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Abstract. We prove the correctness of invertibility conditions for the
theory of fixed-width bit-vectors—used to solve quantified bit-vector for-
mulas in the Satisfiability Modulo Theories (SMT) solver cvc5— in the
Coq proof assistant. Previous work proved many of these in a com-
pletely automatic fashion for arbitrary bit-width; however, some were
only proved for bit-widths up to 65, even though they are being used to
solve formulas over larger bit-widths. In this paper we describe the pro-
cess of proving a representative subset of these invertibility conditions
in Coq. In particular, we describe the BVList library for bit-vectors in
Coq, our extensions to it, and proofs of the invertibility conditions.

1 Introduction

Many applications in hardware and software verification rely on bit-precise rea-
soning, which can be modeled using the SMT-LIB 2 theory of fixed-width bit-
vectors [3]. While Satisfiability Modulo Theories (SMT) solvers are able to reason
about bit-vectors of fixed width, they currently require all widths to be expressed
concretely (by a numeral) in their input formulas. For this reason, they cannot
be used to prove properties of bit-vector operators that are parametric in the
bit-width, such as the associativity of bit-vector concatenation. Proof assistants
such as Coq [25], which have direct support for dependent types, are better
suited for such tasks.

Bit-vector formulas that are parametric in the bit-width arise in the verifica-
tion of parametric Boolean functions and circuits (see, e.g., [13]). In our case, we
are mainly interested in parametric lemmas that are relevant to internal tech-
niques of SMT solvers for the theory of fixed-width bit-vectors. These include, for
example, rewrite rules, refinement schemes, and preprocessing passes. Such tech-
niques are developed a priori for every possible bit-width. Meta-reasoning about
the correctness of such solvers then requires bit-width independent reasoning.

In this paper, we focus on parametric lemmas that originate from a quantifier-
instantiation technique implemented in the SMT solver cvc5 [2]. This technique
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is based on invertibility conditions [15]. For a trivial case of an invertibility
condition, consider the equation x + s = t. where x, s and t are variables of the
same bit-vector sort. In the terminology of Niemetz et al. [15], this equation is
“invertible for x.” A general inverse, or “solution,” is given by the term t−s. Since
there is always such an inverse, the invertibility condition for x+ s = t is simply
the universally true formula �. The formula stating this fact, referred to here as
an invertibility equivalence, is � ⇔ ∃x. x + s = t, which is valid in the theory of
fixed-width bit-vectors, for any bit-width. In contrast, the equation x · s = t is
not always invertible for x. A necessary and sufficient condition for invertibility
in this case was found in [15] to be (−s | s) & t = t. So, the invertibility
equivalence (−s | s) & t = t ⇔ ∃x. x · s = t is valid for any bit-width. Notice
that the invertibility condition does not contain x. Hence, invertibility conditions
can be seen as a technique for quantifier elimination.

In [15], a total of 160 invertibility conditions were provided. However, they
were verified only for bit-widths up to 65, due to the reasoning limitations of
SMT solvers mentioned earlier. Recent work [16,17] addresses this challenge by
translating the invertibility equivalences to the combined theory of non-linear
integer arithmetic and uninterpreted functions. This approach was partially suc-
cessful, but failed to verify over a quarter of the equivalences.

We verify invertibility equivalences proposed in [15] by proving them interac-
tively in Coq. From a representative subset of the invertibility equivalences, we
prove 19 equivalences, 12 of which were not proven in [16,17]. For the remain-
ing 7, that were already proved there, our Coq proofs provide more confidence.
Our results offer evidence that proof assistants can support automated theorem
provers in meta-verification tasks. To facilitate the verification of invertibility
equivalences, we use a rich Coq library for bit-vectors, which is a part of the
SMTCoq project [10]. This Coq library models the theory of fixed-width bit-
vectors adopted by the SMT-LIB 2 standard [3]. For this work, we extended the
library with the arithmetic right-shift operation and the unsigned weak less-than

Table 1. The signatures Σ1 and Σ0 with SMT-LIB 2 syntax. Σ1 consists of the oper-
ators in the entire table. Σ0 consists of the operators in the upper part.

Symbol SMT-LIB Syntax Sort

=, �= =, distinct σ[n] × σ[n] → Bool

<u, >u, ≤u, ≥u bvult, bvugt, bvule, bvuge σ[n] × σ[n] → Bool

∼ , − bvnot, bvneg σ[n] → σ[n]

&, |, <<, >>, >>a bvand, bvor, bvshl, bvlshr, bvashr σ[n] × σ[n] → σ[n]

+ bvadd σ[n] × σ[n] → σ[n]

<s, >s, ≤s, ≥s bvslt, bvsgt, bvsle, bvsge σ[n] × σ[n] → Bool

·, mod, ÷ bvmul, bvurem, bvudiv σ[n] × σ[n] → σ[n]

◦ concat σ[n] × σ[m] → σ[n+m]

[u : l] extract σ[n] → σ[u−l+1]
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and greater-than predicates. To summarize, the contributions of this paper are as
follows: (i) a description of the SMTCoq bit-vector library; (ii) extensions to the
signature and proofs of the library; and (iii) formal proofs in Coq of invertibil-
ity equivalences. These contributions, while important in their own right, have
the potential to go beyond the verification of invertibility equivalences. For (i)
and (ii), we envision that the library, as well as its extension, will be useful for
the formalization of other bit-precise reasoning mechanisms, especially related to
SMT, such as rewriting rules, lemma schemas, interactive verification, and more.
For (iii), invertibility conditions are primarily used for quantifier instantiation
(see, e.g., [15]). We hope that the increased confidence in their correctness will
encourage their usage in other contexts and in more solvers. Further, the for-
mal proofs can serve as guiding examples for other proofs related to bit-precise
reasoning.

