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Abstract: In recent decades, nanotechnology has been rapidly advancing in various fields of hu-
man activity, including veterinary medicine. The review presents up-to-date information on recent
advancements in nanotechnology in the field and an overview of the types of nanoparticles used
in veterinary medicine and animal husbandry, their characteristics, and their areas of application.
Currently, a wide range of nanomaterials has been implemented into veterinary practice, including
pharmaceuticals, diagnostic devices, feed additives, and vaccines. The application of nanoformula-
tions gave rise to innovative strategies in the treatment of animal diseases. For example, antibiotics
delivered on nanoplatforms demonstrated higher efficacy and lower toxicity and dosage require-
ments when compared to conventional pharmaceuticals, providing a possibility to solve antibiotic
resistance issues. Nanoparticle-based drugs showed promising results in the treatment of animal
parasitoses and neoplastic diseases. However, the latter area is currently more developed in human
medicine. Owing to the size compatibility, nanomaterials have been applied as gene delivery vectors
in veterinary gene therapy. Veterinary medicine is at the forefront of the development of innova-
tive nanovaccines inducing both humoral and cellular immune responses. The paper provides a
brief overview of current topics in nanomaterial safety, potential risks associated with the use of
nanomaterials, and relevant regulatory aspects.

Keywords: nanotechnology; nanoparticles; veterinary medicine; diagnostics; treatment; animal
disease; nanovaccines

1. Introduction

True dimensions of veterinary medicine are much broader than private veterinary
practice focused on pets and farm animals; they reflect expanding societal needs and con-
temporary challenges to animal and human health and to the environment [1]. Veterinary
medicine provides a crucial contribution to biomedical research, translational medical
research, the study of emerging and infectious diseases, public health, production animal
medicine, care of companion and exotic animals, and ecosystem management [2]. A com-
plex of targeted activities carried out at different organizational levels characterizes the
implementation of nanotechnologies in veterinary medicine. At the international level,
those activities are represented as concepts, agreements, memoranda, recommendations,
and other documents aimed at coordinating the development of veterinary nanomaterials
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in the world. At the same time, feedback from manufacturers and government agencies
allows businesses to legally influence the legislative process [3].

Biomedical applications benefit significantly from the use of nanomaterials, primarily
due to their size compatibility with various biological entities. Dimensions of those materi-
als align well with the sizes of cells (1–100 µm), viruses (20–450 nm), proteins (5–50 nm),
and genes (2 nm wide by 10–100 nm long). Small sizes allow nanoparticles to navigate
within the body without causing a disruption to normal physiological functions [4]. Fur-
thermore, nanoscale materials can access confined spaces that are inaccessible to larger
particles, thus offering unique advantages in biomedical applications. Therefore, nanotech-
nology has great potential to solve many different problems in veterinary medicine and
veterinary–sanitary inspection [5].

In the last three decades, rapid advances in nanotechnology have paved the way
for the effective and successful application of nanomaterials in many different fields of
veterinary medicine (Figure 1). The use of nanoscaled materials and drug delivery forms
has proven to be effective in the diagnosis, treatment, and prevention of both infectious
and non-infectious animal diseases. Those innovative approaches have demonstrated
promising results in veterinary medicine, offering enhanced therapeutic outcomes and
improved disease management. By leveraging nanotechnology, veterinarians can employ
targeted and controlled delivery of medications that lead to improved efficacy, reduced side
effects, and better overall outcomes for animals. In particular, a new generation of vaccines
delivered through nanovectors showed considerably higher efficiency than conventional
ones. The addition of nanomaterials to feeds enabled a direct assessment of their quality.
Nanoparticle-based test systems for quality control and inspection of different products of
animal and plant origin can already be found on the market [6].
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In the present paper, we analyze the state of the art and outlooks for the application of
nanomaterials in veterinary medicine and discuss a wide range of available nanotechnolo-
gies (medicines, diagnostic devices, feed additives, and vaccines) that are currently used to
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combat animal diseases. A brief overview of current topics in the safety of nanomaterials,
potential risks of their use, and relevant legal aspects is also provided.

2. Methodology
2.1. Search Strategy and Selection Criteria

Electronic databases (PubMed, Science Direct, and SpringerLink) were searched for
all eligible studies to date. There was no time limit for the search to ensure maximum
coverage of the research on the application of nanomaterials and nanotechnologies in
veterinary medicine. The following keywords were searched: “nanomaterials”, “nan-
otechnology”, “veterinary medicine”, “nanoparticles”, “animal health”, “vaccines”, “di-
agnosis”, “therapy”, “prevention”, “metabolism”, “viral diseases”, “infectious diseases”,
“non-communicable diseases” of “animals”, and “domestic animals”. The keywords were
used in different combinations. The identified links were imported to Mendeley reference
management software. Two independent authors checked the titles and abstracts of all
references. Only studies that met the article profile were included.

2.2. Data Extraction and Analysis

Two authors (A.L. and O.D.) performed data extraction independently. The following
information was obtained for each publication: publication year, publication type (original
article, review article, book chapter, patent, etc.), journal title, type of article, publication
region, first author, human medicine, veterinary medicine, and animal species. The articles
were conditionally divided into the following groups: diagnostics, treatment, innovative
nanovaccines, applications of nanotechnology to increase productivity and prevent animal
diseases, risks associated with the application of nanotechnology in veterinary medicine,
and legal regulation of the nanotechnology achievements in veterinary medicine and
agriculture. An article could be classified into several groups at the same time.

2.3. Literature Search and General Characteristics of the Studies Included

A total of 1023 records were identified, and 613 of them were excluded after initial
screening by title and abstract analysis. The remaining 410 eligible records were thoroughly
reviewed for the content of papers and 179 were excluded, thus leaving 231 studies re-
viewed in this paper. The earliest included article was published in 1988. The number
of publications increased gradually in subsequent years, reaching a maximum value of
32 papers in 2021 (Figure 2).
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Geographically, 32% of studies were conducted in Southeast Asia (n = 70), followed
by 28% in Europe (n = 60), 24% in North America (n = 52), and 10% in Africa (n = 22), and
the rest were performed in South America and Australia (Figure 3).
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3. Current Applications of Nanomaterials in Veterinary Medicine

There is a wide variety of nanomaterials used in veterinary medicine (Figure 4). It
includes nanoparticles (NPs), nanofibers, nanoplatelets, nanocapsules, carbon nanotubes,
polymer nanostructures, liposomes, and micelles.
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in veterinary medicine [7]. According to their chemical nature, the nanoparticles may be
of inorganic or organic origin. The former group includes nanoscale particles of elements
(e.g., different metals) and inorganic molecules or materials (e.g., binary compounds, co-
ordination compounds (complexes), salts, and materials) and the latter is represented by
different synthetic and bio-based organic compounds, polymers, and their self-assembled
aggregates (e.g., micelles, liposomes, and more complex biomolecule-based nanostructures).
Regardless of their nature, NPs can be combined with different molecules (proteins, en-
zymes, RNA, DNA) to perform a specific function. For example, composite materials based
on metal nanoparticles with hydrogels help to prevent, diagnose, and treat diseases [8].

