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ON ALMOST CONTRA e∗θ-CONTINUOUS FUNCTIONS

B. S. AYHAN (1) AND M. ÖZKOÇ (2)

Abstract. The aim of this paper is to introduce and investigate some of fun-

damental properties of almost contra e∗θ-continuous functions via e∗θ-closed sets

which are defined by Farhan and Yang [15]. Also, we obtain several character-

izations of almost contra e∗θ-continuous functions. Furthermore, we investigate

the relationships between almost contra e∗θ-continuous functions and seperation

axioms and e∗θ-closedness of graphs of functions.

1. Introduction

In 2006, the concept of almost contra continuity [4], which is stronger than almost

contra precontinuity [8] is introduced by Ekici and almost contra β-continuity [4]

introduced by Baker, is defined. In 2017, some properties and characterizations of

the notion of almost contra βθ-continuous function [5] defined by Caldas via βθ-closed

sets are obtained. The notion of almost contra e∗θ-continuity is stronger than almost

contra e∗-continuity which is defined by us in this manuscript. In this paper, we

introduce some new forms of contra e∗-continuity [9] defined by Ekici. Also, we obtain

some characterizations of almost contra e∗θ-continuous functions and investigate their

some fundamental properties. Moreover, we investigate the relationships between

almost contra e∗θ-continuity and other related generalized forms of contra continuity.
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2. Preliminaries

Throughout this present paper, X and Y represent topological spaces. For a

subset A of a space X, cl(A) and int(A) denote the closure of A and the interior

of A, respectively. The family of all closed (resp. open) sets of X is denoted by

C(X)(resp. O(X)). A subset A is said to be regular open [28] (resp. regular closed

[28]) if A = int(cl(A)) (resp. A = cl(int(A))). A point x ∈ X is said to be δ-cluster

point [30] of A if int(cl(U)) ∩ A 6= ∅ for each open neighbourhood U of x. The set

of all δ-cluster points of A is called the δ-closure [30] of A and is denoted by clδ(A).

If A = clδ(A), then A is called δ-closed [30], and the complement of a δ-closed set

is called δ-open [30]. The set {x|(∃U ∈ τ)(x ∈ U)(int(cl(U)) ⊆ A)} is called the

δ-interior of A and is denoted by intδ(A).

A subset A is called α-open [19] (resp. semiopen [17], δ-semiopen [23], preopen [18],

δ-preopen [24], b-open [1], e-open [11], e∗-open [12], a-open [10]) if A ⊆ int(cl(int(A)))

(resp. A ⊆ cl(int(A)), A ⊆ cl(intδ(A)), A ⊆ int(cl(A)), A ⊆ int(clδ(A)), A

⊆ cl(int(A)) ∪ int(cl(A)), A ⊆ cl(intδ(A)) ∪ int(clδ(A)), A ⊆ cl(int(clδ(A))), A

⊆ int(cl(intδ(A)))). The complement of an α-open (resp. semiopen, δ-semiopen,

preopen, δ-preopen, b-open, e-open, e∗-open, a-open) set is called α-closed [19] (resp.

semiclosed [17], δ-semiclosed [23], preclosed [18], δ-preclosed [24], b-closed [1], e-closed

[11], e∗-closed [12], a-closed [10]). The intersection of all e∗-closed (resp. a-closed,

semiclosed, δ-semiclosed, preclosed, δ-preclosed) sets of X containing A is called the

e∗-closure [12] (resp. a-closure [10], semiclosure [17], δ-semiclosure [23], preclosure

[18], δ-preclosure [24]) of A and is denoted by e∗-cl(A) (resp. a-cl(A), scl(A), δ-scl(A),

pcl(A), δ-pcl(A)). The union of all e∗-open (resp. a-open, semiopen, δ-semiopen, pre-

open, δ-preopen) sets of X contained in A is called the e∗-interior [12] (resp. a-interior

[10], semiinterior [17], δ-semiinterior [23], preinterior [18], δ-preinterior [24]) of A and

is denoted by e∗-int(A) (resp. a-int(A), sint(A), δ-sint(A), pint(A), δ-pint(A)).
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A point x of X is called a θ-cluster [30] point of A if cl(U) ∩ A 6= ∅ for every open

set U of X containing x. The set of all θ-cluster points of A is called the θ-closure [30]

of A and is denoted by clθ(A). A subset A is said to be θ-closed [30] if A = clθ(A).

The complement of a θ-closed set is called a θ-open [30] set. A point x of X said to

be a θ-interior [30] point of a subset A, denoted by intθ(A), if there exists an open

set U of X containing x such that cl(U) ⊆ A.

A point x ∈ X is said to be a θ-semicluster point [16] of a subset S of X if

cl(U) ∩A 6= ∅ for every semiopen U containing x. The set of all θ-semicluster points

of A is called the θ-semiclosure of A and is denoted by θ-scl(A). A subset A is called

θ-semiclosed [16] if A = θ-scl(A). The complement of a θ-semiclosed set is called

θ-semiopen.