The remainder of this paper is organized as follows. After technical pre-
liminaries in Sect. 2, we formalize invertibility conditions in Sect. 3 and discuss
previous attempts at verifying them. In Sect. 4, we describe the Coq library and
our extensions to it. In Sect. 5, we discuss our Coq proofs. We conclude in Sect. 6
with directions for future work. A preliminary version of this work was presented
as an extended abstract in the proceedings of the PxTP 2019 workshop [11]. The
current version is more detailed and complete. In particular, the one Coq proof
that was missing in [11] is now completed.

2 Preliminaries

2.1 Theory of Bit-Vectors

We assume the usual terminology of many-sorted first-order logic with equality
(see, e.g., [12]). We denote equality by =, and use x �= y as an abbreviation
for ¬(x = y). The signature ΣBV of the SMT-LIB 2 theory of fixed-width bit-
vectors defines a unique sort for each positive integer n, which we denote by σ[n].
For every positive integer n and bit-vector of width n, the signature contains a
constant symbol of sort σ[n], representing that bit-vector, which we denote as
a binary string of length n. The function and predicate symbols of ΣBV are as
described in the SMT-LIB 2 standard. Formulas of ΣBV are built from variables,
bit-vector constants, and the function and predicate symbols of ΣBV , along with
the usual logical connectives and quantifiers. We write ψ[x1, . . . , xn] to represent
a formula whose free variables are from the set {x1, . . . , xn}.

The semantics of ΣBV -formulas is given by interpretations where the domain
of σ[n] is the set of bit-vectors of width n, and the function and predicate symbols
are interpreted as specified by the SMT-LIB 2 standard. A ΣBV -formula is
valid in the theory of fixed-width bit-vectors if it is satisfied by every such
interpretation.

Table 1 contains the operators from ΣBV for which invertibility conditions
were defined in [15]. We define Σ1 to be the signature that contains only these
symbols. Σ0 is the sub-signature obtained by only taking the operators from the
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upper part of the table. We use the (overloaded) constant 0 to represent the
bit-vectors composed of all 0-bits.

2.2 Coq

The Coq proof assistant is based on the calculus of inductive constructions
(CIC) [20]. It implements properties as types, and proofs as terms, reducing
proof-checking to type-checking. Coq has a rich type system, that allows for
highly expressive propositions to be stated and proved in this manner. One par-
ticular feature of interest is that of dependent types — types that can depend
on values — through which one can express correctness properties within types.
We refer to non-dependent types as simple types.

The Coq module system — in addition to allowing for principled separations
of large developments — allows the abstraction of complex types along with
operations over them as modules. A module signature or module type acts as
an interface to a module, specifying the type it encapsulates along with the
signatures of the associated operators. A functor is a module-to-module function.

3 Invertibility Conditions and Their Verification

In [15], a technique to solve quantified bit-vector formulas is presented, which is
based on invertibility conditions.

Definition 1. An invertibility condition for a variable x in a ΣBV -literal
�[x, s, t] is a formula IC[s, t] such that ∀s.∀t. IC[s, t] ⇔ ∃x. �[x, s, t] is valid
in the theory of fixed-width bit-vectors.

Example 1. The invertibility condition for x in x & s = t is t & s = t. ��
In [15], invertibility conditions are defined for a representative set of liter-

als � over the bit-vector operators of Σ1, having a single occurrence of x. The
soundness of the technique proposed in that work relies on the correctness of the
invertibility conditions. Every literal �[x, s, t] and its corresponding invertibility
condition IC[s, t] induce an invertibility equivalence.

Definition 2. The invertibility equivalence associated with the literal �[x, s, t]
and its invertibility condition IC[s, t] is the formula

IC[s, t] ⇔ ∃x. �[x, s, t] (1)

The correctness of invertibility equivalences should be verified for all possible
sorts for the variables x, s, t for which the condition is well sorted. Concretely,
one needs to prove the validity of the following formula:

∀n : N. n > 0 ⇒ ∀s : σ[n].∀t : σ[n]. IC[s, t] ⇔ ∃x : σ[n]. �[x, s, t] (2)

This was done in [15], but only for concrete values of n from 1 to 65, using
solvers for the theory of fixed-width bit-vectors. In contrast, Eq. (2) cannot even
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be expressed in this theory. To overcome this limitation, later work suggested
a translation from bit-vector formulas over parametric bit-widths to the theory
of non-linear integer arithmetic with uninterpreted functions [16,17]. Thanks to
this translation, the authors were able to verify the correctness of 110 out of
160 invertibility equivalences. For the remaining 50 equivalences, it then seems
appropriate to use a proof-assistant, as this allows for more intervention by the
user who can provide crucial intermediate steps. Even for the 110 invertibility
equivalences that were proved, the level of confidence achieved by proving them
in a proof assistant would be greater than an automatic verification by an SMT
solver due to the smaller trusted code-base of proof assistants in relation to those
of automatic theorem provers such as SMT solvers.

Coq

auto-ind

auto-65

Fig. 1. The level of confidence achieved by the different approaches.

Figure 1 depicts the level of confidence achieved by the various approaches
to verify invertibility equivalences. The smallest circle, labelled auto-65, repre-
sents the approach taken by [15], where invertibility equivalences were verified
automatically up to 65 bits. While a step in the right direction, this approach
is insufficient, because invertibility conditions are used for arbitrary bit-widths.
The next circle, labeled auto-ind, depicts the approach of [17], which addresses
the restrictions of auto-65 by providing bit-width independent proofs of the
invertibility equivalences. However, both auto-65 and auto-ind provide proofs
by SMT solvers, which are less trusted than ITPs. The largest circle (Coq) cor-
responds to work presented in the current paper which, while addressing the
limitations of auto-65 via bit-width independent proofs, also provides stronger
verification guarantees by proving the equivalences in an interactive theorem
prover. Moreover, with this approach, we were able to prove equivalences that
couldn’t be fully verified (for arbitrary bit-widths) by either auto-65 or auto-ind.

