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MUTANT FUZZY SETS

MUSTAFA BURÇ KANDEMİR1, §

Abstract. In this paper, the notion of mutant fuzzy sets that by adhering to the
classical sense in any semigroups has been introduced and its some of structural properties
have been studied. In addition to this, the concept of t-norm based mutation for fuzzy
sets on any crisp set has been given, and some of results have been investigated.
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1. Introduction

In biology, a mutation is defined as the permanent alteration of the nucleotide sequences
of the genetic elements. In a colloquial manner, the progeny formed by the mating of any
two individuals can be expressed as being different from expected. Mullin described the
mutation process in algebraic sense in mathematics and he posed research problems and
defined a mutation in a grupoid in [3]. In [4], he assumed that the set S is a population of
individuals and the mating of any two individuals of the population is a binary operation
on S. Thus, the progeny of the two individuals a and b both in S have written as a ∗ b
which is also in S. According to [4], it could be divided S into equivalence classes according
to some properties of elements of S (e.g. eye color, blood type). Sometimes, it may be
ensued an offspring which is not in M from the mating of any two individuals that is in
M . In that case, a mutation has taken place in the set M . So, in his related article [4],
Mullin algebraically stated the definition of mutation such as M ∗M ⊆ M c where M is
a subset of the algebraic system (S, ∗) and M c is a complement of M . He said that the
set M is a mutant set in (S, ∗). Afterwards, Mullin generalized and applied the results
of mutant sets for group theory and ring theory in [5]. Iseki [6] introduced the definition
of mutation in a semigroup as generalized sense. In [7], Iseki gave some results of the
Cartesian product of mutant sets. In [8], Kim discussed some properties of mutant sets
and gave some results in topological semigroups and algebraic semigroups.

The notion of fuzzy set was introduced by Zadeh in his paper [1] in 1965. This concept
provides a natural foundation for modeling mathematically the fuzzy phenomena, which
exist pervasively in our real world, and for building new branches of fuzzy mathematics.
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In his pioneer paper, he established set-theoretical operations for fuzzy sets. Fuzzy set
theory has been applied to many areas of the day.

In this paper, mutant fuzzy sets in semigroups with respect to product of two fuzzy sets
given any semigroup are established and its basic properties are studied. In Section 3,
t-norm based mutation for fuzzy sets on any crisp set are discussed. Prominent t-norm
based operations among fuzzy sets such as algebraic product, bounded product, drastic
product are used, and some results are given.

2. Preliminaries

As the preliminary information, which is necessary to study, give some definitions and
properties.

For a non-empty set S, a function ∗ from S × S to S is called a binary operation
on S, and the ordered pair (S, ∗) is called an algebraic structure. A semigroup is an
algebraic structure consisting of a set together with an associative binary operation, that
is, ∀a, b, c ∈ S, (a ∗ b) ∗ c = a ∗ (b ∗ c). We use the multiplication notation for a binary
operation in this paper. Where the semigroup is written multiplicatively and where the
nature of the multiplication is clear from the context, we shall write simply S rather than
(S, ·). Expressions such as abc and a1a2 . . . an where a, b, c, a1, a2, . . . , an are elements of
S, then have unambiguous meaning, and we can use the notation an (n ∈ N) to mean the
product of n elements each equal to a. If a semigroup S has the property that, for all
a, b ∈ S, ab = ba, we call that S is a commutative semigroup. Let f be a mapping from the
semigroup S to the semigroup T . We call that f is a homomorphism if f(ab) = f(a)f(b)
for all a, b ∈ S [9, 11].

Besides, Zadeh [1] is described, a fuzzy set whose definition as follows is a class of objects
with a continuum of grades of membership.

Definition 2.1. [1] Let S be a non-empty set. A fuzzy set A in S is defined by a member-
ship function µA : S → [0, 1] whose membership value µA(a) specifies the degree to which
a ∈ S belongs to the fuzzy set A, for each a ∈ S.