The union of all e∗-open sets of X contained in A is called the e∗-interior [12] of A

and is denoted by e∗-int(A). A subset A is said to be e∗-regular [15] if it is e∗-open

and e∗-closed. The family of all e∗-regular subsets of X is denoted by e∗R(X).

A point x of X is called an e∗-θ-cluster point of A if e∗-cl(U) ∩ A 6= ∅ for every

e∗-open set U containing x. The set of all e∗-θ-cluster points of A is called the e∗-

θ-closure [15] of A and is denoted by e∗-clθ(A). A subset A is said to be e∗-θ-closed

if A = e∗-clθ(A). The complement of an e∗-θ-closed set is called an e∗-θ-open [15]

set. A point x of X said to be an e∗-θ-interior [15] point of a subset A, denoted by

e∗-intθ(A), if there exists an e∗-open set U of X containing x such that e∗-cl(U) ⊆ A.

Also it is noted in [15] that

e∗-regular ⇒ e∗-θ-open ⇒ e∗-open.

The family of all e∗-θ-open (resp. e∗-θ-closed, e∗-open, e∗-closed, regular open, regular

closed, δ-open, δ-closed, θ-open, θ-closed, θ-semiopen, θ-semiclosed, semiopen, semi-

closed, preopen, preclosed, δ-semiopen, δ-semiclosed, δ-preopen, δ-preclosed, a-open,

a-closed) subsets of X is denoted by e∗θO(X) (resp. e∗θC(X), e∗O(X), e∗C(X),

RO(X), RC(X), δO(X), δC(X), θO(X), θC(X), θSO(X), θSC(X), SO(X), SC(X),



386 B. S. AYHAN AND M. ÖZKOÇ

PO(X), PC(X), δSO(X), δSC(X), δPO(X), δPC(X)), aO(X), aC(X)). The

family of all open (resp. closed, e∗-θ-open, e∗-θ-closed, e∗-open, e∗-closed, regular

open, regular closed, δ-open, δ-closed, θ-open, θ-closed, θ-semiopen, θ-semiclosed,

semiopen, semiclosed, preopen, preclosed, δ-semiopen, δ-semiclosed, δ-preopen, δ-

preclosed, a-open, a-closed) sets of X containing a point x of X is denoted by O(X, x)

(resp. C(X, x), e∗θO(X, x), e∗θC(X, x), e∗O(X, x), e∗C(X, x), RO(X, x), RC(X, x),

δO(X, x), δC(X, x), θO(X, x), θC(X, x), θSO(X, x), θSC(X, x), SO(X, x), SC(X, x),

PO(X, x), PC(X, x), δSO(X, x), δSC(X, x), δPO(X, x), δPC(X, x), aO(X, x),

aC(X, x)).

We shall use the well-known accepted language almost in the whole of the proofs

of the theorems in this article.

Lemma 2.1. [12] Let A be a subset of a space X, then the followings hold:

(1) e∗-cl(X \ A) = X \ e∗-int(A),

(2) x ∈ e∗-cl(A) if and only if A ∩ U 6= ∅ for every U ∈ e∗O(X, x),

(3) A is e∗C(X) if and only if A = e∗-cl(A),

(4) e∗-cl(A) ∈ e∗C(X),

(5) e∗-int(A) = A ∩ cl(int(clδ(A))).

Lemma 2.2. [10, 23, 24] Let A be a subset of a space X, then the followings hold:

(1) a-cl(A) = A ∪ cl(int(clδ(A))),

(2) δ-scl(A) = A ∪ int(clδ(A)),

(3) δ-pcl(A) = A ∪ cl(intδ(A)).

Lemma 2.3. [15] The following properties hold for the e∗θ-closure of a subset A of

a topological space X.

(1) A ⊆ e∗-cl(A) ⊆ e∗-clθ(A),

(2) If A ∈ e∗θO(X), then e∗-clθ(A) = e∗-cl(A),

(3) If A ⊆ B, then e∗-clθ(A) ⊆ e∗-clθ(B),
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(4) e∗-clθ(A) ∈ e∗θC(X) and e∗-clθ(e
∗-clθ(A)) = e∗-clθ(A),

(5) If Aα ∈ e∗θC(X) for each α ∈ Λ, then ∩{Aα|α ∈ Λ} ∈ e∗θC(X),

(6) If Aα ∈ e∗θO(X) for each α ∈ Λ, then ∪{Aα|α ∈ Λ} ∈ e∗θO(X),

(7) e∗-clθ(X \ A) = X \ e∗-intθ(A).

Lemma 2.4. [15] Let A be a subset of a topological space X, then the followings hold:

(1) If A ∈ e∗O(X), then e∗-clθ(A) ∈ e∗R(X),

(2) A ∈ e∗R(X) if and only if A ∈ e∗θO(X) ∩ e∗θC(X),

(3) A is e∗θ-open in X if and only if for each x ∈ A there exists U ∈ e∗R(X, x) such

that x ∈ U ⊆ A.

Definition 2.1. Let A be a subset of a space X. The intersection of all regular open

sets in X containing A is called the r-kernel of A [9] and is denoted by rker(A).