4 The BVList Library

In this section, we describe the Coq library we use and the extensions we devel-
oped with the goal of formalizing and proving invertibility equivalences. Vari-
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ous formalizations of bit-vectors in Coq exist. The internal Coq library of bit-
vectors [9] is one, but it has only definitions and no lemmas. The Bedrock Bit
Vectors Library [6] treats bit-vectors as words (machine integers). The SSRBit
Library [5] represents bit-vectors as finite bit-sets in Coq and extracts them
to OCaml machine integers. Our library is more suited to the SMT-LIB 2 bit-
vectors, and includes operators that are not fully covered by any of the previ-
ously mentioned libraries. More recently, Shi et al. [22] developed a library called
CoqQFBV that presents a bit-vector type as a sequence of Booleans, defines
operators over it, and proves the correctness of these operations with respect
to a (machine integer) semantics. [22] uses this library to define a bit-blasting
algorithm in Coq, that is extracted into an OCaml program to perform certified
bit-blasting. Since CoqQFBV covers the entire SMT-LIB 2 bit-vector signature,
it would be a good alternative to ours in formalizing and proving invertibility
conditions. Our library offers a rich set of lemmas over bit-vector operations that
makes it suitable for proofs of invertibility conditions and other bit-vector prop-
erties. Bit-vectors have also been formalized in other proof assistants. Within
the Isabelle/HOL framework, one can utilize the library developed by Beeren et
al. [4] to align with SMT-LIB 2 bit-vector operations. Furthermore, Harrison [1]
presents a formalization of finite-dimensional Euclidean space within HOL light,
accompanied by an implementation of vectors.

4.1 BVList Without Extensions

BVList was developed for SMTCoq [10], a Coq plugin that enables Coq to
dispatch proofs to external proof-producing solvers. While the library was only
briefly mentioned in [10], here we provide more details.

The library adopts the little-endian notation for bit-vectors, following the
internal representation of bit-vectors in SMT solvers such as cvc5, and corre-
sponding to lists in Coq. This makes arithmetic operations easier to perform
since the least significant bit of a bit-vector is the head of the Boolean list that
represents it.

Another choice is how to formalize the bit-vector type. A dependently-typed
definition is natural, since then the type of a bit-vector is parameterized by its
length. However, such a representation leads to some difficulties in proofs. Depen-
dent pattern-matching or case-analysis with dependent types is cumbersome and
unduly complex (see, e.g., [23]), because of the complications brought by unifica-
tion in Coq (which is inherently undecidable [24]). A simply-typed definition, on
the other hand, does not provide such obstacles for proofs, but is less natural, as
the length becomes external to the type. The BVList library defines for conve-
nience both the dependently and the simply typed version of bit-vectors. It uses
the Coq module system to separate them, and a functor that connects them,
avoiding redundancy. The relationship between the two definitions is depicted
in Fig. 2.

In BVList, a dependently-typed bit-vector is a record parameterized by its
size n and consisting of two fields: a Boolean list and a condition to ensure that
the list has length n. This type, and the corresponding lemmas and properties
over it, are encapsulated by the BITVECTOR LIST module of type BITVECTOR. A
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simply-typed or raw bit-vector representation is simply a Boolean list which,
along with its associated operators and lemmas is specified by module signature
RAWBITVECTOR and implemented in module RAWBITVECTOR LIST. In other words,
the interface of BVList offers dependently-typed bit-vectors, while the underly-
ing operators are defined and proofs are performed using raw bit-vectors.

RAWBITVECTOR_LIST : RAWBITVECTOR

BITVECTOR_LIST : BITVECTOR

RAW2BITVECTOR

Fig. 2. Modular separation of BVList

A functor called RAW2BITVECTOR derives corresponding definitions and proofs
over dependently-typed bit-vectors within the module for dependent-types, when
it is applied to RAWBITVECTOR LIST. The functor establishes a correspondence
between the two theories so that one can first prove a bit-vector property in
the context of the simply-typed theory and then map it to its corresponding
dependently-typed one via the functor module. Otherwise put, users of the
library can encode theorem statements more naturaly, and in a more expres-
sive environment employing dependent types. For proofs, one can unlift them
(by the functor) to the equivalent encodings with simple types, and prove them
there.

4.2 Extending BVList

Out of the 13 bit-vector functions and 10 predicates contained in Σ1, BVList
had direct support for 10 functions and 6 predicates. The predicate symbols
that were not directly supported were the weak inequalities ≤u, ≥u, ≤s, ≥s and
the unsupported function symbols were >>a, ÷, and mod . We extended BVList
with the operator >>a and the predicates ≤u and ≥u in order to support the
corresponding invertibility conditions. Additionally, we redefined << and >> in
order to simplify the proofs of invertibility conditions over them.1

We focused on invertibility conditions for literals of the form x � s �� t and
s � x �� t, where � and �� are respectively function and predicate symbols in Σ0.
Σ0 was chosen as a representative set because it is both expressive enough (in
the sense that other operators can be easily translated to this fragment), and

1 Both the extended library and the proofs of invertibility equivalences can be found
at https://github.com/ekiciburak/bitvector/tree/frocos23.

https://github.com/ekiciburak/bitvector/tree/frocos23
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feasible for proofs in Coq using the library. In particular, it was chosen as one
that would require the minimal amount of changes to BVList. As a result, such
literals, as well as their invertibility conditions, contain only operators supported
by BVList (after its extension with >>a, ≤u, and ≥u). Supporting the full set
of operators in Σ1, both in the library and the proofs is left for future work.