The family of all fuzzy sets in S will be denoted by F(S). Let A ∈ F(S). If µA(a) = 0
for all a ∈ S then we call that A is empty (or null) fuzzy set and denoted by Φ. In a
similar manner, if µA(a) = 1 for all a ∈ S, then it is called that A is universal fuzzy set
and denoted by S. Besides, if µA(a) = α for all a ∈ S and α ∈ [0, 1], then A is called
α-universal fuzzy set and denoted by Sα.

If A,B ∈ F(S) then some basic operations and definitions are given componentwise
proposed by Zadeh [1] as follows:

(1) A ⊆ B ⇔ µA(a) ≤ µB(a), for all a ∈ S.
(2) A = B ⇔ µA(a) = µB(a), for all a ∈ S.
(3) C = A ∪B ⇔ µC(a) = µA(a) ∨ µB(a), for all a ∈ S.
(4) D = A ∩B ⇔ µD(a) = µA(a) ∧ µB(a), for all a ∈ S.
(5) E = Ac ⇔ µE(a) = 1− µA(a), for all a ∈ S.
(6) Let α ∈ [0, 1]. αA is called α-layer of A such that its membership function is

defined by αµA(a) = α ∧ µA(a) for all a ∈ S.
(7) The core of a fuzzy set A, denoted by c(A), is the crisp set of all x ∈ X such that

µA(x) = 1 [12].
(8) The support of a fuzzy set A, denoted by s(A), is the crisp set of all x ∈ X such

that µA(x) > 0 [12].
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(9) The set of elements that belong to the fuzzy set A at least to the degree α is called
the α-level set :

Aα = {x ∈ S | µA(x) ≥ α}
A′α = {x ∈ X | µA(x) > α} is called strong α-level set [12].

(10) The cartesian product A⊗B of A and B is a fuzzy set in the product space S×S
whose membership function is defined as

µA⊗B(a, b) = µA(a) ∧ µB(b).

Definition 2.2. [1] Let S and T be non-empty sets, f be a mapping from S into T , and
let A be a fuzzy set on S and B be a fuzzy set on T . The fuzzy sets f [A] on T and f−1[B]
on S, defined by

f(µA)(b) =

{ ∨
{µA(a) | a ∈ S, f(a) = b} , f−1[{b}] 6= ∅

0 , otherwise

for all b ∈ T , and
f−1(µB)(a) = µB(f(a))

for all a ∈ S.

Intrinsically, the definitions of fuzzy algebraic structures have been defined in time. [9]
and [10] for detailed information about fuzzy algebraic structures are recommended.

The notion of product of any two fuzzy sets on a semigroup is given as follows.

Definition 2.3. [9, 10] Let S be a semigroup and A and B be fuzzy subsets of S such
that its membership functions are µA : S → [0, 1] and µB : S → [0, 1], respectively, and
a, b, c ∈ S. Then the product of A and B, denoted by A ◦B, defined by

µA◦B(c) = (µA ◦ µB)(c) =
∨
{µA(a) ∧ µB(b) | a, b ∈ S, ab = c}

for all c ∈ S.
As is well-known, the operation ◦ is associative.

Note that, the m times multiplication of the fuzzy set A can be defined as Am =
A ◦A ◦ · · · ◦A and its membership function is

µAm(a) =
∨ ∧

i∈{1,2,...,m}

µA(ai) | a1a2 . . . am = a

 .

from Definition 2.3.

Lemma 2.1. [15, 16] Let S and T be semigroups and f : S → T be a epimorphism. Let
A,B be fuzzy sets on S. Then f [A ◦B] = f [A] ◦ f [B].

Note that, Lemma 2.1 is valid finite family of fuzzy sets.

Lemma 2.2. [15, 16] Let S and T be semigroups and f : S → T be a epimorphism. Let
A, B be fuzzy sets on T . Then f−1[A ◦B] = f−1[A] ◦ f−1[B].

Lemma 2.3. Let S be a semigroup and A and B fuzzy set on S. If A ⊆ B, then Am ⊆ Bm.

Proof. Since A ⊆ B, µA(a) ≤ µB(a) for all a ∈ S. So, for all a = a1a2 . . . am,

∨ ∧
i∈{1,2,...,m}

µA(ai)

 ≤∨
 ∧
i∈{1,2,...,m}

µB(ai)

 .