Lemma 2.5. [9] The following properties hold for subsets A and B of a space X.

(1) x ∈ rker(A) if and only if A ∩ F 6= ∅ for any F ∈ RC(X, x),

(2) A ⊆ rker(A),

(3) If A is regular open in X, then A = rker(A),

(4) If A ⊆ B, then rker(A) ⊆ rker(B).

Lemma 2.6. [11] The following properties hold for a subset A of a space X.

(1) cl(intδ(A)) = clδ(intδ(A)),

(2) int(clδ(A)) = intδ(clδ(A)).

Lemma 2.7. Let A be a subset of a topological space X. If A is an e∗-open set in X,

then intδ(X \ A) = X \ clδ(A) ∈ RO(X).
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Proof. Let A ∈ e∗O(X).

A ∈ e∗O(X) ⇒ A ⊆ cl(int(clδ(A)))

⇒ clδ(A) ⊆ clδ(cl(int(clδ(A))))
Lemma 2.6

= clδ(clδ(intδ(clδ(A))))

⇒ clδ(A) ⊆ clδ(cl(int(clδ(A)))) = clδ(intδ(clδ(A)))

⇒ clδ(A) ⊆ clδ(cl(int(clδ(A))))
Lemma 2.6

= cl(int(clδ(A)))

⇒ \cl(int(clδ(A))) = int(cl(\clδ(A))) ⊆ \clδ(A) . . . (∗)

int(clδ(A)) ⊆ clδ(A) ⇒ cl(int(clδ(A))) = clδ(int(clδ(A))) ⊆ clδ(clδ(A)) = clδ(A)

⇒ \clδ(A) ⊆ \cl(int(clδ(A))) = int(cl(\clδ(A))) . . . (∗∗)

(∗), (∗∗) ⇒ \clδ(A) = int(cl(\clδ(A))) ⇒ \clδ(A) ∈ RO(X). �

Definition 2.2. A function f : X → Y is said to be:

a) e∗θ-continuous (briefly e∗θ.c.) if f−1[V ] is e∗-θ-closed in X for every V ∈ C(Y ),

b) almost e∗θ-continuous (briefly a.e∗θ.c.) if f−1[V ] is e∗-θ-closed in X for every

regular closed set V in Y,

c) contra R-map [9] (resp. contra continuous [7], contra e∗θ-continuous [3], contra

e∗-continuous [13]) if f−1[V ] is regular closed (resp. closed, e∗-θ-closed, e∗-closed) in

X for every regular open (resp. open, open, open) set V in Y,

d) almost contra precontinuous [8] (resp. almost contra continuous [4], almost contra

β-continuous [4], almost contra e∗-continuous) if f−1[V ] is preclosed (resp. closed,

β-closed, e∗-closed) in X for every regular open set V in Y.

Lemma 2.8. [25] For a topological space (X, τ) the followings are equivalent:

(1) (X, τ) is almost regular;

(2) For each point x ∈ X and each neighbourhood M of x, there exists a regular open

neighbourhood V of x such that cl(V ) ⊆ int(cl(M)).
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3. Almost Contra e∗θ-continuous Functions

Definition 3.1. A function f : X → Y is said to be almost contra e∗θ-continuous

(briefly a.c.e∗θ.c.) if f−1[V ] is e∗-θ-closed in X for each regular open set V of Y .

Theorem 3.1. For a function f : X → Y, the following properties are equivalent:

(1) f is almost contra e∗θ-continuous;

(2) The inverse image of each regular closed set in Y is e∗-θ-open in X;

(3) For each point x ∈ X and each V ∈ RC(Y, f(x)), there exists U ∈ e∗θO(X, x)

such that f [U ] ⊆ V ;

(4) For each point x ∈ X and each V ∈ SO(Y, f(x)), there exists U ∈ e∗θO(X, x)

such that f [U ] ⊆ cl (V );

(5) f [e∗-clθ(A)] ⊆ rker(f [A]) for every subset A of X;

(6) e∗-clθ(f
−1 [B]) ⊆ f−1 [rker(B)] for every subset B of Y ;

(7) f−1 [clδ(V )] is e∗-θ-open for every V ∈ e∗O(Y );

(8) f−1 [clδ(V )] is e∗-θ-open for every V ∈ δSO(Y );

(9) f−1 [int(clδ(V ))] is e∗-θ-closed for every V ∈ δPO(Y );

(10) f−1 [int(clδ(V ))] is e∗-θ-closed for every V ∈ O(Y );

(11) f−1 [cl(intδ(V ))] is e∗-θ-open for every V ∈ C(Y ).

Proof. (1) ⇒ (2) : Let V ∈ RC(Y ).

V ∈ RC(Y ) ⇒ \V ∈ RO(Y )

(1)







⇒ \f−1 [V ] = f−1 [\V ] ∈ e∗θC(X)

⇒ f−1 [V ] ∈ e∗θO(X).

(2) ⇒ (3) : Let x ∈ X and V ∈ RC(Y, f(x)).

(x ∈ X)(V ∈ RC(Y, f(x)))

(2)







⇒ (U := f−1 [V ] ∈ e∗θO(X, x))(f [U ] ⊆ V ).