3.1. Diagnostics

Due to their intrinsic physicochemical properties and biocompatibility, certain nanoma-
terials can find an application as probes (e.g., magnetic, fluorescent, catalytic) for different
diagnostic and imaging applications. Advances in nanotechnology made it possible to
develop and successfully use biochips for early diagnosis of diseases in animals. Those
chips are based on hundreds or thousands of short recombinant DNA segments grafted on
a silicon pool [9]. The biochips can also be used to monitor animal feeds for the presence
of various pathogens. Moreover, that kind of probe is able to recognize specific organic
molecules in blood, lymph, or other biological fluids and thus is able to be the principal part
of nanodiagnostic devices. Bioanalytical nanosensors can recognize different xenobiotics in
the bodies of farm and domestic animals [9–11].

Owing to their versatility and biocompatibility, nanosensor probes based on NPs of
gold, silver, silica, iron oxide, europium complexes, polymers, and cadmium telluride
quantum dots (fluorescent NPs) have become valuable tools for the detection of pathogens
and toxins that cause animal diseases [11].

Nowadays, the majority of diagnostic laboratories increasingly rely on molecular
diagnostic techniques. Integration of immune diagnostic probes with nanomaterials gave
great momentum to the development of antibody-based immunodiagnostic methodologies
as well as to the significant improvement of their specificity and sensitivity. Antibodies
conjugated to NPs are more stable, biocompatible, and more sensitive to target antigens [12].
Effective bioanalytical kits of enzyme-linked immunosorbent assays (ELISAs) have been
developed using nanomaterials to diagnose a number of animal infectious diseases, such
as bird flu [13–16], post-weaning multisystem wasting syndrome (PMWS) caused by a
porcine circovirus type 2 (PCV2) [17,18], Newcastle disease [19–21], and many others.

Various formats of nucleic acid amplification are the most frequently used molecular
tests in the diagnosis of infectious diseases. Moreover, those techniques have a number of
advantages over ELISA: a low cost, non-immunogenicity, and stability in response to en-
vironmental conditions [22]. Anthrax [23,24], brucellosis [25–27], and aflatoxicosis [28,29]
have been diagnosed using nanomaterial-based molecular diagnostic kits in current veteri-
nary practice.

Advances in nanotechnology led to the development of a variety of electronic sensors
both to diagnose animal diseases and to assess the quality of livestock husbandry products.
In particular, an “electronic nose” provided a fantastic possibility to detect a number of
animal infections and diseases in a non-invasive way. Such sensors are available nowadays
for the detection of Mycobacterium bovis infection in cattle [30], urinary tract infections [31],
diabetes [32], and diarrhea [33], as well as for diagnosis and differentiation of upper
respiratory tract infections provoked by Staphylococcus aureus, Streptococcus pneumoniae,
Haemophilus influenza, and Pseudomonas aeruginosa pathogens [34]. In addition, the electronic
nose technology has successfully been used for quality control of food products [35], such
as olive oil [36] and milk [37].

However, the potential of molecular diagnostic tools in veterinary medicine and
animal husbandry has not yet been fully revealed [30].
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3.2. Treatment

The application of nanotechnology in medicine has great potential to restore the use
of old drugs by modifying their bio-distribution, improving bioavailability, and reducing
toxicity [38]. In veterinary medicine, nanoformulations enable both the dose of antimicro-
bials administered to animals and the drug residues in livestock husbandry products to
be reduced. Highly toxic drugs, which have not been successful earlier, can now gain a
second chance by being incorporated into a nanoformulated drug delivery system. The
nanotechnological approach offers targeted delivery of drugs into the animal body and
allows the therapeutic dose/effect ratio to be optimized as much as possible. Additionally,
the outer shell of the dosage form (i.e., the nanocapsule or the NP surface coating) may also
contain biologically active substances that would direct the medication towards a specific
organ or tissue in the animal body [39].

Nanoparticle-mediated drug delivery provided more efficient pharmacokinetics that
reduced unwanted side effects [40]. For example, the development of antibiotic resistance
in microorganisms requires higher therapeutic doses of drugs to achieve the therapeutic
effect. Such an increase leads to enhanced side effects of those drugs. Nanoparticle-based
therapy may improve the balance between efficacy and toxicity of systemic therapeutic
interventions [41]. The drug delivery could be implemented either by a strategy of passive
targeting (NPs can accumulate in the target organ due to their particular size) or active
targeting (using specific mediators that bind to receptors on the target cell surface) [42].

Liposomes are among the most effective systems for targeted drug delivery. They have
a common structure, which provides them the possibility to contain both hydrophilic and
hydrophobic drugs. Encapsulation of the active drug form in a lipid bilayer protects the
former from enzymatic degradation and immunological or chemical inactivation. Therefore,
liposomes both prevent the metabolism of the drug before the target tissues are reached
and minimize the side effects of the encapsulated drug on healthy tissues during its
circulation in the blood [43]. Drugs loaded into liposomes become bioavailable only after
their release. The release rate from the liposomal vehicle could be finely tuned to achieve
a desired concentration level within the therapeutic window over a period of time to
have optimal therapeutic efficacy. Therefore, the effectiveness of a drug encapsulated in a
liposome depends on the properties of the drug itself and on those of the liposome carrier.
However, there are physicochemical properties of the liposome that determine the drug
pharmacokinetics [43].

Bacterial biofilm infections are known for their tolerance to high concentrations of
antibiotics and for being extremely difficult to treat. Nanotechnology-based controlled drug
delivery systems demonstrated high effectiveness in eradicating bacterial biofilm-associated
infections [44]. Liquid crystalline nanoparticles (LCNPs) drastically enhanced the efficacy
of tobramycin in biofilm-associated infections by increasing antibiotic penetration through
the biofilm matrix [45].

Nanotechnology has been widely used to deliver various biological additives, vaccines,
and drugs in poultry farming [46]; e.g., silver NPs were effective against cholesepticemia
in broiler chickens [47], and ZnO NPs prevented multiresistant foot dermatitis in broilers
caused by staphylococci [48]. Additionally, the antimicrobial properties of zinc oxide NPs
were used to treat quails [49] and to feed suckling piglets [50].

Recent studies have shown that composite materials produced by a combination of
nanoparticles with nanofibers were capable of performing multiple functions (e.g., response
to optical, magnetic, or pH stimuli; photo- or magnetothermal; biosensor; antibacterial;
drug delivery) at the same time, which can be useful for veterinary medicine [51].

3.2.1. Antibiotics and Antibiotic Resistance

Antimicrobial resistance is a global challenge recognized by several international
organizations including the United Nations Organization (UNO) and the World Health
Organization (WHO). Taking into consideration the growing rate of antibiotic resistance
development and the long-term process of creation and introduction of new generations of
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antimicrobial drugs, there is a vital need for research results providing new ways to increase
the effectiveness and reduce the toxicity of existing dosage forms. The importance of
knowledge-based nanoparticles and nanomaterials as agents for the treatment of infectious
diseases in veterinary medicine is constantly increasing [52,53].