Thus Am ⊆ Bm. �
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Lemma 2.4. Let S and T be semigroups and A ∈ F(S) and B ∈ F(T ). Then (A⊗B)m =
Am ⊗Bm.

Proof. For any (a, b) ∈ S × T ,

µ(A⊗B)m (a, b) =
∨ ∧

i∈{1,2,...,m}

µA⊗B(ai, bi) |
m∏

i=1

(ai, bi) = (a, b), ai ∈ S, bi ∈ T


=

∨ ∧
i∈{1,2,...,m}

(µA(ai) ∧ µB(bi)) |
m∏

i=1

(ai, bi) = (a, b), ai ∈ S, bi ∈ T


=

∨
 ∧

i∈{1,2,...,m}

µA(ai)

 ∧

 ∧
i∈{1,2,...,m}

µB(bi)

 |
m∏

i=1

ai = a,

m∏
i=1

bi = b, ai ∈ S, bi ∈ T


=

∨ ∧
i∈{1,2,...,m}

µA(ai) | ai ∈ S,
m∏

i=1

ai = a

 ∧
∨ ∧

i∈{1,2,...,m}

µB(bi) | bi ∈ T,
m∏

i=1

bi = b


= µAm (a) ∧ µBm (b)

= µAm⊗Bm (a, b)

Hence, it is obtained that (A⊗B)m = Am ⊗Bm. �

3. Fuzzy Mutants in Semigroups

In this section, the concept of a mutant fuzzy set in any semigroups can be defined,
analogously.

Definition 3.1. Let S be a semigroup and M be a fuzzy set on S. M is called mutant
fuzzy set over S if M ◦M ⊆M c.

Definition 3.2. Let S be a semigroup and M be a fuzzy set on S. M is called (m,n)-
mutant in S if Mm ⊆ (Mn)c.

It can be easily seen that Definition 3.2 is a generalized form of Definition 3.1. It means
that the (2, 1)-mutant is a mutant in the sense of Definition 3.1.

Let M be a fuzzy mutant set on S, and a ∈M . µM (a) is called the degree of mutation
of the element a in M .

Example 3.1. Let S = {0, 1}. If the Cayley table is constructed as follows,

∗ 0 1
0 0 1
1 1 1

(S, ∗) is a semigroup. It is called that it is a two-element semigroup. Let

M = {(0, 0.4), (1, 0.3)} ∈ F(S)

i.e. M is a fuzzy set on S. Then, we have its complement

M c = {(0, 0.6), (1, 0.7)} ∈ F(S).

So, let us calculate M ◦M . For 0 ∈ S,

µM◦M (0) =
∨
{µM (a) ∧ µM (b) | a ∗ b = 0}

= µM (0) ∧ µM (0)

= µM (0) = 0.4,
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For 1 ∈ S,

µM◦M (1) =
∨
{µM (a) ∧ µM (b) | a ∗ b = 1}

= (µM (0) ∧ µM (1)) ∨ (µM (1) ∧ µM (0)) ∨ (µM (1) ∧ µM (1))

= 0.4 ∨ 0.4 ∨ 0.3 = 0.4.

Thus, it is obtained that

M ◦M = {(0, 0.4), (1, 0.4)} ⊂M c.

Hence, the fuzzy set M is a mutant fuzzy set in S.
Moreover, for arbitrary natural numbers m,n ∈ N, it is obtained that

Mm = Mn = {(0, 0.4), (1, 0.4)}
and

(Mn)c = {(0, 0.6), (1, 0.6)}.
So, M is an (m,n)-mutant fuzzy set on S.

An example for non-mutant fuzzy sets can be given as follows:

Example 3.2. Let (S, ∗) be semigroup as in Example 3.1. Consider the fuzzy set A =
{(0, 0.7), (1, 1)} ∈ F(S). So, Ac = {(0, 0.3), (1, 0)} ∈ F(S). If we calculate the fuzzy set
A ◦ A ∈ F(S), we have A ◦ A = {(0, 0.7), (1, 1)}. Thus A ◦ A * Ac. Hence A is not a
mutant fuzzy set in S.

Theorem 3.1. Every subset of an (m,n)-mutant fuzzy set of S is an (m,n)-mutant of S.