(3) ⇒ (4) : Let x ∈ X and V ∈ SO(Y, f(x)).
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V ∈ SO(Y, f(x)) ⇒ cl(int(V )) ∈ RC(Y, f(x))

(3)







⇒

⇒ (∃U ∈ e∗θO(X, x))(f [U ] ⊆ cl(int(V )) ⊆ cl(V )).

(4) ⇒ (5) : Let A ⊆ X and x /∈ f−1[rker(f [A])].

x /∈ f−1[rker(f [A])] ⇒ f(x) /∈ rker(f [A]) ⇒ (∃F ∈ RC(Y, f(x)))(F ∩ f [A] = ∅)

⇒ (∃F ∈ SO(Y, f(x)))(f−1[F ] ∩ A = ∅)

(4)







⇒

⇒ (∃U ∈ e∗θO(X, x))(f [U ] ⊆ cl(F ) = F )(f−1[F ] ∩ A = ∅)

⇒ (∃U ∈ e∗θO(X, x))(U ⊆ f−1[F ])(f−1[F ] ∩ A = ∅)

⇒ (∃U ∈ e∗θO(X, x))(U ∩ A = ∅)

⇒ x /∈ e∗-clθ(A).

(5) ⇒ (6) : Let B ⊆ Y.

B ⊆ Y ⇒ f−1[B] ⊆ X

(5)







⇒ f [e∗-clθ(f
−1 [B])] ⊆ rker(f [f−1 [B]]) ⊆ rker(B)

⇒ e∗-clθ(f
−1 [B]) ⊆ f−1 [rker(B)] .

(6) ⇒ (7) : Let V ∈ e∗O(Y ).

V ∈ e∗O(Y )
Lemma 2.7

⇒ \clδ(V ) ∈ RO(Y )

(6)







⇒

⇒ e∗-clθ(f
−1 [\clδ(V )]) ⊆ f−1 [rker(\clδ(V ))] = f−1 [\clδ(V )]

⇒ \e∗-intθ(f
−1 [clδ(V )]) ⊆ \f−1 [clδ(V )]

⇒ f−1 [clδ(V )] ⊆ e∗-intθ(f
−1 [clδ(V )])

⇒ f−1 [clδ(V )] ∈ e∗θO(X).

(7) ⇒ (8) : This is obvious since every δ-semiopen set is e∗-open.

(8) ⇒ (9) : Let V ∈ δPO(Y ).

V ∈ δPO(Y ) ⇒ intδ(\V ) ∈ δSO(Y )

(8)







⇒ f−1 [clδ(intδ(\V ))] ∈ e∗θO(X)
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⇒ \f−1 [intδ(clδ(V ))] ∈ e∗θO(X)

⇒ f−1 [int(clδ(V ))] ∈ e∗θC(X).

(9) ⇒ (10) : This is obvious since every open set is δ-preopen.

(10) ⇒ (11) : Clear.

(11) ⇒ (1) : Let V ∈ RO(Y ).

V ∈ RO(Y ) ⇒ (V = int(clδ(V )))(\V ∈ C(Y ))

(11)







⇒

⇒ f−1[\V ] = \f−1[V ] = \f−1 [int(clδ(V ))] = f−1 [cl(intδ(\V ))] ∈ e∗θO(X)

⇒ f−1[V ] ∈ e∗θC(X). �

Lemma 3.1. For a subset A of a topological space X, the following properties hold:

(1) If A ∈ e∗O(X), then a-cl(A) = clδ(A),

(2) If A ∈ δSO(X), then δ-pcl(A) = clδ(A),

(3) If A ∈ δPO(X), then δ-scl(A) = int(clδ(A)),

(4) If A ∈ PO(X), then scl(A) = int(cl(A)).

Proof. (1) Let A ∈ e∗O(X).

A ∈ e∗O(X) ⇒ A ⊆ cl(int(clδ(A)))

⇒ clδ(A) ⊆ clδ(cl(int(clδ(A)))) = cl(int(clδ(A)))

⇒ A ∪ clδ(A) = clδ(A) ⊆ A ∪ cl(int(clδ(A))) = a-cl(A) . . . (∗)

δC(X) ⊆ aC(X) ⇒ a-cl(A) ⊆ clδ(A) . . . (∗∗)

(∗), (∗∗) ⇒ a-cl(A) = clδ(A).

(2) Let A ∈ δSO(X).

A ∈ δSO(X) ⇒ A ⊆ cl(intδ(A))
Lemma 2.6

= clδ(intδ(A))

⇒ clδ(A) ⊆ clδ(clδ(intδ(A))) = clδ(intδ(A)) = cl(intδ(A))

δ-pcl(A) = A ∪ cl(intδ(A))







⇒

⇒ δ-pcl(A) ⊇ A ∪ clδ(A) = clδ(A)

δC(X) ⊆ δPC(X) ⇒ δ-pcl(A) ⊆ clδ(A)







⇒ δ-pcl(A) = clδ(A).
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(3) Let A ∈ δPO(X).