Liposomal delivery of antibacterial drugs has offered a substantial improvement of
pharmacokinetic properties; targeted, controlled, and sustained drug release; and less
systemic toxicity [54]. High effectiveness of liposomal antibacterial drug forms was demon-
strated for the treatment of several infectious diseases, in particular, bovine mastitis [55,56],
infections caused by Gram-positive and Gram-negative bacteria [45,57], multiresistant bac-
terial infections [58], and Mycobacterium avium disease [59]. The antibacterial effectiveness
of liposome-encapsulated gentamicin was proven in vivo for the treatment of intracellular
infection provoked by Salmonella enterica serovar Typhimurium [60]. Greater efficiency
and lower toxicity of enrofloxacin administered in pegylated liposomes have also been
demonstrated [61]. Liposomal forms were also shown to be efficient antifungal drugs [62],
especially for the treatment of canine blastomycosis [63] and fungal pneumonia [64].

Some antibacterial drugs were converted into a micellar form, thus gaining a second
life. Drinking is the most convenient way to administer drugs in poultry farming. However,
it could be problematic to administer fat-soluble substances including a large number of
antibiotics. Conversion of antibiotics into micellar forms improves their bioavailability
and pharmacokinetic parameters. For example, micellar tilmicosin demonstrated high
efficacy in broiler chickens [65]. Blastomycosis in dogs was effectively and safely treated
with Amphotericin B lipid complex [63].

An alternative to antibiotics is vitally needed nowadays. Metal nanoparticles offer
one of those alternatives since microorganisms possess no genetic basis to counteract those
NPs. Therefore, they have widely been used to target bacterial resistance mechanisms
like that of Escherichia coli [66]. For example, silver nanoparticles (AgNPs) are well known
for their efficacy against antimicrobial resistance [67], and the toxic effects of AgNPs in
animals are also well studied. Therefore, silver nanoparticles have been used in pig farming
as an antimicrobial additive for piglets [68] and an antiviral agent against African swine
fever virus [69]. In 2014, the first attempts were made to establish the effectiveness of gold,
silver, copper, and platinum nanoparticles as antimicrobials for the treatment of bovine
mastitis [70]. Since then, a number of efficient commercial preparations containing metal
nanoparticles have been developed for the treatment of diseases [71]. Those nanoformula-
tions demonstrated a high antimicrobial efficacy against E. coli, Streptococcus uberis, Staph
aureus, Candida albicans, and C. krusei. Metal NPs have also demonstrated a promising
activity against biofilms and antibiotic-resistant bacteria [72]. In particular, the AgNPs were
highly effective against antibiotic-resistant bacteria [73] and biofilms [74]. The antibiofilm
activity mechanism of AgNPs and Zn-calcium silicate NPs was proposed [74].

Zinc oxide nanoparticles were demonstrated to have high antibacterial efficiency in
the treatment of blood mastitis [75]. Those NPs were also reported as antimicrobial feed
additives for animals [76].

The nanotechnological approach made it possible to enhance the effect of known
antibacterial agents; e.g., it was established that the nanoencapsulated form of curcumin
minimized some detrimental effects caused by L. monocytogenes in gerbils in terms of tissue
damage and interference with energy metabolism enzymes [77].

In aquaculture, up to 80% of antibiotics administered in the form of granulated medi-
cated feed accumulate in the aquatic environment [78]. Several nanotechnological alter-
natives to conventional antimicrobial agents used in aquaculture have increasingly been
suggested [79], particularly those containing metal NPs [80]. A promising approach in-
volving environmentally friendly carbon dot-TiO2 nanocomposites was proposed for the
removal of antibiotics from aquaculture effluents through solar irradiation [81]. When
activated by light, the TiO2-NPs exhibited bactericidal effect against several fish pathogens
(Streptococcus iniae, Edwardsiella tard, and Photobacterium damselae) [82], and ZnO-NPs were
effective against Vibrio harveyi [83].
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3.2.2. Antiparasitic Properties of Nanoparticles

Nanotechnology offers several efficient alternatives for the treatment of parasitic dis-
eases of both animals and humans. In particular, AgNPs obtained from the D. flagrans
fungus showed a high nematicidal efficiency, since the NPs were able to penetrate the cuti-
cles of the larvae and subsequently provoke the death of zoonotic nematodes [84]. ZnO [85]
and silver [86] nanoparticles were effective against coccidiosis in rabbits. Hydrosols of
nanoparticulated hydrated antimony (V) and bismuth (III) oxides were proposed as new
dosage forms for topical treatment of cutaneous leishmaniasis provoked by several species
of Leishmania parasites (L.amazonensis, L.brasiliensis, and L. guayanensis). The therapeutic
potency of the NPs was higher with respect to molecular forms of pentavalent antimo-
nial drugs (e.g., Glucantime® and Pentostam®), and the nanohybrids exhibited a higher
efficacy at doses 2–3 times lower [38,87]. The possibility to apply the nanoformulations
topically provided an opportunity to develop a patient-friendly treatment for cutaneous
leishmaniasis instead of the current systemic course of IM injections.

Highly efficient liposome-based antiparasitic vaccines were developed. The adminis-
tration of a DNA (encoding the MIC3 protein)-containing plasmid encapsulated in lipo-
somes to sheep elicited a significant and effective immune response against Toxoplasma
gondii [88].

3.2.3. Tissue Scaffolds (Electrospun)

The manufacturing of nanofibers by electrospinning provided the possibility to fabri-
cate scaffolds used for tissue reconstruction and regeneration. For example, biodegradable
poly(lactide-co-glycolide)/hydroxyapatite (PLGA/HAp) electrospun nanofibers were used
as bone scaffold biomaterial to repair critical-sized segmental bone defects in a canine
model [89]. Nanofibers have also been applied as scaffolds to support tissue-specific cell
functions and tissue-mimicking systems for tissue/organ regeneration [90].

Stem-cell-based cell therapies have shown promising results for novel biomedical
treatments of various diseases, including myocardial infarction, hind limb ischemia, and
stroke. Intramyocardial injection of a hydrogel containing bone-marrow-derived stem cells
encapsulated in α-cyclodextrin/poly(ethylene glycol)–b-polycaprolactone-(dodecanedioic
acid)-polycaprolactone–poly(ethylene glycol) into the infarcted myocardium of a rabbit
increased the survival and retention of transplanted cells and further improved the impaired
cardiac function compared to BMSC implantation alone [91].

3.2.4. Administration of Nanoformulations in Neoplasms

In recent decades, much research has been dedicated to nanoparticles capable of
detecting and destroying cancer cells. Nanopharmaceuticals involve loading active phar-
maceutical ingredients into nanocarriers in order to improve the solubility and bioavailabil-
ity of the former, to extend their half-life, to enhance the pharmacokinetic properties, to
modify the release profile, to reduce acute and chronic toxicity, and to achieve site-specific
targeting [92]. In veterinary medicine, the nanoformulation approaches encompass all
the different delivery systems shown in Figure 4 and enable the targeted delivery of an-
titumor drugs to reduce or avoid the side effects of conventional chemotherapy [93]. On
one hand, nanoparticle-based drugs overcome several limitations associated with conven-
tional diagnostic and therapeutic protocols in veterinary oncology owing to their intrinsic
size-related properties, favorable pharmacokinetics, tumor-targeting properties, and con-
sequent superior efficacy and toxicity profiles [94]. On the other hand, nanomedicine
faces several scientific challenges in terms of unclear toxicity and bio–nano interactions,
reproducibility and transparency problems, and the complexity and costs of nanoparticle
manufacturing [95]. A detailed discussion of several important nanoparticle-based formu-
lations and principal tumor targeting mechanisms (EPR (passive) and targeting (active) of
cell surface receptors) was provided in [94].