Proof. Let A be a fuzzy subset of the (m,n)-mutant fuzzy set M . If A ⊆ M , Am ⊆ Mm

from Lemma 2.3. Since M is a mutant,

Am ⊆Mm ⊆ (Mn)c ⊆ (An)c

is obtained. Thus A is an (m,n)-mutant on S. �

Theorem 3.2. Let M1 and M2 be (m,n)-mutant fuzzy sets on S. Then M1 ∩M2 is an
(m,n)-mutant fuzzy set on S.

Proof. It is known that M1 ∩M2 ⊆ M1 and M1 ∩M2 ⊆ M2. From Lemma 2.3, (M1 ∩
M2)m ⊆ Mm

1 and (M1 ∩M2)m ⊆ Mm
2 is obtained. Since M1 and M2 are (m,n)-mutant,

so
(M1 ∩M2)m ⊆Mm

1 ⊆ (Mn
1 )c

and
(M1 ∩M2)m ⊆Mm

2 ⊆ (Mn
2 )c.

Thus, it is obtained that

(M1 ∩M2)m ⊆ Mm
1 ∪Mm

2

⊆ (Mn
1 )c ∪ (Mn

2 )c

= (Mn
1 ∩Mn

2 )c

= ((M1 ∩M2)n)c .

Hence M1 ∩M2 is (m,n)-mutant. �

Corollary 3.1. Let Mi be (m,n)-mutant fuzzy sets on S for i ∈ I. Then
⋂
i∈IMi is an

(m,n)-mutant fuzzy set on S, where
⋂
i∈IMi is non-null.

Theorem 3.3. Let M be an (m,n)-mutant fuzzy set on S. αM is an (m,n)-mutant on
S.
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Proof. Since Mm ⊆ (Mn)c. It is obtained that

αµMm(x) = α ∧ µMm(x)

≤ α ∧ (1− µMn(x))

= αµ(Mn)c(x),∀x ∈ S.
Then αMm ⊆ α(Mn)c. Thus αM is an (m,n)-mutant. �

Theorem 3.4. S and T be semigroups, f : S → T be an epimorphism. If M is an (m,n)-
mutant fuzzy set on S and f [(Mn)c] ⊆ (f [Mn])c, then f [M ] is an (m,n)-mutant fuzzy set
on T .

Proof. From Lemma 2.1, it is obtained that

(f [M ])m = f [Mm] ⊆ f [(Mn)c] ⊆ (f [Mn])c = ((f [M ])n)c.

�

Theorem 3.5. S and T be semigroups, f : S → T be an epimorphism. The inverse image
under a epimorphism f of an (m,n)-mutant fuzzy set is an (m,n)-mutant fuzzy set.

Proof. Let M be a (m,n)-mutant fuzzy set in T . From Lemma 2.2, it is obtained that

(
f−1[M ]

)m
= f−1[Mm]

⊆ f−1 [(Mn)c]

=
(
f−1[Mn]

)c
=

((
f−1[M ]

)n)c
Hence, f−1[M ] is (m,n)-mutant. �

Theorem 3.6. Let S and T be semigroups, M and N be (m,n)-mutant fuzzy sets on S
and T , respectively. The cartesian product of M ⊗ N is an (m,n)-mutant fuzzy set on
S × T .

Proof. Since M and N are (m,n)-mutant fuzzy set in S and T , respectively, we have
Mm ⊆ (Mn)c and Nm ⊆ (Nn)c. From Lemma 2.4, we have

(A⊗B)m = Am ⊗Bm ⊆ (An)c ⊗ (Bn)c ⊆ (An ⊗Bn)c = ((A⊗B)n)c .

�

Theorem 3.7. Let M be a mutant fuzzy set on S. c(M), the core of M , is a mutant set
on S.