A ∈ δPO(X) ⇒ A ⊆ int(clδ(A))

δ-scl(A) = A ∪ int(clδ(A))







⇒ δ-scl(A) = int(clδ(A)).

(4) [20]. �

Corollary 3.1. For a function f : X → Y, the following properties are equivalent:

(1) f is almost contra e∗θ-continuous;

(2) f−1[a-cl(A)] is e∗-θ-open for every A ∈ e∗O(Y );

(3) f−1[δ-pcl(A)] is e∗-θ-open for every A ∈ δSO(Y );

(4) f−1[δ-scl(A)] is e∗-θ-closed for every A ∈ δPO(Y ).

Proof. It follows from Lemma 3.1. �

Theorem 3.2. For a function f : X → Y , the following properties are equivalent:

(1) f is almost contra e∗θ-continuous;

(2) f−1[V ] is e∗-θ-open in X for each θ-semiopen set of Y ;

(3) f−1[V ] is e∗-θ-closed in X for each θ-semiclosed set of Y ;

(4) f−1 [V ] ⊆ e∗-intθ(f
−1 [cl(V )]) for every V ∈ SO(Y );

(5) f [e∗-clθ(A)] ⊆ θ-scl(f [A]) for every subset A of X;

(6) e∗-clθ(f
−1 [B]) ⊆ f−1[θ-scl(B)] for every subset B of Y ;

(7) e∗-clθ(f
−1 [V ]) ⊆ f−1 [θ-scl(V )] for every open subset V of Y ;

(8) e∗-clθ(f
−1 [V ]) ⊆ f−1 [scl(V )] for every open subset V of Y ;

(9) e∗-clθ(f
−1 [V ]) ⊆ f−1 [int(cl(V ))] for every open subset V of Y .

Proof. (1) ⇒ (2) : Let V ∈ θSO(Y ).

V ∈ θSO(Y ) ⇒ (∃A ⊆ RC(Y ))(V = ∪A)

(1)







⇒

⇒ f−1 [V ] = ∪{f−1 [A] |A ∈ A} ∈ e∗θO(X).

(2) ⇒ (3) : Obvious.

(3) ⇒ (4) : Let V ∈ SO(Y ).
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V ∈ SO(Y ) ⇒ \cl(V ) ∈ θSC(Y )

(3)







⇒

⇒ f−1 [\cl(V )] ∈ e∗θC(X) ⇒ \f−1 [cl(V )] ∈ e∗θC(X)

⇒ f−1 [cl(V )] ∈ e∗θO(X) ⇒ f−1 [V ] ⊆ f−1 [cl(V )] = e∗-intθ(f
−1 [cl(V )]).

(4) ⇒ (5) : Let A ⊆ X and x /∈ f−1 [θ-scl(f [A])] .

x /∈ f−1 [θ-scl(f [A])] ⇒ f(x) /∈ θ-scl(f [A]) ⇒ (∃U ∈ SO(Y, f(x)))(cl(U) ∩ f [A] = ∅)

⇒ (∃U ∈ SO(Y, f(x)))(f−1[cl(U)] ∩ A = ∅)

⇒ (∃U ∈ SO(Y, f(x)))(e∗-intθ(f
−1[cl(U)]) ∩ A = ∅)

V := e∗-intθ(f
−1[cl(U)])







(4)
⇒

⇒ (∃V ∈ e∗θO(X, x))(V ∩ A = ∅)

⇒ x /∈ e∗-clθ(A).

(5) ⇒ (6) : Let B ⊆ Y.

B ⊆ Y ⇒ f−1 [B] ⊆ X

(5)







⇒ f [e∗-clθ(f
−1 [B])] ⊆ θ-scl(f [f−1 [B]]) ⊆ θ-scl(B)

⇒ e∗-clθ(f
−1 [B]) ⊆ f−1[θ-scl(B)].

(6) ⇒ (7) : Obvious.

(7) ⇒ (8) : This is obvious since θ-scl(V ) = scl(V ) for an open set V .

(8) ⇒ (9) : Obvious from Lemma 3.1(4).

(9) ⇒ (1) : Let V ∈ RO(Y ).

V ∈ RO(Y ) ⊆ O(Y )

(9)







⇒ e∗-clθ(f
−1 [V ]) ⊆ f−1 [in(cl(V ))] = f−1 [V ]

⇒ f−1 [V ] ∈ e∗θC(X). �

We recall that a topological space X is said to be extremally disconnected if the

closure of every open set of X is open in X.

Lemma 3.2. Let X be a topological space. If X is an extremally disconnected space,

then RO(X) = RC(X).
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Theorem 3.3. Let f : X → Y be a function. If Y is extremally disconnected, then

the following properties are equivalent:

(1) f is almost contra e∗θ-continuous;

(2) f is almost e∗θ-continuous.

Proof. The proof is obvious from Lemma 3.2. �

Remark 1. From Definitions 2.2 and 3.1, we have the following diagram:

contra e∗θ-con. → contra e∗-con. → almost contra e∗-con.

↘ ↗ ↑

almost contra e∗θ-con. almost contra β-con.

