85	18.46	40.62	35.65	37.57	32.77	20.08	17.99
Nb/Th	11.00	2.00	3.00	4.08	10.33	3.00	8.00	3.00	6.50
Nb/Zr	0.10	0.02	0.04	0.09	0.08	0.04	0.05	0.07	0.10
Nb/Ta	11.00	10.00	6.00	12.25	15.50	6.00	12.00	9.00	13.00
Zr/Yb	17.46	41.31	13.33	34.58	27.50	17.93	30.06	8.77	13.17
Ti/Zr	184.89	57.05	170.14	98.43	151.72	170.79	109.94	346.86	189.32
Th/Zr	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.02	0.02
Y/Zr	0.52	0.23	0.64	0.28	0.33	0.51	0.32	0.98	0.76
(La/Yb) _N	1.41	1.22	1.22	2.41	2.34	5.46	1.52	0.69	0.94
(La/Sm) _N	1.23	0.98	1.26	1.53	1.81	3.08	1.18	0.65	0.75
(Gd/Yb) _N	0.98	1.13	0.93	1.23	1.27	1.53	1.30	0.97	1.19
(Eu/Eu) _N	1.35	2.6	1.55	1.21	1.54	1.49	3.5	1.4	1.4