Proof. Let a ∈ c(M)c(M). Then, there exists a1, a2 ∈ c(M) such that a = a1a2. Thus, we
have µM (a1) = 1 and µM (a2) = 1 for a1a2 = a. Then µM (a1) ∧ µM (a2) = 1 for a1a2 = a,
and

∨
{µM (a1) ∧ µM (a2) = 1 | a1a2 = a} = 1, so that, µM2(a) = 1 and a ∈ c(M2). Since

M is mutant, i.e. M2 ⊆ M c, µMc(a) > µM2(a) = 1 is obtained. Thus, µM (a) = 0, i.e.
a /∈ c(M). Hence a ∈ (c(M))c is obtained. The proof is completed. �

Lemma 3.1. Let M be a fuzzy set on S. If α > 0.5, then (M c)α ⊆ (Mα)c.

Proof. Suppose that a ∈ (M c)α, then µMc(a) ≥ α. So, 1−µM (a) ≥ α, and µM (a) ≤ 1−α
are obtained. Since α > 0.5, then µM (a) < α. Herefrom, we have a /∈ Mα. Hence,
a ∈ (Mα)c. �

Theorem 3.8. Let M be a mutant fuzzy set on S. Mα, the α-level set of M , is a mutant
set on S for α > 0.5.
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Proof. Suppose that a ∈MαMα. Then there exist a1, a2 ∈Mα such that a = a1a2. Thus,
µM (a1) ≥ α and µM (a2) ≥ α for a1a2 = a are obtained. So, µM (a1) ∧ µM (a2) ≥ α for
a1a2 = a, and then

∨
{µM (a1) ∧ µM (a2) | a1a2 = a} ≥ α, so that, µM2(a) ≥ α and

a ∈ (Mα)2. Since M is mutant i.e. M2 ⊆ M c, µMc(a) > µM2(a) ≥ α is obtained. So,
we have a ∈ (M c)α. Since α > 0.5, (M c)α ⊆ (Mα)c from Lemma 3.1, it is obtained
that a ∈ (Mα)c. Hence we have (Mα)2 ⊆ (Mα)c. Thus, Mα is mutant subset of S for
α > 0.5. �

Theorem 3.9. Let Sα be an α-universal fuzzy set. If α ≤ 0.5, then Sα is a mutant fuzzy
set.

Proof. It is needed to show that (Sα)2 ⊆ (Sα)c for α ≤ 0.5. It is known that if α ≤ 0.5,
then 1− α ≥ 0.5. So, it is obtained that

µSα◦Sα(a) =
∨
{µSα(a1) ∧ µSα(a2) | a1, a2 ∈ S, a1a2 = a}

=
∨
{α ∧ α | a1, a2 ∈ S, a1a2 = a, α ≤ 0.5}

= α

≤ 1− α
= 1− µSα(a)

= µ(Sα)c(a)

for each a ∈ S. Hence, Sα is a mutant fuzzy set for α ≤ 0.5. �

4. t-norm Based Mutation

In fuzzy set theory, there are t-norm based operations between fuzzy sets. Definition of
t-norm is as follows:

Definition 4.1. [13] A t-norm is a binary operation > on the unit interval [0, 1] which
is commutative, associative, monotone and has 1 as neutral element, i.e., it is a function
> : [0, 1]× [0, 1]→ [0, 1] such that for all α, β, γ ∈ [0, 1]:

(T1) α>β = β>α,
(T2) (α>β)>γ = α>(β>γ),
(T3) α ≤ β ⇒ α>γ ≤ β>γ,
(T4) α>1 = x.

As known, a t-norm is called Archimedean if for each α, β ∈ (0, 1) there is a natural
number n such that α> · · ·>α︸ ︷︷ ︸

n times

≤ β.

The most known of t-norms can be listed as follows;

• For each α, β ∈ [0, 1], α>0β = min{α, β}. It is known as Gödel t-norm.
• For each α, β ∈ [0, 1], α>1β = α · β. It is called product t-norm.
• α, β ∈ [0, 1], α>2β = max{0, α+ β − 1}. It is known as  Lukasiewicz t-norm.

• α, β ∈ [0, 1], α>3β =

{
min{α, β} , if α = 1 or β = 1
0 , otherwise

. It is called drastic t-

norm.