↑

contra R-map → almost contra con. → almost contra pre-con.

Example 3.1. Let X := {a, b, c, d} and τ := {∅, X, {a}, {b}, {a, b}}. It is not difficult

to see e∗θO(X) = e∗O(X) = 2X \ {{c}, {d}, {c, d}}. Then the identity function f :

(X, τ) → (X, τ) is almost contra e∗θ-continuous and so almost contra e∗-continuous

but f is neither contra e∗θ-continuous nor contra e∗-continuous.

Example 3.2. Let X := {a, b, c, d} and τ := {∅, X, {a}, {b}, {a, b}, {a, c}, {a, b, c}, {a, b, d}}.

It is not difficult to see e∗θO(X) = e∗O(X) = 2X \ {{d}} and βO(X) = 2X \

{{c}, {d}, {b, c}, {c, d}, {b, c, d}}. Define the function f : (X, τ) → (X, τ) by f =

{(a, b), (b, a), (c, c), (d, d)}. Then f is almost contra e∗θ-continuous but it is not al-

most contra β-continuous.

Theorem 3.4. If f : X → Y is an almost contra e∗θ-continuous function which

satisfies the property e∗-intθ(f
−1[clδ(V )]) ⊆ f−1[V ] for each open set V of Y , then f

is e∗θ-continuous.
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Proof. Let V ∈ O(Y ).

V ∈ O(Y )

f is a.c.e∗θ.c.







Theorem 3.1(7)
⇒

⇒ f−1[V ] ⊆ f−1[clδ(V )] = e∗-intθ(e
∗-intθ(f

−1[cl(V )])) ⊆ e∗-intθ(f
−1[V ]) ⊆ f−1[V ]

⇒ f−1[V ] = e∗-intθ(f
−1[V ])

⇒ f−1[V ] ∈ e∗θO(X). �

We recall that a topological space is said to be PΣ [29] if for any open set V of

X and each x ∈ V, there exists a regular closed set F of X containing x such that

x ∈ F ⊆ V .

Theorem 3.5. If f : X → Y is an almost contra e∗θ-continuous function and Y is

PΣ, then f is e∗θ-continuous.

Proof. Let V ∈ O(Y ).

y ∈ V ∈ O(Y )
Y is PΣ⇒ (∃F ∈ RC(Y, y))(F ⊆ V )

A := {F |y ∈ V ⇒ (∃F ∈ RC(Y, y))(F ⊆ V )}







⇒ ∪A = V

f is a.c.e∗θ.c







⇒

⇒ f−1[V ] = ∪
F∈A

f−1[F ] ∈ e∗θO(X). �

Definition 3.2. A function f : X → Y is said to be:

a) R-map [6] if f−1[A] is regular closed in X for every regular closed A of Y,

b) weakly e∗-irresolute [22] if f−1[A] is e∗θ-open in X for every e∗θ-open set A of Y,

c) pre-e∗θ-closed if f [A] is e∗θ-closed in Y for every e∗θ-closed A of X.

Theorem 3.6. Let f : X → Y and g : Y → Z be two functions. Then the following

properties hold:

(1) If f is almost contra e∗θ-continuous and g is an R-map, then g ◦ f : X → Z is

almost contra e∗θ-continuous,

(2) If f is almost e∗θ-continuous and g is a contra R-map, then g ◦ f : X → Z is



396 B. S. AYHAN AND M. ÖZKOÇ

almost contra e∗θ-continuous,

(3) If f is weakly e∗-irresolute and g is almost contra e∗θ-continuous, then g ◦ f :

X → Z is almost contra e∗θ-continuous.

Proof. Routine. �

Theorem 3.7. If f : X → Y is a pre-e∗θ-closed surjection and g : Y → Z is a

function such that g ◦ f : X → Z is almost contra e∗θ-continuous, then g is almost

contra e∗θ-continuous.

Proof. Let V ∈ RO(Z).

V ∈ RO(Z)

g ◦ f is a.c.e∗θ.c.







⇒ (gof)−1[V ] = f−1[g−1[V ]] ∈ e∗θC(X)

f is pre-e∗θ-closed surjection







⇒

⇒ f [f−1[g−1[V ]]] = g−1[V ] ∈ e∗θC(Y ). �

Theorem 3.8. Let {Xα|α ∈ Λ} be any family of topological spaces. If f : X → ΠXα

is an almost contra e∗θ-continuous function, then Prα ◦ f : X → Xα is almost contra

e∗θ-continuous for each α ∈ Λ where Prα is the projection of ΠXα onto Xα.

Proof. Let α ∈ Λ and Uα ∈ RO(Xα).

α ∈ Λ ⇒ Prα is open and continuous ⇒ Prα is R-map

Uα ∈ RO(Xα)







⇒

⇒ Pr−1
α [Uα] ∈ RO(ΠXα)

f is a.c.e∗θ.c.







⇒ (Prα ◦ f )−1[Uα] = f−1[Pr−1
α [Uα]] ∈ e∗θC(X). �

Definition 3.3. A function f : X → Y is called weakly e∗θ-continuous (briefly

w.e∗θ.c.) if for each x ∈ X and each open set V of Y containing f(x), there exists a

U ∈ e∗θO(X, x) such that f [U ] ⊆ cl(V ).