1 Fixpoint ule_list_big_endian (x y : list bool) :=
2 match x, y with

3 | [ ], [ ] ⇒ true

4 | [ ], _ ⇒ false

5 | _, [ ] ⇒ false

6 | xi:: x’, yi:: y’ ⇒ ((eqb xi yi) && (ule_list_big_endian x’ y’))
7 || ((negb xi) && yi)
8 end.
9

10 Definition ule_list (x y: list bool) :=
11 (ule_list_big_endian (rev x) (rev y)).
12

13 Definition bv_ule (a b : bitvector) :=
14 if @size a =? @size b then

15 ule_list a b

16 else

17 false.
18

19 Definition bv_ule n (bv1 bv2:bitvector n) : bool := M.bv_ule bv1 bv2.

Fig. 3. Definitions of ≤u in Coq.

In what follows, we describe our extensions to BVList with weak unsigned
inequalities, alternative definitions for logical shifts, and the arithmetic right
shift operator.

Weak Unsigned Inequalities. We added both weak inequalities for unsigned
bit-vectors, ≤u and ≥u. We illustrate this extension via that of the ≤u opera-
tor (the extension of ≥u is similar). The relevant Coq definitions are provided
in Fig. 3. The top three definitions (including the fixpoint) cover the simply-
typed representation, and the fourth, bv ule is the dependently-typed represen-
tation that invokes the definition with the same name from module M of type
RAWBITVECTOR. Like most other operators, ≤u (over raw bit-vectors) is defined
over a few layers. The function bv ule, at the highest layer, ensures that com-
parisons are between bit-vectors of the same size and then calls ule list. Since
we want to compare bit-vectors starting from their most significant bits and the
input lists start instead with the least significant bits, ule list first reverses
the two lists. Then it calls ule list big endian, which we consider to be at the
lowest layer of the definition. This function does a lexicographic comparison of
the two lists, starting from the most significant bits.
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To see why the addition of ≤u to the library is useful, consider, for example,
the following parametric lemma, stating that ∼0 is the largest unsigned bit-
vector of its type:

∀x : σ[n]. x ≤u ∼0 (3)

Without an operator for the weak inequality, we would write it as:

∀x : σ[n]. x <u ∼0 ∨ x = ∼0 (4)

1 Definition shl_one_bit (a: list bool) :=
2 match a with

3 | [ ]⇒ [ ]
4 | _ ⇒ false :: removelast a

5 end.
6

7 Fixpoint shl_n_bits (a: list bool) (n: nat) :=
8 match n with

9 | O ⇒ a

10 | S n’ ⇒ shl_n_bits (shl_one_bit a) n’
11 end.
12

13 Definition shl_n_bits_a (a: list bool) (n: nat) :=
14 if (n <? length a)%nat then

15 mk_list_false n ++ firstn (length a -n) a
16 else

17 mk_list_false (length a).
18

19 Theorem bv_shl_eq: forall (a b : bitvector), bv_shl a b = bv_shl_a a b.

Fig. 4. Various definitions of <<.

In such cases, since the definitions of <u and = have a similar structure to that
of ≤u, we strip down the layers of <u and = separately, whereas using ≤u, we
only do this once.

Left and Right Logical Shifts. We have redefined the shift operators <<
and >> in BVList. Figure 4 shows both the original and new definitions of <<.
Those of >> are similar. Originally, << was defined using the shl one bit and
shl n bits. The function shl one bit shifts the bit-vector to the left by one
bit and is called by shl n bits as many times as necessary. The new definition
shl n bits a uses mk list false which constructs the necessary list of 0 bits
and appends (++ in Coq) to it the bits to be shifted from the original bit-vector,
which are retrieved using the firstn function, from the Coq standard library
for lists. The nat type used in Fig. 4 is the Coq representation of Peano natural
numbers that has 0 and S as its two constructors — as depicted in the cases
rendered by pattern matching n (lines 9-10). The theorem at the bottom of
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Fig. 4 asserts the equivalence of the two representations, allowing us to switch
between them, when needed. In the extended library, bv shl defines the left shift
operation using shl n bits whereas bv shl a does it using shl n bits a. This
new representation was useful in proving some of the invertibility equivalences
over shift operators (see, e.g., Example 4 below).

Arithmetic Right Shift. Unlike logical shifts that were already defined in
BVList and for which we have added alternative definitions, arithmetic right
shift was not defined at all. We provided two alternative definitions for it, very
similar to the definitions of logical shifts — bv ashr and bv ashr a. Both defini-
tions are conditional on the sign of the bit-vector (its most-significant bit). Apart
from this detail, the definitions take the same approach taken by shl n bits and
shl n bits a from Fig. 4. Operator bv ashr uses the definition of an indepen-
dent shift and repeats it as many number of times as necessary, and bv ashr a
uses either mk list false or mk list true to append the necessary number of
sign bits to the shifted bits.

5 Proving Invertibility Equivalences in Coq

In this section we provide specific details about proving invertibility equiva-
lences in Coq. We start by outlining the general approach for proving invertibil-
ity equivalences in Sect. 5.1. Then, Sect. 5.2 presents detailed examples of such
proofs. Section 5.3 summarizes the results and impact of these proofs.

5.1 General Approach

The natural representation of bit-vectors in Coq is the dependently-typed repre-
sentation, and therefore the invertibility equivalences are formulated using this
representation. In keeping with the modular approach described in Sect. 4, how-
ever, proofs in this representation are composed of proofs over simply-typed
bit-vectors, which are easier to reason about. Most of the work is on proving an
equivalence over raw bit-vectors. Then, we derive the proof of the corresponding
equivalence over dependently-typed bit-vectors using a smaller, boilerplate set
of tactics. Since this derivation process is mostly the same across many equiva-
lences, these tactics are a good candidate for automation in the future.