An analysis of the interactions between 35 types of nanoparticles and nanocarriers and
almost 500 types of tumor cells revealed thousands of biological features that determine
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the ability of different cells to absorb different types of NPs [96]. Those data opened up
new opportunities for the use of nanoformulations in tumor treatment.

Nanomedicines achieve tumor-targeted delivery mainly through the enhanced per-
meability and retention (EPR) effect [97]. Nanocarriers not only improve the delivery
of drugs but also significantly change their pharmacokinetics, leading to a decrease in
toxicity and side effects [98]. For example, studies using animal models demonstrated
the high efficiency of dextran-coated iron NPs conjugated to antagomirs for the treatment
of metastatic breast and brain cancers [99] as well as a triple action (CXCR4 antagonism
and downregulation of miR-210/KRASG12D) and significant improvement of the delivery
of cholesterol-modified paclitaxel NPs to pancreatic cancer cells [100,101]. Spontaneous
tumors in cats and dogs have been proposed as the best animal models for human cancer
and thus have been used in preclinical studies for the development of new drugs and
imaging probes [102].

Recently, a novel immunological approach to cancer therapy has emerged with the
development of single-domain antibodies (sdAbs) or nanobodies, which were engineered
from heavy-chain-only antibodies present only in camelids and sharks [103]. Small size
and low molecular mass (12–15 kDa vs. 150–160 kDa in common antibodies), high stability,
strong antigen binding affinity, water solubility, and natural origin made them an excellent
choice for the development of next-generation biopharmaceuticals [103,104].

However, there is an essential question of to what extent the therapeutic practice of
human oncology can be applied in the veterinary one, since both approaches are largely
similar. Various types of cancer, such as squamous cell carcinoma (SCC) of the oral cavity,
mammary gland carcinoma, osteosarcoma (OSA), and transitional cell carcinoma, which are
very similar to human tumors spontaneously develop in companion animals (e.g., cats and
dogs) [102]. For example, mammary gland tumors in cats and dogs have epidemiological,
clinical, morphological, and prognostic characteristics that are very similar to those of
human breast carcinoma. Therefore, cats and dogs are considered an excellent model for
studying hormone-independent breast cancer in humans [105]. Thus, it is absolutely logical
to find reports on the use of gold nanorods in photothermal therapy of mammary tumors
in cats [106].

Certainly, the adaptation of treatments and techniques is quite a long process, and it
would be necessary to take into account the species, breed, and individual characteristics
of the animals. For example, paclitaxel is a highly effective drug for the treatment of
many types of human cancers, but it cannot be applied universally to dogs, due to their
high sensitivity to the medication. However, a nanoformulated composition CTTI 52010
containing paclitaxel was found to be well tolerated by dogs with tumors in a phase I/II
study when the drug was administered IV with a starting dose of 80 mg/m2 [107].

Investigations of the therapeutic effects of different metal nanoparticles (e.g., Au,
Ag, Pt, and Fe) on animal tumors are quite common [108]. In 2015, Feldhäusser et al.
successfully applied mitochondria-targeted Pt(IV) nanoparticles (T-Platin-M-NPs) to treat
brain tumors in dogs [109]. The conjugation of doxorubicin (Dox) to 4 nm Au-NPs stabilized
with glutathione (Au-GSH-Dox) enhanced the antiproliferative activity and cytotoxicity of
the drug in Dox-resistant feline fibrosarcoma cell lines [110]. Interestingly, a polydisperse
colloidal solution of gold (i.e., a mixture of AuNPs of different sizes between 10 and 50 nm)
at a final concentration of 10 µg/mL inhibited the growth of LNCaP human prostate cancer
cells, while a solution of monodisperse 20 nm AuNPs had no effect. The polydisperse
AuNP solution also stopped the growth of human PCa xenotransplants in mice upon
parenteral administration in the dose range of 0.64–6.4 µg/kg body weight [111].

A nanoformulation of hyaluronan modified with cis-diamminedichloroplatinum(II)
(cisplatin) and paclitaxel demonstrated promising treatment results for oral melanoma, oral
sarcoma, and anal gland adenocarcinoma in dogs [112].

Nanopreparations can overcome current limitations in cancer treatment and provide
targeted drug delivery to mitochondria, improving the pharmacokinetic properties and
bio-distribution profiles of the active substances [113]. Enzymatic delivery of magnetic NPs
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into the mitochondria of live cells represented an innovative strategy for the application of
targeted drugs in biomedicine and cancer therapy [114].

Metal nanoshells obtained on a dielectric silica core possess tunable optical properties.
Their optical resonances, and thus a strong light absorption, may be tuned to occur in the
near-infrared region. That property paves the way to thermal ablative therapy for cancer.
For example, silver nanoshells on a silica surface treated with PEG-monothiolate induced
photothermal tumor cell damage in vitro upon exposure to coherent NIR light at 820 nm
(35 W/cm2) [115]. The ability of superparamagnetic nanoparticles based on iron oxides
to penetrate tumor cells is improved under the influence of an external magnetic field for
targeted drug delivery [9]. Moreover, inorganic metal-based NPs may be directly visualized
by electron microscopy, while organic NPs need to be labeled with fluorescent dyes or
radioisotopes in order to become visible [116].

In summary, nanoformulations have found a wide range of applications in neoplasms;
however, it is currently impossible to distinguish the development of veterinary and human
approaches to cancer treatment using nanotechnology [117]. The period of knowledge
accumulation in this direction involves the widespread use of animal models to under-
stand general mechanisms [118]. Thus, companion animals with spontaneous oncological
diseases are increasingly recognized as animal models with great potential for human
oncology research. Many anticancer nanodrugs have recently been developed [98]; among
them are nanovaccines, which represent an important strategy for the prevention and
treatment of tumors and are discussed in Section 3.3.

3.2.5. Gene Therapy

As mentioned above, the dimensions of nanomaterials are comparable to those of
nucleic acids, and therefore, NPs are regarded as promising gene delivery vectors. Obvi-
ously, the main research efforts in the area of gene therapy are focused on treatment of
human diseases. However, animal models are widely used to study the efficiency, phar-
macodynamics, and pharmacokinetics of nanoformulations [119]. Those results enable
the application of the latest achievements of gene therapy in veterinary medicine as well.
Currently, the main animal models are mice, hamsters, guinea pigs, rabbits, cats, dogs, pigs,
and cows [120]. The therapeutic use of messenger RNA (mRNA) has given rise to great
hopes for the development of treatment for a wide range of incurable diseases. Recent
rapid advances in biotechnology and molecular medicine have made it possible to produce
almost any functional protein/peptide in the animal/human body by introducing mRNA
as a therapeutic agent or vaccine [121].