Theorem 3.9. Let f : X → Y be a function. Then the following properties hold:

(1) If f is almost contra e∗θ-continuous, then it is weakly e∗θ-continuous,
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(2) If f is weakly e∗θ-continuous and Y is extremally disconnected, then f is almost

contra e∗θ-continuous.

Proof. (1) Let x ∈ X and V ∈ O(Y, f(x)).

(x ∈ X)(V ∈ O(Y, f(x))) ⇒ cl(V ) ∈ RC(Y, f(x))

f is a.c.e∗θ.c.







⇒

⇒ f−1[cl(V )] ∈ e∗θO(X, x)

U := f−1[cl(V )]







⇒ (U ∈ e∗θO(X, x))(f [U ] ⊆ cl(V )).

(2) Let V ∈ RC(Y ) and x ∈ f−1[V ].

(V ∈ RC(Y ))(x ∈ f−1[V ]) ⇒ (V ∈ RC(Y, f(x)))(cl(V ) = V )

Y is extremally disconnected







⇒

⇒ cl(V ) ∈ RO(Y, f(x))

f is w.e∗θ.c.







⇒ (∃U ∈ e∗θO(X, x))(f [U ] ⊆ cl(V ) = V )

⇒ (∃U ∈ e∗θO(X, x))(U ⊆ f−1[V ])

⇒ f−1[V ] ∈ e∗θO(X). �

4. Some Fundamental Properties

Definition 4.1. A topological space X is said to be:

a) e∗θ-T0 if for any distinct pair of points x and y in X, there is an e∗θ-open set U in

X containing x but not y or an e∗θ-open set V in X containing y but not x,

b) e∗θ-T1 if for any distinct pair of points x and y in X, there is an e∗θ-open set U in

X containing x but not y and an e∗θ-open set V in X containing y but not x,

c) e∗θ-T2 (resp. e∗-T2 [13, 14]) if for every pair of distinct points x and y, there exist

two e∗θ-open (resp. e∗-open) sets U and V such that x ∈ U, y ∈ V and U ∩ V = ∅.

Theorem 4.1. For a topological space X, the following properties are equivalent:

(1) (X, τ) is e∗θ-T0;

(2) (X, τ) is e∗θ-T1;

(3) (X, τ) is e∗θ-T2;
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(4) (X, τ) is e∗-T2;

(5) For every pair of distinct points x, y ∈ X, there exist U ∈ e∗O(X, x) and V ∈

e∗O(X, y) such that e∗-cl(U) ∩ e∗-cl(V ) = ∅;

(6) For every pair of distinct points x, y ∈ X, there exist U ∈ e∗R(X, x) and V ∈

e∗R(X, y) such that U ∩ V = ∅;

(7) For every pair of distinct points x, y ∈ X, there exist U ∈ e∗θO(X, x) and V ∈

e∗θO(X, y) such that e∗-clθ(U) ∩ e∗-clθ(V ) = ∅.

Proof. (3) ⇒ (2) : Obvious.

(2) ⇒ (1) : Obvious.

(1) ⇒ (3) : Let x, y ∈ X and x 6= y.

(x, y ∈ X)(x 6= y)

(1)







⇒ (∃W ∈ e∗θO(X, x))(y /∈ W )

Lemma 2.4
⇒ (∃U ∈ e∗R(X, x))(U = e∗-clθ(U) ⊆ W )

V := \U = \e∗clθ(U)







⇒

⇒ (U ∈ e∗θO(X, x))(V ∈ e∗θO(X, y))(U ∩ V = ∅).

(3) ⇒ (4) : The proof is obvious since e∗θO(X) ⊆ e∗O(X).

(4) ⇒ (5) : Let x, y ∈ X and x 6= y.

(x, y ∈ X)(x 6= y)

X is e∗-T2







⇒ (∃U ∈ e∗O(X, x))(∃V ∈ e∗O(X, y))(U ∩ V = ∅)

⇒ (∃U ∈ e∗O(X, x))(∃V ∈ e∗O(X, y))(U ⊆ \V )

⇒ (∃U ∈ e∗O(X, x))(∃V ∈ e∗O(X, y))(e∗-cl(U) ⊆ \V )

⇒ (∃U ∈ e∗O(X, x))(∃V ∈ e∗O(X, y))(e∗-int(e∗-cl(U)) = e∗-cl(U) ⊆ e∗-int(\V )

⇒ (∃U ∈ e∗O(X, x))(∃V ∈ e∗O(X, y))(e∗-cl(U) ⊆ e∗-int(\V ) = \e∗-cl(V )

⇒ (∃U ∈ e∗O(X, x))(∃V ∈ e∗O(X, y))(e∗-int(U) ∩ e∗-cl(V ) = ∅).