When proving an invertibility equivalence IC[s, t] ⇔ ∃x. �[x, s, t], we first
split it into two sub-goals: the left-to-right and right-to-left implications. For
proving the left-to-right implication, since Coq implements a constructive logic,
the only way to prove an existentially quantified formula is to construct the
literal witnessing it. Thus, in addition to being able to prove the equivalence,
a positive side-effect of our proofs are actual inverses for x in literals of the
form �[x, s, t]. In Niemetz et al. [16], these are called conditional inverses, as the
fact that they are inverses is conditional on the correctness of the invertibility
condition. There, such inverses were synthesized automatically for a subset of
the literals. In each of our Coq proofs, such an inverse is found, even when the
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proof is done by case-splitting. This provides a more general solution than the
one in [16], which did not consider case-splitting.

Example 2. Consider the literal s >>a x ≥u t. Its invertibility condition is (s ≥u

∼s) ∨ (s ≥u t). The left-to-right implication of the invertibility equivalence is:

∀s, t : σ[n]. (s ≥u ∼s) ∨ (s ≥u t) ⇒ ∃x : σ[n]. s >>a x ≥u t

Here, case splitting is done on the disjunction in the invertibility condition.
When s ≥u ∼s is true, the inverse for x is the bit-vector constant that correspond
to the length of the s, namely n; when s ≥u t is true, the inverse is 0. ��

In addition to BVList, several proofs of invertibility equivalences bene-
fited from CoqHammer [7], a plug-in that aims at extending the level of
automation in Coq by combining machine learning and automated reasoning
techniques in a similar fashion to what is done in by Sledgehammer [21] in
Isabelle/HOL [18]. CoqHammer, when triggered on some Coq goal, (i) submits
the goal together with potentially useful terms to external solvers/automated-
provers, (ii) attempts to reconstruct returned proofs (if any) directly in the Coq
tactic language Ltac [8], and (iii) outputs the set of tactics closing the goal in
case of success. As we directly employ these tactics inside BVList, one does not
need to install CoqHammer in order to build the library, although it would be
beneficial for further extensions.

5.2 Detailed Examples

In this section we provide specific examples for proofs of invertibility equiva-
lences. The first example illustrates the two-theories approach of the library.

Example 3. Consider the literal s >>a x <u t. Its invertibility condition is ((s <u

t ∨ ¬(s <s 0)) ∧ t �= 0). Figure 5 shows the proof of the following direction of
the corresponding invertibility equivalence:

∀s, t : σ[n]. (∃x : σ[n]. s >>a x <u t) ⇒ ((s <u t ∨ ¬(s <s 0)) ∧ t �= 0)

In the proof, lines 8–11 transform the dependent bit-vectors from the goal and
the hypotheses into simply-typed bit-vectors. Then, lines 12–14 invoke the corre-
sponding lemma for simply-typed bit-vectors (called InvCond.bvashr ult2 rtl)
along with some simplifications. ��

Most of the effort in this project went into proving equivalences over raw
bit-vectors, as the following example illustrates.

Example 4. Consider the literal x << s >u t. Its invertibility condition is (t <u

∼0<< s). The corresponding invertibility equivalence is:

∀s, t : σ[n]. (t <u ∼0<< s) ⇔ (∃x : σ[n]. x << s >u t) (5)
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The left-to-right implication is easy to prove using ∼0 itself as the witness of the
existential proof goal and considering the symmetry between >u and <u. The
proof of the right-to-left implication relies on the following lemma:

∀x, s : σ[n]. (x << s) ≤u (∼0<< s) (6)

From the right side of the equivalence in Eq. (5), we get some skolem x for
which x << s >u t holds. Flipping the inequality, we have that t <u x << s; using
this, and transitivity over <u and ≤u, the lemma given by Eq. (6) gives us the
left side of the equivalence in Eq. (5).

As mentioned in Sect. 4, we have redefined the shift operators << and >> in
the library. This was instrumental, for example, in the proof of Eq. (6).

1 Theorem bvashr_ult2_rtl :
2 forall (n : N), forall (s t : bitvector n),
3 (exists (x : bitvector n), (bv_ult (bv_ashr_a s x) t = true)) ->
4 ((( bv_ult s t = true) ∨ (bv_slt s (zeros n)) = false) ∧
5 (bv_eq t (zeros n)) = false).
6 Proof.
7 intros n s t H.
8 destruct H as ((x, Hx), H).
9 destruct s as (s, Hs).

10 destruct t as (t, Ht).
11 unfold bv_ult, bv_slt, bv_ashr_a, bv_eq, bv in ∗. cbn in ∗.
12 specialize (InvCond.bvashr_ult2_rtl n s t Hs Ht); intro STIC.
13 rewrite Hs, Ht in STIC. apply STIC.
14 now exists x.
15 Qed.

Fig. 5. A proof of one direction of the invertibility equivalence for >>a and <u using
dependent types.

The new definition uses firstn and ++, over which many useful properties
are already proven in the standard library. This benefits us in manual proofs, and
in calls to CoqHammer, since the latter is able to use lemmas from the imported
libraries to prove the goals that are given to it. Using this representation, proving
Eq. (6) reduces to proving Lemmas bv ule 1 firstn and bv ule pre append,
shown in Fig. 6. The proof of bv ule pre append benefited from the property
app comm cons from the standard list library of Coq, whereas firstn length le
was useful in reducing the goal of bv ule 1 firstn to the Coq equivalent of Eq.
(3). The statements of the properties mentioned from the standard library are
also shown in Fig. 6. ��

Finally, we examine what was considered a challenge problem in the previous
version of this work [11]. The next example details how we completed the proof.
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Example 5. Consider the literal (x >> s) >u t. Its invertibility condition is t <u

(∼s >> s). Now consider the following direction of the corresponding invertibility
equivalence:

∀s, t : σ[n]. t <u (∼s >> s) ⇒ ∃x : σ[n]. (x >> s) >u t (7)

Figure 7 contains the theorem stating the equivalence, and some lemmas used
within its proof. A crucial step in the proof of the implication is to rewrite the
definition of the right shift operator bv shr to its alternate definition bv shr a
(see Sect. 4.2). Unfolding the alternative definition leads to a case-analysis on
the following condition:

toNat(s) < len(x)

where toNat casts a bit-vector to its natural number representation, and len
returns the length of a bit-vector as a natural number.