As stated in [14], further fuzzy set-theoretic operations can be expressed using the
concept of t-norm. Prominent operations can be given as follows:

Definition 4.2. [14] Let A and B be fuzzy sets on non-empty set S.
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(a) The algebraic product of A and B, denoted by A •B, is a fuzzy set on S, and its
membership function defined as

µA•B(x) = µA(x)>1µB(x), ∀x ∈ S.
(b) The bounded product of A and B, denoted by A�B, is a fuzzy set on S, and its

membership function defined as

µA�B(x) = µA(x)>2µB(x), ∀x ∈ S.
(c) The drastic product of A and B, denoted by A ? B, is a fuzzy set on S, and its

membership function defined as

µA?B(x) = µA(x)>3µB(x), ∀x ∈ S.

These definitions are regarded as generalization of intersection between fuzzy sets.

Theorem 4.1. Let A be a fuzzy set on the set S. If µA(x) < 0.5 for each x ∈ S, then A
is a mutant fuzzy set with respect to the t-norm >0 i.e. A ∩A ⊂ Ac.

Proof. Let A be a fuzzy set on S. Then A>0A is a fuzzy set on S. For each x ∈ S, we
compute that

µA(x)>0µA(x) = min{µA(x), µA(x)} = µA(x).

Since µA(x) < 0.5 for each x ∈ S, then 1 − µA(x) ≥ 0.5, i.e. µAc(x) ≥ 0.5. Hence it is
obtained that A>0A ⊂ Ac. Thus, A is a mutant fuzzy set with respect to >0. �

Theorem 4.2. Let A be a fuzzy set on S. If µA(x) ≤ 0.6 for each x ∈ S, then A is a
mutant fuzzy set with respect to the t-norm >1, i.e. A •A ⊂ Ac.

Proof. From Definition 4.2 (a), A •A is a fuzzy set on S. Then, for each x ∈ S,

µA•A(x) = µA(x)>1µA(x) = (µA(x))2 < µA(x).

Since µA(x) ≤ 0.6 for each x ∈ S, then 1 − µA(x) > 0.4, i.e. µAc(x) > 0.4. We have
µAc(x) > (µA(x))2 = µA•A(x) for each x ∈ S. Hence it is obtained that A•A ⊂ Ac. Thus,
A is a mutant fuzzy set with respect to >1. �

Theorem 4.3. Let A be a fuzzy set on S. If µA(x) ≤ 0.6 for each x ∈ S, then A is a
mutant fuzzy set with respect to the t-norm >2, i.e. A�A ⊂ Ac.

Proof. From Definition 4.2 (b), A�A is a fuzzy on S. It is computed that

µA�A(x) = µA(x)>2µA(x) = max{0, 2µA(x)− 1}, ∀x ∈ S.
Since 0 ≤ µA(x) ≤ 0.6, we have 0 ≤ 2µA(x) − 1 ≤ 0.2, and if µA(x) ≤ 0.6, µAc(x) > 0.4.
Hence µA�A(x) < µAc(x) for each x ∈ S. Thus, A�A ⊂ Ac, i.e. A is a mutant fuzzy set
with respect to >2. �

Theorem 4.4. Let A be a fuzzy set on S. If µA(x) ∈ [0, 1) for each x ∈ S, then A is a
mutant fuzzy set with respect to the t-norm >3, i.e. A ? A ⊂ Ac.

Proof. Form Definition 4.2 (c), A?A is a fuzzy set on S. Since µA(x) ∈ [0, 1) i.e. µA(x) 6= 1
for all x ∈ S, and

µA?A(x) =

{
min{µA(x), µA(x)} , if µA(x) = 1
0 , otherwise

=

{
µA(x) , if µA(x) = 1
0 , otherwise

we have µA?A(x) = 0 for all x ∈ S. At the same time, since µA(x) ∈ [0, 1), then µAc(x) ∈
(0, 1]. So, we have µA?A(x) ≤ µAc(x), for all x ∈ S. Thus A ? A ⊆ Ac, i.e. A is a mutant
fuzzy set with respect to t-norm >3. �



MUSTAFA BURÇ KANDEMİR: MUTANT FUZZY SETS 265

Theorem 4.5. Let A be a fuzzy set on S and > be a t-norm. If > is an Archimedean
and µA(x) ≤ 0.5 for all x ∈ S, then A is an (n, 1)-mutant fuzzy set.