Due to the use of large animals as experimental models in gene therapy, veterinary
medicine is becoming an increasingly important translational bridge between preclinical
research and human medicine [122]. Large animal models have many advantages over
small ones [123,124]. For example, those species and humans share many anatomic and
physiological similarities, similar living environments, and environmental risk factors for
the development of certain diseases [122]. Additionally, the metabolism intensity is quite
high in small laboratory animals. Thus, it may not always be correct to compare the effect
of certain substances on their body with that on the human one, while the metabolism in
large animals is quite similar to that in humans in terms of intensity. Moreover, pigs are the
best analogs to humans in terms of body weight, which is useful for dosage development.
Different gene therapies were developed for the treatment of arthritis and infectious and
cardiovascular diseases using pig and horse models [125]. Sheep were used to develop
gene transfer methodologies and for gene-marking studies. The efficiency of gene therapy
for the treatment of hereditary hypercholesterolemia [126] and heart diseases [127] was
proven in rabbits. The feline brain is well developed both functionally and physiologically,
and therefore, cats are of particular interest in the development of gene therapies for
certain neurological disorders [128]. Furthermore, successful gene therapy approaches
were also reported for fibrosarcoma and hereditary and heart diseases [122]. Currently,
therapeutic gene transfer is successfully used to treat cardiovascular diseases in dogs
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and cats [129]. Over 50% of genetic diseases in dogs are caused by mutations in the
same genes as in humans, and their immune system is remarkably similar to that of ours.
Positive results of genetic treatment of mucopolysaccharidosis VII [130], hemophilia A
and B [131], and malignant melanoma [132] in dogs were reported. A method of gene
therapy for melanoma was successfully tested in horses [133]. The above results obtained
in large animals demonstrate the high efficacy and safety of gene therapy, which was well
tolerated. Therefore, further research is strongly encouraged in that field of veterinary
medicine, bearing in mind a subsequent application of the therapies developed in human
clinical trials.

3.3. Innovative Nanovaccines

Vaccines are one of the most important public health tools that play an important role in
prophylaxis and treatment of infectious diseases. In turn, nanotechnology is an integral part
of nanotechnology, biotechnology, information technology, and cognitive science (NBICS)
technologies [134]. The development of modern vaccines cannot be imagined without
digital technologies, advances in biotechnology, cellular engineering, and several other
industries that are directly or indirectly related to nanotechnology [135]. Nanomaterial-
based vector systems exhibit low immunogenicity, easily adjustable molecular weight and
structure, and easy conjugation of the functional moiety to the nanomaterial backbone [136].

The global market of veterinary vaccines is expected to grow from USD 7 billion in
2020 to USD 10.18 billion in 2025 with an average annual growth rate of 7.1% [137].

Veterinary medicine is in the avant-garde of the development of innovative third-
generation nanovaccines containing DNA, RNA, and recombinant protein components that
induce both humoral and cellular immune responses [138]. Advances in nanotechnology
enabled the assembling of complex nanoparticles possessing adjuvant properties for a
new generation of synthetic vaccines containing antigens of different molecular sizes such
as proteins, peptides, and oligosaccharides. Ester-bonded pseudo(polyamino acids) are
new polymers that are harmless to the body and can be used as adjuvants in vaccine
development [139]. The first synthetic vaccine particle (SVP) was introduced in 2012 [140].
SVP NPs are able to mimic different antigens and trigger the immune response; this is a
novel nanotechnological avenue in vaccinology.

DNA nanovaccines show significantly better results in veterinary practice than classi-
cal vaccines, but the protection efficiency provided by naked plasmids is usually between
28% and 90% [135]. DNA delivery systems based on metal or polymer nanocarriers could
resolve the problem; e.g., pegylated AgNPs for vaccine gene delivery were reported [141].

These NPs penetrate the target cell membrane through endocytosis and release the
DNA vaccine into the cytoplasm. The negatively charged cell membrane is a barrier to
large polynucleotides like DNA bearing the same charge; the problem may be solved
using a polycation-based delivery system [142]. Moreover, nanoscaled cationic polymer
particles increase the chemical stability of DNA vaccines and thus induce an enhanced
immune response [143]. A vaccine encapsulated into polyethyleneimine (PEI) NPs is able
to activate both humoral and cell-mediated immunity after vaccination [144]. An IBDV
DNA vaccine with a PLGA-PEI nanocarrier demonstrated higher efficacy (up to 80%) in
reducing morbidity and mortality of birds. This efficacy value is significantly higher than
that of similar classical vaccines [145]. Nanovaccines based on a liposome-encapsulated
plasmid were also developed against avian influenza (AIV) in chickens [146] and Anatid
herpesvirus 1 in ducks (a liposome-encapsulated plasmid-chitosan) [147], although the
details regarding their protective properties were not disclosed.

A plasmid-based vaccine for turkey sweat coronavirus (TCoV), which uses a disulfide-
crosslinked low-molecular-weight linear polyethyleneimine (CLPEI) carrier, offered a
certain protection from TCoV infection by triggering a humoral immune response that can
mitigate or eliminate symptoms and decrease the viral load [148]. A AuNP-encapsulated
DPV vaccine elicited a stronger humoral immune response but a weaker cell-mediated
immune response in ducks [149]. Vaccines based on chitosan NP carriers protect the DNA
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from degradation; e.g., effective vaccines against both the Newcastle disease virus (NDV)
of birds [150] and Pasteurella multocida [151] were developed by encapsulation of DNA
in chitosan NPs. However, despite all the advantages of chemical DNA nanocarriers,
biological vectors like Salmonella (70%) and LAB (20%) are still widely used for oral delivery.
At the moment, only around 10% of vaccines are nanoformulated [135].

Due to their accuracy, safety profile, and flexible production, mRNA vaccines are
gaining popularity as a new alternative to conventional ones [152]. Vaccines against
infectious salmon anemia were developed using an inactivated ISAV virus encapsulated in
chitosan NPs; they demonstrated a high protection level exceeding 77% [153]. Chitosan-
coated poly (lactic co-glycolic acid) nanoparticles were developed as an effective and
safe mucosal immune delivery system for an NDV DNA vaccine. The nanoformulated
plasmid NDV F-gene vaccine pFDNA-CS/PLGA-NPs induced greater cellular, humoral,
and immune responses in chickens when compared to the single plasmid vaccine [154].

The data on nanoformulated vaccines for poultry and their effectiveness are shown in
Table 1.

Advances in molecular biology, RNA technology, vaccinology, and nanotechnology
have led to the development of a range of mRNA-based therapeutics [121]. The most
promising of them are the mRNA-based vaccines against infectious diseases, which have
a number of advantages over classical vaccines. Modified mRNA vaccines are easy to
manufacture, safe, and highly immunogenic. Stabilized lipid-based nanoformulations
protect the mRNA from enzymatic degradation [155]. Primarily, such vaccines were
developed for human medicine, but they had been tested on animals theretofore. This fact
creates prerequisites for their use in veterinary medicine as well. One particular example
includes the mRNA vaccine developed against Lyme disease, which has recently become
increasingly widespread among humans and domestic animals in the Northern Hemisphere.
The vaccine showed high efficiency in guinea pig tests by inducing tick resistance and
preventing the transmission of Borrelia spp. [156,157]. EBOV envelope glycoprotein-based
mRNA vaccines demonstrated high efficacy and elicited sustained immune responses and
protection in guinea pigs against the Ebola virus disease [158]. FMD virus vaccination using
NP-conjugated peptides induced sustained immune and humoral responses in sheep [159].

Table 1. Nanovaccines for poultry and their effectiveness.