1 Lemma bv_ule_1_firstn : forall (n : nat) (x : bitvector),
2 (n < length x)%nat ->
3 bv_ule (firstn n x) firstn n (mk_list_true (length x))) = true.
4

5 Lemma bv_ule_pre_append : forall (x y z : bitvector),
6 bv_ule x y = true -> bv_ule (z ++ x) (z ++ y) = true.
7

8 Theorem app_comm_cons : forall (x y:list A) (a:A),
9 a :: (x ++ y) = (a :: x) ++ y

10

11 Lemma firstn_length_le: forall l:list A, forall n:nat,
12 n <= length l -> length (firstn n l) = n.

Fig. 6. Examples of lemmas used in proofs of invertibility equivalences.

The challenge in the proof arises in the positive case of the condition, which
reduces to a proof of first bits zero (see Fig. 7). first bits zero says that
given toNat(s) < len(s), the most-significant len(s) − toNat(s) bits of s are 0.
As seen in Fig. 4, the second argument to the top-most layer of the shift (called
from bv shl eq) is a bit-vector that specifies the number of times to shift the
bit-vector in the first argument. This second argument is converted to a natural
number by the abstract toNat function invoked above, the concrete definitions
of which are specified in Fig. 7 as list2nat be a and list2N. At the same level
of abstraction, we use rev for the list reversal function corresponding to the
Coq function of the same name, and firstn also for its Coq namesake (firstn
n l returns the n most significant bits of l), so that first bits zero can be
specified as follows:

toNat(s) < len(s) ⇒ firstn (len(s) − toNat(s)) (rev(s)) = 0

The intuition behind its validity is that if the most-significant len(s)−toNat(s)
bits were not 0 then they would contribute to the value of toNat(s), making it
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greater than or equal to len(s) and thus falsifying the condition. However, it is
challenging to convert this intuition into a proof using induction over lists, as
explained in what follows.

To prove first bits zero, we redefined list2N as a tail-recursive function
list2NTR. This step was proven to be sound by a lemma of equivalence between
the two definitions (list2N eq). Since list2N is not tail recursive, it only begins
computation at the end of the input list representing a bit-vector. Such a def-
inition further complicates the proof of first bits zero when based on the
typical induction principle over the structure of the Boolean list underlying the
bit-vector s. This is because it does not easily reduce (via ι-reduction for induc-
tive definitions [19]), into a useful expression in the step case of the intended
induction.

The advantage of tail recursion in this context is best illustrated by Fig. 8
where x is a Boolean variable and xs represents an arbitrary Boolean list. The

1 Theorem bvshr_ugt_ltr : forall (n : N), forall (s t : bitvector n),
2 (bv_ult t (bv_shr (bv_not s) s) = true) ->
3 (exists (x : bitvector n), bv_ugt (bv_shr x s) t = true).
4

5 Lemma first_bits_zero : forall (s : bitvector),
6 (N.to_nat (list2N s) < length s)%nat ->
7 firstn (length s - N.to_nat (list2N s)) (rev s) =
8 mk_list_false (length s -N.to_nat (list2N s)).
9

10 Lemma first_bits_zeroA : forall (s : bitvector),
11 (length s >= (list2NTR s))%nat ->
12 firstn (length s - (list2NTR s)) s =
13 mk_list_false (length s -(list2NTR s)).
14

15 Fixpoint list2N (a: list bool) :=
16 match a with

17 | [ ] ⇒ 0
18 | x :: xs ⇒ if x then N.succ_double (list2N xs) else
19 N.double (list2N xs)
20 end.
21

22 Definition list2nat_be_a (a: list bool) := N.to_nat (list2N a).
23

24 Fixpoint list2NR (a: list bool) (n: nat) :=
25 match a with

26 | [ ] ⇒ n

27 | x :: xs ⇒ if x then list2NR xs (2 ∗ n + 1) else
28 list2NR xs (2 ∗ n)
29 end.
30

31 Definition list2NTR (a: list bool) := list2NR a 0.
32

33 Lemma list2N_eq: forall (s: bitvector),
34 list2NTR (rev s) = N.to_nat (list2N s).

Fig. 7. Invertibility equivalence for >> and >u and some lemmas used by its proof.
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x: bool xs: list bool IH: firstn (len(xs) − toNat(xs)) (rev(xs)) = 0

Goal: firstn (len(xs) + 1 − toNat(x :: xs)) (rev(x :: xs)) = 0
(8)

x: bool xs: list bool IH: firstn (len(xs) − toNatTR(xs)) (xs) = 0

Goal: firstn (len(xs) + 1 − toNatTR(xs ++ [x])) (xs ++ [x]) = 0
(9)

Fig. 8. Sub-goals generated in the proof of first bits zero. Note that 0 is a bit-vector
constant of the appropriate length (list of falses).

derivation of the goal from the inductive hypothesis (IH) in derivation (8) from
Fig. 8 is complicated in Coq because the functions firstn and rev are not well-
matched with list2N, if not incompatible. For instance, observe that the in the
inductive step (Goal), as the first argument to firstn increases, the number of
bits fetched from the list increases towards the right. However, due to the little-
endian notation of bit-vectors and the fact that the list cons function (::) can be
seen as incrementing its argument list to its left, the rev function must be used
to corrects the direction of increase of the second argument to firstn. Despite
this correction, an induction over s must deal with two structurally different
lists.