Proof. Let A be a fuzzy set on S and > be a t-norm. Since > is an Archimedean and
µA(x) < 0.5 for each x ∈ S, then we have

µAn(x) = µA(x)>µA(x)> · · ·>µA(x)︸ ︷︷ ︸
n times

≤ µA(x) < µAc(x).

Hence, it is obtained that An ⊂ Ac. Therefore, A is an (n, 1)-mutant fuzzy set. �

5. Conclusion

In Mullin’ s article [4], he stated that difficulties will arise in the mathematical formal-
ization of biological mutation. He said that the most important of these problems is that
offspring of any pair of individuals that is in the mutant set in the algebraic model is
always a biological mutant. It is inconsistent with known biological facts. On the other
hand, the fuzzy set theory is one of the most important mathematical tools which model
phenomena that classical mathematical methods can not model. In this article, the notion
of mutant fuzzy sets on an algebraic structure have been introduced, and we have tried
to overcome above the problems encountered in classical theory of modeling for mutation.
Naturally, mutant fuzzy sets are a generalization of mutant sets. So, we have a grade of
mutations of the offspring of the individuals who mate in all the individual’ s set. In this
way, we are getting closer to the biological realities by grading the mutation. This is one
of our main purposes. The author believes that the grade of mutation is even more useful
in biological applications. Therefore, this article can be a useful tool for those who work
in this field.

Besides these, the t-norm based mutation for fuzzy sets on any set without binary
operation (i.e. this is not an algebraic structure) is also stated, and some results have
been given. Because this situation is independent of any algebraic structure, it may be
more appropriate to model the biological events of the mutation.

The author hopes that this article is shed light on to working scientists in these areas.

Acknowledgement The author would like to extend their gratitude to Assoc. Prof.
Dr. Ummahan ACAR for her constructive criticism and advices. Furthermore, the author
thank the anonymous referees for their constructive comments.

References

[1] Zadeh, L. A., (1965), Fuzzy sets, Inform. Control, 8, pp. 338–353.
[2] Rosenfeld, A., (1971), Fuzzy groups, J. Math. Anal. Appl., 35, pp. 512–517.
[3] Mullin, A. A., (1961), Properties of mutants, Bull. Amer. Math. Soc., 67, pp. 82.
[4] Mullin, A. A., (1962), On mutant sets, Bull. Math. Biol., 24, pp. 209–215.
[5] Mullin, A. A., (1962), Some theorems on the structure of mutant sets and their applications to group

and ring theory, Notre Dame J. Form. Log., 3 (3), pp. 148–151.
[6] Iseki, K., (1962), On (m,n)−mutant sets in semigroups, Proc. Japan Acad., 38 (6), pp. 269–270.
[7] Iseki, K., (1962), On mutant sets in semigroup, Proc. Japan Acad., 38 (8), pp. 478–479.
[8] Kim, J. B., (1969), Mutants in semigroups, Czech. Math. Jour., 19, pp. 86–90.
[9] Mordeson, J. N., Malik, D.S. and Kuroki N., (2003), Fuzzy semigroups, Springer-Verlag, pp. 303.

[10] Mordeson, J. N., Bhutani, K. R. and Rosenfeld, A., (2005), Fuzzy Group Theory, Springer-Verlag,
pp. 300.

[11] Howie, J. M., (1995), Fundamentals of Semigroup Theory, Oxford University Press Inc., pp. 364.
[12] Zimmermann, H. J., (1996), Fuzzy Set Theory and Its Applications 3rd Ed., Kluwer Academic Pub.,

pp. 435.
[13] Klement, E. P., Mesiar, R. and Pap, E., (2000), Triangular Norms, Springer, pp. 385.



266 TWMS J. APP. ENG. MATH. V.9, N.2, 2019

[14] Bandemer, H. and Gottwald, S., (1995), Fuzzy Sets, Fuzzy Logic, Fuzzy Methods with Applications,
Wiley and Sons Ltd., pp. 239.

[15] Liu, W. J., (1982), Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, 8, pp. 133–
139.

[16] Zahedi, M. M., (1991), A characterization of L-fuzzy prime ideals, Fuzzy Sets and Systems, 44, pp.
147–160.
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