Host/Pathogens Vehicle Target Antigen/
Vaccination Route Immune Responses Protection/Ref.

Chicken/AIV pHEMA H6/IM Ab response Reduced virus
shedding/[160]

Turkey/
C. psittaci Branched PEI OmpA/IM IgG and increased

CD4/CD8 rate response

Reduced C. psittaci
shedding, shortened

clinical sign period/[161]
Chicken/NDV Lipofectin F and HN/IM Anti-F Ab 80%/[162]

Chicken/NDV Chitosan NPs F/IM/NAS IgA/IgG and
lymphocyte proliferation

IM: 80%/[163]
IN: 100%/[163]

Turkey/TCoV Naked plasmid + PEI and
sodium hyaluronate 4F, 4R/IM Anti-TCoV S Ab and

VN titer

Decrease in clinical signs
from 5/5 to 1/5 or

2/5/[148]

Chicken/NDV Nano-chitosan F/IM/NAS IgG and IgA and
lymphocyte proliferation

80% (IM); 100%
(i.n.)/[164]

Egg embryonation/IBDV Naked plasmid/killed
vaccine

VP2, VP3, VP4 + killed
virus booster/IO/IM

Anti-IBDV Ab and
lymphocyte proliferation 100%/[165]

Chicken/IBDV Poly lactic-co-glycolic acid
(PLGA) VP2/IM, PO, OU

Stimulation of CD4 and
CD8 T cells, high level

of IgG
80%/[145]

The development of lymphoid tumors in cattle is the most prominent clinical mani-
festation of BLV infection [166]. The virus causes significant economic losses worldwide
due to its high prevalence and a lack of effective treatment. Vaccination is the only effective
way to fight the virus. However, the low efficacy of traditional vaccines is probably due to
inadequate or short-lived stimulation of all immunity components [167]. Therefore, the
development of new generations of vaccines incorporating all the advantages of nanotech-
nology is currently a highly relevant issue. Viral peptides encapsulated in mannan-coated
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liposomes as a delivery system induced a significant humoral response and specific Th1-
type immunity in mouse and sheep models [168]. To protect susceptible cattle against BLV,
a peptide vaccine was developed using 3D modeling and nanotechnology [169].

Injection-free ways of vaccine administration offer the possibility of mass vaccination,
low cost, and high efficiency. Various nanobiomaterials such as mucoadhesive polymers,
lipids, and polysaccharides were used for antigen delivery, leading to improved production
of antibodies in the vaccinated animals [170]. Table 2 shows nanoformulated vaccines for
veterinary use administered by a respiratory route.

Table 2. Nanoparticles used for respiratory delivery of veterinary vaccines and their effectiveness.

NP Type Composition Antigen/Species/Delivery Route Efficacy/Ref.

Polymeric

PLG—PVAl microparticle, and
60% NP mix

Toxoplasma gondii; Tachyzoite
protein extract: SAG1; Cholera
toxin (CT)/Ovine (sheep)/NAS

Systemic and local immune response.
Consistent and higher IgA in nasal
secretions and serum than soluble

antigen./[171].

PLGA
Bovine parainfluenza 3 virus

(BPI3V) proteins/Dairy calves
(bovine)/NAS

Enhanced and sustained mucosal IgA
response compared to i.n. modified
live virus commercial vaccine./[172]

Chitosan Inactivated NDV/Broiler chicken,
layer hens/NAS

Increased IgA humoral response in
layers, not broilers./[173]

CS spray-dried microparticle BLSOmp31/Ovine (sheep)/NAS
Induced local and systemic immune
response in sheep, biphasic release of

antigen from microsphere./[174]

Fungal chitosan Foot and mouth disease whole
virus/Guinea pig/NAS

Higher IgG production in comparison
to vaccination with virus alone./[175]

Liposome

PC (zwittterionic); PS (−ve) or
Stearylamine (SA) (+ve)

Formalin-inactivated NDV/SPF
Leghorn chicken/NAS

PC induced the highest secretory IgA
and systemic humoral responses. LPS
co-administration increased vaccine

efficacy./[176]

Hydrogenated soybean
phospholipids

Inactivated APEC strain KAI-2,
O-78/SPF chicken/Coarse

spray OU

Reduction in the number of
challenged bacteria and clinical signs

was observed in chickens after a
challenge with APEC./[177]

Liposome–mucoadhesive
polymer

PC (zwitterionic) and tremella or
xanthan gum

Inactivated influenza H5N3/SPF
Leghorn chicken/NAS

Mucoadhesive liposome vesicles
induced higher immune response
than the virus alone and liposome

without the polymer./[178]

Montanide™ IMS
adjuvant NP Not disclosed

Live IBV/SPF chicken (also
commercially used in all farm

animals)/i.n.

Better than non-adjuvanted vaccine
and montanide oil-in-water emulsion;

i.n. administration is better than
coarse spray./[179]

Adenovirus BAdV-3 BHV-1 glycoprotein gD, BRSV
IL-6/Bovine (cattle)/i.n.

Induces antigen-specific immune
responses./[180]

ISCOMs Quil A saponin BHV-1 viral membrane
proteins/Calves/i.m.

Better protection than commercial
attenuated vaccine and higher

antibody response produced./[181]

3.4. Application of Nanotechnology to Increase Productivity and Prevent Animal Diseases

Recently, agricultural applications of nanotechnology have received more and more
attention, particularly as a tool to increase the productivity of domestic animals.

Nanotechnology is a promising tool to enhance the bioavailability of fat-soluble
organic substances; e.g., nanoformulated micellar forms of vitamins were much more
effective than any other aqueous analogs [54]. Administration of fat-soluble vitamins in
the form of micelles provides the possibility to administer the dose with drinking water,
reduce costs, and enhance efficiency at the same time. For example, oral supplementation
of the micellar form of vitamin E in horses increased the vitamin concentration in the blood
and provided support to the antioxidant protection system during intense training [182]. In
weaned piglets and adult pigs, lower oral doses of micellar α-tocopherol showed a better
effect than any other form of the vitamin [183]. Feeding a julep containing the micellar
form of vitamin E to fattening piglets and pigs prevented the consequences of technological
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stress and increased activity of the antioxidant protection system and general resistance of
the animals [184].

The intensive industrial technology of animal husbandry often requires a high dosage
of inorganic salts as mineral feed additives, and these inorganic salts lead to environmental
pollution because of their low bioavailability [185]. Nanoparticles of inorganic substances
are highly bioavailable and produce the same effect at much lower doses when compared
to the corresponding mineral forms [186]. Therefore, the administration of smaller doses of
metal-containing NPs could be a potential alternative solution to many problems and has
great application potential. Several metal NPs are currently used successfully to improve
animal and plant productivity [187,188].