In contrast, the tail-recursive definition of list2NTR hides the rev func-
tion. This is illustrated in derivation (9) in Fig. 8, where toNatTR corresponds
to list2NTR. Furthermore, such an induction over lists using append (++) to
the right, rather than cons to the left is possible thanks to the reverse induc-
tion principle2. Closing such a goal allowed us to prove the list2NTR-variant
of first bits zero, specified as first bits zeroA in Fig. 7, and the proof of
equivalence between the two definitions (list2N eq) allowed us to use this in
closing the original goal (7). ��

5.3 Results

Table 2 summarizes the results of proving invertibility equivalences for invertibil-
ity conditions in the signature Σ0. In the table, �means that the invertibility
equivalence was successfully verified in Coq but not in Niemetz et al. [17], and
� means the opposite; �� means that the invertibility equivalence was verified
using both approaches. We successfully proved all invertibility equivalences over
= that are expressible in Σ0, including 4 that were not proved in [17]. For the
rest of the predicates, we focused only on the 8 invertibility equivalences that
were not proved in [17], and succeeded in proving all of them.

Our work thus complements [17] in verifying all invertibility conditions in
Σ0 for arbitrary bit-widths, by proving all 12 equivalences that were previously
unverified, and corroborating 7 others that were verified by SMT solvers. It also
complements [15], which verified all invertibility conditions in Σ1, but only up
to bit-width of 65.
2 see rev ind in https://coq.inria.fr/library/Coq.Lists.List.html.

https://coq.inria.fr/library/Coq.Lists.List.html
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Table 2. Proved invertibility equivalences in Σ0 where �� ranges over the given pred-

icate symbols. �means that the invertibility equivalence was successfully verified in

Coq but not in [17], whereas � means the opposite; �� means that the invertibility
equivalence was verified using both approaches.

�[x] = �= <u >u ≤u ≥u

−x �� t �� � � � � �
∼x �� t �� � � � � �
x & s �� t � � � � � �
x | s �� t � � � � � �
x << s �� t � � � � � �
s << x �� t �� � � � � �
x >> s �� t �� � � � � �
s >> x �� t �� � � � � �
x >>a s �� t � � � � � �
s >>a x �� t �� � � � � �
x + s �� t �� � � � � �

6 Conclusion and Future Work

We have described our work on verifying bit-vector invertibility conditions in
the Coq proof assistant, which required extending the BVList library in Coq. In
addition to describing the library and our extensions to it, this paper presented
details about the Coq proofs of the invertibility equivalences. These were done
on a representative subset of the operators from the theory of bit-vectors that
is well-supported by the extended library. We were able to prove in Coq all the
equivalences that were left unproven in previous attempts for all bit-widths, and
also to prove in Coq some equivalences that were proven automatically before,
thus increasing confidence in their correctness.

The most immediate direction for future work is proving more of the invert-
ibility equivalences supported by the bit-vector library. In addition, we plan to
extend the library so that it supports the full syntax in which invertibility con-
ditions are expressed, namely Σ1. This will also increase the potential usage of
the library for other applications. Another direction for future work is to extend
the proofs for invertibility conditions where some of the bits are known. Such
invertibility conditions were introduced by Niemetz and Preiner [14]. However,
their formal verification for every bit-width is yet to be done.
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5. Blot, A., Dagand, P.É., Lawall, J.: Bit Sequences and Bit Sets Library. Available
at https://github.com/pedagand/ssrbit

6. Chajed, T., et al.: Bedrock Bit Vectors Library. Available at https://github.com/
mit-plv/bbv

7. Czajka, L., Kaliszyk, C.: Hammer for Coq: automation for dependent type theory.
J. Autom. Reason. 61(1-4), pp. 423–453 (2018). https://doi.org/10.1007/s10817-
018-9458-4

8. Delahaye, D.: A tactic language for the system Coq. In: Parigot, M., Voronkov,
A. (eds.) LPAR 2000. LNAI, vol. 1955, pp. 85–95. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44404-1 7

9. Duprat, J.: Library Coq. Bool. Bvector. https://coq.inria.fr/library/Coq.Bool.
Bvector.html

10. Ekici, B., et al.: SMTCoq: a plug-in for integrating SMT solvers into Coq. In:
Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 126–133.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 7

11. Ekici, B., Viswanathan, A., Zohar, Y., Barrett, C.W., Tinelli, C.: Verifying Bit-
vector Invertibility Conditions in Coq (Extended Abstract). In Giselle Reis &
Haniel Barbosa, editors: Proceedings Sixth Workshop on Proof eXchange for The-
orem Proving, PxTP 2019, Natal, Brazil, August 26, 2019. EPTCS 301, pp. 18–
26 (2019). https://doi.org/10.4204/EPTCS.301.4. Available at https://doi.org/10.
4204/EPTCS.301.4

12. Herbert, B. Enderton (2001): Chapter TWO - First-Order Logic. In Herbert B.
Enderton, editor: A Mathematical Introduction to Logic (Second Edition), sec-
ond edition edition, Academic Press, Boston, pp. 67–181, https://doi.org/10.1016/
B978-0-08-049646-7.50008-4

13. Gupta, A., Fisher, A.L.: Representation and symbolic manipulation of linearly
inductive boolean functions. In: Proceedings of the 1993 IEEE/ACM Interna-
tional Conference on Computer-aided Design, ICCAD ’93, IEEE Computer Society
Press, Los Alamitos, CA, USA, pp. 192–199 (1993). Available at http://dl.acm.
org.stanford.idm.oclc.org/citation.cfm?id=259794.259827