Nanoparticles containing Zn, Ag, Cu, Au, Se, Cr, Ca, Mn, or Co have become the most
widespread in animal husbandry. The diagrams in Figures 5 and 6 represent an analysis of
scientific publications in the PubMed, Science Direct, and SpringerLink databases in the
period from 1990 to 2022. While Ag and Au NPs are more widely used as feed preservatives
and growth promoters to replace antibiotics, Zn, Cu, Se, Cr, Mn, and Co are essential trace
elements making part of several main enzymes essential to stimulate metabolism and
improve animal resistance and productivity. Analysis of scientific publications devoted
to the application of inorganic NPs in animal husbandry by species indicated that more
than 60% of papers dealt with poultry farming (with the main focus on meat (35%) and
egg (27%) production), up to 20% of them dealt with pig breeding, and about 10% were
dedicated to cattle breeding.
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In our opinion, such a distribution correlates directly with the intensity of the livestock
production technology. On one hand, the highest technological intensity in poultry meat
and egg production promoted the use of innovations that provide a rapid economic effect.
That is the stimulus for increasingly growing research efforts in this area. On the other
hand, much more care is needed to make pig and cattle breeding profitable. Technologies
for keeping cattle and pigs are rather conservative, especially for small farms; thus, the
implementation of the latest innovations could be a challenge and lags far behind.
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Nanoparticles of biogenic elements are widely used in industrial poultry farming [189].
For example, gold NPs upgrade growth and immune parameters [190]. Selenium NPs affect
the physiological responses, immune status, and productivity of broiler chickens [191]. Cal-
cium nanoformulations improve the physical and biological characteristics of eggshells [192].
Silver nanoparticles and starch-AgNP nanocomposites were successfully used in poultry
as a growth-promoting feed additive and as a safe alternative to antibiotics [193–195]. Zinc
NPs improve broiler chicken performance [196], the immune response, and the quality of
eggs [197] and increase the quality of broiler chicken meat [198]. It is interesting to compare
the properties of a mineral zinc oxide feed additive with those of a nanoformulated one.
ZnO-NPs were successfully used to increase broiler productivity at a dose of 90 mg/kg
diet, while a conventional mineral zinc oxide gave the same effect at a dose of 3000 mg/kg
diet. Both supplements did not significantly affect blood parameters and had the same
antibacterial activity against E. coli. Additionally, the ZnO-NPs enhanced the immune
response and antioxidant defense of broiler chickens [199], while the mineral zinc oxide
was found to provoke dose-dependent toxicosis [200].

In pig farming, the application of nanoformulated essential microelements has at-
tracted increasing attention as a means to stimulate animal metabolism and resistance. For
example, Zn-based NPs were used to fortify weaning piglets and to improve their digestion
and productivity [185,201,202], especially as an alternative to the mineral zinc oxide [203].
In particular, the administration of nanoformulated Mg, Zn, Ge, and Ce feed additives
to pigs increased the activity of their antioxidant defense system, stress resistance, and
productivity [184].

In cattle breeding, the application of nanoformulated selenium and zinc enhanced
animal resistance and improved milk production capacity [204]. The addition of Zn-based
NPs to the diet led to an increase in performance, rumen fermentation, and antioxidant
system activity in calves [205] and goats [206]. Selenium NPs increased selenoprotein (Sel)
gene expression and the selenium concentration in the milk of lactating dairy cows [207]
and improved the feed assimilation and rumen fermentation in sheep [208].

The administration of copper NPs to rabbits stimulated their growth [209], while
AgNPs improved their performance and antioxidant status [210].

The main obstacle to the widespread adoption of NPs in aquaculture is their high
cost [211]. However, nanotechnologies are increasingly being used in the delivery of
dietary supplements [212]. Chitosan NP supplementation enhanced the survival, growth
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performance, and meat quality of Nile tilapia (Oreochromis nilotica) [213]. SeNPs were
employed as natural antioxidants and metabolic regulators in aquaculture [214].

4. Risks and Hazards of Nanotechnology Applications in Veterinary Medicine

Nowadays, safety issues in different applications of nanomaterials are highly relevant.
In the Parma Declaration on the Environment and Health Protection, the representatives
of the European WHO member states called for intensifying the research on the potential
harmful effects of nanomaterials on human health [215]. Between 2009 and 2018, potential
risks were identified for 130 nanomaterials and for more than 400 types of nanotechnological
products and their production technologies. Particular attention has to be paid to an
increasing accumulation of nanoparticles in the environment. Interdisciplinary research
in those areas has become increasingly important [216]. Nanoparticles are everywhere,
from mobile phone cards to nanofertilizers and nanoformulated feed and food additives.
Therefore, NPs might represent a new class of potentially toxic substances capable of
affecting the ecosystem. Consequently, much effort is needed to evaluate the long-term
effects of NPs on both individual organisms and the ecosystem [217].

NP-containing disinfectants, medical preparations, biomaterials, vaccines, and im-
munobiological agents are widely used in veterinary medicine. All those require the
development of new control and testing methodologies, particularly for the detection of
the cyto-, geno-, and ecotoxicity of nanomaterials [217].

Studies on the impact of NPs on animal bodies revealed a number of different dose-
dependent side effects, such as a pro-oxidant effect, the ability to cause inflammation,
oxidative stress, and the modification of mitochondrial distribution [218]. For example,
CuNPs caused a proliferation of brain capillary endothelial cells in rats, even at low
concentrations [219]. Exposure of mice to AgNPs affected the blood–brain barrier and was
accompanied by neurotoxic effects [220]. Similar results were also obtained in experiments
on pigs; moreover, the cytotoxicity of AgNPs was found to increase as the particle size
decreased [221]. Silver nanoparticles may also induce oxidative stress, apoptosis, and the
disruption of steroidogenesis in bovine granulosa cells [222]. Cadmium-based quantum
dots (QD705) induced persistent inflammation and formation of granulomas in mouse
lungs; pegylation of those NPs did not prevent the side effects [223,224].

Ag, ZnO, or CuO NPs are often used as bactericides in veterinary medicine; they
may also have toxic effects on non-target organisms when released into waste and the
environment [217].

It was demonstrated that cationic liposomes used as DNA vaccine delivery vectors
may induce nonspecific inflammation and allergic reactions [225].

The toxic impact of nanomaterials on aquatic organisms has been extensively studied
and reported by numerous researchers [211]. To ensure sustainable development and
management of nanotechnologies in aquaculture, a thorough analysis of potential risks to
the environment and human health is of crucial importance [226].

Nanomaterial-based diagnostic tests specific to different animal pathogens still have
not achieved balanced sensitivity, specificity, reproducibility, and cost-effectiveness [11].

Therefore, the expanding production of nanomedicines and feed additives requires
good manufacturing practices (GMPs), establishment of regulations, and further improve-
ment of technological safety and efficiency [227]. Since the results on the toxic effects of
NPs are often contradictory, further research on their effect on individual tissues, genetic
material, and the immune system of the animals is vitally needed.

5. Legal Regulation of Nanomaterials Implemented in Veterinary Medicine
and Agriculture

Nowadays, there are several control systems for the use of nanomaterials (e.g., Control
Banding Nanotool, IVAM Technical Guidance, Stoffenmanager Nano, ANSES CB Tool,
NanoSafer, and Precautionary Matrix), which were created to provide support to the
manufacturers and regulatory agencies in assessing potential hazards associated with
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nanomaterials [228]. However, all of them were based on different concepts and have
different input parameters and output formats, and therefore, it has not been possible to
immediately combine those different models into a larger coherent framework [229]. There
is a primary need to harmonize those different systems of risk assessment and control over
the use of nanomaterials, which will allow a unified system that can form the basis of legal
and regulatory acts.