14. Niemetz, A., Preiner, M.: Ternary Propagation-Based Local Search for more Bit-
Precise Reasoning. In: FMCAD, IEEE, pp. 214–224 (2020)

15. Niemetz, A., Preiner, M., Reynolds, A., Barrett, C., Tinelli, C.: Solving quantified
bit-vectors using invertibility conditions. In: Chockler, H., Weissenbacher, G. (eds.)
CAV 2018. LNCS, vol. 10982, pp. 236–255. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96142-2 16

https://doi.org/10.1007/11541868_8
https://doi.org/10.1007/11541868_8
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://isa-afp.org/entries/Word Lib.html
https://isa-afp.org/entries/Word Lib.html
https://github.com/pedagand/ssrbit
https://github.com/mit-plv/bbv
https://github.com/mit-plv/bbv
https://doi.org/10.1007/s10817-018-9458-4
https://doi.org/10.1007/s10817-018-9458-4
https://doi.org/10.1007/3-540-44404-1_7
https://coq.inria.fr/library/Coq.Bool.Bvector.html
https://coq.inria.fr/library/Coq.Bool.Bvector.html
https://doi.org/10.1007/978-3-319-63390-9_7
https://doi.org/10.4204/EPTCS.301.4
https://doi.org/10.4204/EPTCS.301.4
https://doi.org/10.4204/EPTCS.301.4
https://doi.org/10.1016/B978-0-08-049646-7.50008-4
https://doi.org/10.1016/B978-0-08-049646-7.50008-4
http://dl.acm.org.stanford.idm.oclc.org/citation.cfm?id=259794.259827
http://dl.acm.org.stanford.idm.oclc.org/citation.cfm?id=259794.259827
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-319-96142-2_16


58 B. Ekici et al.

16. Niemetz, A., Preiner, M., Reynolds, A., Zohar, Y., Barrett, C., Tinelli, C.: Towards
satisfiability modulo parametric bit-vectors. J. Autom. Reason. 65(7), 1001–1025
(2021). https://doi.org/10.1007/s10817-021-09598-9

17. Niemetz, A., Preiner, M., Reynolds, A., Zohar, Y., Barrett, C., Tinelli, C.: Towards
bit-width-independent proofs in SMT Solvers. In: Fontaine, P. (ed.) CADE 2019.
LNCS (LNAI), vol. 11716, pp. 366–384. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-29436-6 22

18. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): 5. the rules of the game. In:
Isabelle/HOL. LNCS, vol. 2283, pp. 67–104. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45949-9 5

19. Paulin-Mohring, C.: Inductive definitions in the system Coq rules and properties.
In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 328–345.
Springer, Heidelberg (1993). https://doi.org/10.1007/BFb0037116

20. Paulin-Mohring, C.: Introduction to the Calculus of Inductive Constructions. In:
Bruno Woltzenlogel Paleo & David Delahaye, editors: All about Proofs, Proofs for
All, Studies in Logic (Mathematical logic and foundations) 55, College Publica-
tions. https://hal.inria.fr/hal-01094195 (2015)

21. Paulsson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer,
a Practical Link Between Automatic and Interactive Theorem Provers. In: Sut-
cliffe, G., Schulz, S., Ternovska, E., eds: The 8th International Workshop on the
Implementation of Logics, IWIL 2010, Yogyakarta, Indonesia, October 9, 2011,
EPiC Series in Computing 2, EasyChair, pp. 1–11, https://doi.org/10.29007/36dt.
Available at https://doi.org/10.29007/36dt

22. Shi, X., Fu, Y.-F., Liu, J., Tsai, M.-H., Wang, B.-Y., Yang, B.-Y.: CoqQFBV: a
scalable certified SMT quantifier-free bit-vector solver. In: Silva, A., Leino, K.R.M.
(eds.) CAV 2021. LNCS, vol. 12760, pp. 149–171. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-81688-9 7

23. Sozeau, M.: Equations: A dependent pattern-matching compiler. In: Proceedings
of the 1st International Conference on Interactive Theorem Proving (ITP 2010),
pp. 419–434 (2010). https://doi.org/10.1007/978-3-642-14052-5 29

24. Spies, S., Forster, Y.: Undecidability of higher-order unification formalised in Coq.
In: Blanchette, J., Hritcu, C., eds.: Proceedings of the 9th ACM SIGPLAN Interna-
tional Conference on Certified Programs and Proofs, CPP 2020, New Orleans, LA,
USA, January 20–21, 2020, ACM, pp. 143–157, https://doi.org/10.1145/3372885.
3373832. Available at https://doi.org/10.1145/3372885.3373832

25. The Coq development team (2019): The Coq Proof Assistant Reference Manual
Version 8.9. Available at https://coq.inria.fr/distrib/current/refman/

https://doi.org/10.1007/s10817-021-09598-9
https://doi.org/10.1007/978-3-030-29436-6_22
https://doi.org/10.1007/978-3-030-29436-6_22
https://doi.org/10.1007/3-540-45949-9_5
https://doi.org/10.1007/3-540-45949-9_5
https://doi.org/10.1007/BFb0037116
https://hal.inria.fr/hal-01094195
https://doi.org/10.29007/36dt
https://doi.org/10.29007/36dt
https://doi.org/10.1007/978-3-030-81688-9_7
https://doi.org/10.1007/978-3-030-81688-9_7
https://doi.org/10.1007/978-3-642-14052-5_29
https://doi.org/10.1145/3372885.3373832
https://doi.org/10.1145/3372885.3373832
https://doi.org/10.1145/3372885.3373832
https://coq.inria.fr/distrib/current/refman/


Formal Verification of Bit-Vector Invertibility Conditions in Coq 59

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
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