In the USA, the production, circulation, and use of veterinary medicines and feed
additives are regulated by the legislation of each individual state. However, significant work
has been conducted to unify those provisions. The EU countries signed the “Community
Code on Veterinary Medicinal Products”, which came next in this direction [230]. It should
be noted that the use, circulation, and production of veterinary nanopreparations and
NP-containing feed additives still fall under the legislation developed for human medicinal
products. No veterinary medicinal product may be placed on the EU Member State market
without authorization issued in accordance with the EU Directive [230] and Regulation
(EC) No. 726/2004 [231].

Since a large number of nanoformulations are based on well-known active phar-
maceutical ingredients that were given a new dosage form (e.g., encapsulated forms of
antibiotics), admission of those nanomedicines to the market does not require proper clini-
cal and other tests. The issue with feed additives and medicated feeds is more complicated
since medicated feeds were not mentioned in the Directive [230].

Whereas the number and areas of nanotechnological applications in veterinary medicine
are dynamically developing, there is a vital necessity for legal regulation of the production,
circulation, and use of veterinary nanoformulations and feed additives.

6. Prospects for Nanotechnology in Veterinary Medicine

Nanotechnology has emerged as a promising field having a variety of applications,
including those in veterinary medicine. Recent advancements in nanotechnology have
paved the way for innovative strategies in the diagnosis, treatment, and prevention of
animal diseases [5].

The development of enhanced drug delivery systems is one of the most significant
contributions of nanotechnology to veterinary medicine [39]. That approach may help to
address the antibiotic resistance issue in animals and contribute to the development of
more effective treatment options. Nanoformulations have demonstrated improved efficacy
against parasites, providing a potential solution for the control and treatment of those
infections in veterinary practice [52,53]. Moreover, nanotechnology paves the way for
targeted therapies for neoplastic diseases, although more research and development are
needed in this area.

Nanomaterials have been explored as gene delivery vectors in veterinary gene therapy [119].
Due to their size compatibility, nanoparticles can efficiently deliver therapeutic genes to
target cells and tissues [122]. That strategy holds great potential for the treatment of genetic
disorders and other diseases with a genetic component in animals. Ongoing research in
this area aims to improve the efficiency and safety of gene delivery systems for veterinary
applications [120].

Nanotechnology has enabled the development of innovative veterinary nanovac-
cines [138]. Nanoparticles can enhance the immune response by delivering antigens directly
to immune cells and triggering both humoral and cellular immune responses [144]. This
approach may lead to improved vaccine efficacy and protection against infectious diseases
in animals.

While nanotechnology offers many exciting possibilities, it is also important to consider
the safety aspects associated with the use of nanomaterials in veterinary medicine [217].
Ensuring the safety and regulatory compliance of nanomaterials will remain a crucial aspect
of their integration into veterinary practice.

Thus, nanotechnology holds significant promise for advancing veterinary medicine.
Future achievements in the field may involve further research on targeted therapies, the de-
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velopment of nanovaccines against emerging infectious diseases, and continued exploration
of gene delivery systems [52].

7. Conclusions

A wide range of nanotechnologies has been implemented in veterinary medicine,
including pharmaceuticals, diagnostic devices, feed additives, and vaccines. Drug de-
livery mediated by nanoparticles ensured more efficient pharmacokinetics and enabled
the restoration and use of some known toxic drugs due to the modification of their bio-
distribution, improvement of bioavailability, and reduction in unwanted side effects. For
example, the applications of nanoformulated antibiotics demonstrated their higher efficacy
and reduced toxicity, providing a potential solution to overcome antibiotic resistance.

Different inorganic and organic nanoparticles have been widely used for the treatment
and prevention of various animal diseases. Nanoformulations are currently being used as
therapeutics, feed preservatives, growth stimulants, and antibiotic replacements. At the
same time, efficient NP-based antitumor drugs tested on animals still have not been widely
implemented in veterinary medicine owing to their very high cost.

The veterinary vaccine market has been rapidly advancing, with nanotechnology
finding a broad implementation in the field. Innovative nanovaccines have been capable
of inducing both humoral and cellular immune responses. The third-generation vaccines
manufactured using nanotechnology offered a range of undeniable advantages over their
traditional counterparts. Hence, they are increasingly used in animal husbandry and
poultry farming in particular.

The wide application of multi-component nanoformulations in veterinary medicine
and agriculture may raise a number of relevant questions and have complex consequences
that require further in-depth and detailed research. Veterinary medicine also needs to focus
on the prevention of pathological conditions (symptoms, syndromes, diseases) associated
with the incorrect use of nanotechnological products in agriculture and the accumulation
of nanoparticles in the environment.

And last, but not least, the development of a solid legal regulatory basis for the
production and application of nanoformulations as veterinary drugs, feed additives, growth
promoters, and vaccines is vitally needed.
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Abbreviations

Ab Antibody
AIV Avian influenza virus
Anti-F Antibody to fibrinogen/fibrin-related products
APEC Avian pathogenic Escherichia coli
BLSOmp31 Recombinant polymeric B. ovis antigen
BMSC Bone marrow stem cells
BPI3V Bovine parainfluenza 3 virus
BRSV Bovine respiratory syncytial virus
CD Cluster of differentiation
CLPEI Disulfide-crosslinked polyethyleneimine
CS Chitosan
CT Cholera toxin
DNA Deoxyribonucleic acid
DOC Department of Commerce
Dox Doxorubicin
DPV Duck plague virus
EBOV Ebola virus
ELISA Enzyme-linked immunosorbent assay
EU European Union
FMD Fibromuscular dysplasia
GMP Good manufacturing practice
HAp Hydroxyapatite
HN High nitrogen
IBDV Infectious bursal disease virus
IBV Infectious bronchitis virus
Ig Immunoglobulin
IM Intramuscular
IO In ovo, in the egg
ISAV Infectious salmon anemia virus
ISCOM Immunostimulating complex
IV Intravenous
LAB Lactic acid bacteria
LCNPs Liquid crystalline nanoparticles
LPS Lipopolysaccharide
MIC3 Microneme protein of T. gondii
mRNA Messenger RNA
NAS Nasal, administered by way of the nose
NBICS Nanotechnology, biotechnology, information technology, and cognitive science
NDV Newcastle disease virus
NIR Near-infrared (part of spectra)
NPs Nanoparticles
OMPA Octamethyl pyrophosphoramide
OU oftalmic, eye drops
PC Phosphatidylcholine
PCa Prostate cancer
PEG Polyethylene glycol
PEI Polyethyleneimine
pHEMA Polyhydroxyethyl methacrylate
PLG Poly(D,L-lactide-co-glycolide)
PLGA Poly(D,L-lactide-co-glycolide) acid
PMWS Post-weaning multisystem wasting syndrome
PO Per os, by mouth, orally
PS Phosphatidylserine
PVAl Poly(vinyl alcohol)
QD Quantum dot
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Quil A Vaccine adjuvant saponin obtained from Quillaja saponaria
RNA Ribonucleic acid
SA Stearylamine
SAG1 SAG1-related sequence
SPF Specific-pathogen-free
SVP Synthetic vaccine particle
TCoV Turkey sweat coronavirus
VN Virus neutralization
VP Viral protein
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