(5) ⇒ (6) : Let x, y ∈ X and x 6= y.
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(x, y ∈ X)(x 6= y)

(5)







⇒

⇒ (∃U1 ∈ e∗O(X, x))(∃V1 ∈ e∗O(X, y))(e∗-cl(U1) ∩ e∗-cl(V1) = ∅)

(U2 := e∗-cl(U1))(V2 := e∗-cl(V1))







⇒

⇒ (∃U2 ∈ e∗R(X, x))(∃V2 ∈ e∗R(X, y))(U2 ∩ V2 = ∅).

(6) ⇒ (7) : Let x, y ∈ X and x 6= y.

(x, y ∈ X)(x 6= y)

(6)







⇒ (∃U ∈ e∗R(X, x))(∃V ∈ e∗R(X, y))(U ∩ V = ∅)

⇒ (∃U ∈ e∗θO(X, x))(∃V ∈ e∗θO(X, y))(e∗-clθ(U) ∩ e∗-clθ(V ) = ∅).

(7) ⇒ (3) : Obvious. �

Definition 4.2. A topological space X is said to be:

a) weakly Hausdorff [27] (briefly weakly-T2) if every point of X is an intersection of

regular closed sets of X,

b) s-Urysohn [2] if for each pair of distinct points x and y in X, there exist U ∈

SO(X, x) and V ∈ SO(X, y) such that cl(U) ∩ cl(V ) = ∅.

Theorem 4.2. For a function f : X → Y , the following properties hold:

(1) If f is an almost contra e∗θ-continuous injection of a topological space X into a

s-Urysohn space Y, then X is e∗θ-T2,

(2) If f is an almost contra e∗θ-continuous injection of a topological space X into a

weakly Hausdorff space Y, then X is e∗θ-T1.

Proof. (1) Let x, y ∈ X and x 6= y.

(x, y ∈ X)(x 6= y)

f is injective







⇒ f(x) 6= f(y)

Y is s-Urysohn







⇒

⇒ (∃V1 ∈ SO(Y, f(x)))((∃V2 ∈ SO(Y, f(y)))(cl(V1) ∩ cl(V2) = ∅)

f is a.c.e∗θ.c.







Theorem 3.1(4)
⇒
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⇒ (∃U1 ∈ e∗θO(X, x))(∃U2 ∈ e∗θO(X, y))(f [U1] ∩ f [U2] ⊆ cl(V1) ∩ cl(V2) = ∅)

⇒ (∃U1 ∈ e∗θO(X, x))(∃U2 ∈ e∗θO(X, y))(f [U1 ∩ U2] = f [U1] ∩ f [U2] = ∅)

⇒ (∃U1 ∈ e∗θO(X, x))(∃U2 ∈ e∗θO(X, y))(U1 ∩ U2 = ∅).

(2) Let x, y ∈ X and x 6= y.

(x, y ∈ X)(x 6= y)

f is injective







⇒ f(x) 6= f(y)

Y is weakly-T2







⇒

⇒ (∃V1 ∈ RC(Y, f(x)))(∃V2 ∈ RC(Y, f(y)))(f(x) /∈ V2)(f(y) /∈ V1)

f is a.c.e∗θ.c.







Theorem 3.1(3)
⇒

⇒ (∃U1 ∈ e∗θO(X, x))(∃U2 ∈ e∗θO(X, y))(f [U1] ⊆ V1)(f [U2] ⊆ V2)(f(x) /∈ V2)(f(y) /∈ V1)

⇒ (∃U1 ∈ e∗θO(X, x))(∃U2 ∈ e∗θO(X, y))(x /∈ U2)(y /∈ U1). �

Remark 2. [15] The intersection of two e∗θ-open sets is not necessarily e∗θ-open as

shown in the following example.

Example 4.1. [15] Let X = {a, b, c, d} and τ = {∅, X, {a}, {b}, {a, b}}. Although the

subsets {b, c, d} and {a, c, d} are e∗θ-open in X, the set {c, d} which is the intersection

of these sets is not e∗θ-open in X.

Definition 4.3. A topological space X is called an e∗θc-space if the intersection of

any two e∗θ-open sets is an e∗θ-open set.

Theorem 4.3. If f, g : X → Y are almost contra e∗θ-continuous functions, X is an

e∗θc-space and Y is s-Urysohn, then E = {x ∈ X|f(x) = g(x)} is e∗θ-closed in X.

Proof. Let x /∈ E.

x /∈ E ⇒ f(x) 6= g(x)

Y is s-Urysohn







⇒

⇒ (∃V1 ∈ SO(Y, f(x)))(∃V2 ∈ SO(Y, g(x)))(cl(V1) ∩ cl(V2) = ∅)

f and g are a.c.e∗θ.c.







⇒
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⇒ (∃U1 ∈ e∗θO(X, x))(∃U2 ∈ e∗θO(X, x))(f [U1] ∩ g[U2] ⊆ cl(V1) ∩ cl(V2) = ∅)

X is e∗θc-space







⇒

⇒ (∃U := U1 ∩ U2 ∈ e∗θO(X, x))(f [U ] ∩ g[U ] ⊆ f [U1] ∩ g[U2] = ∅)

⇒ (∃U ∈ e∗θO(X, x))(U ∩ E = ∅)

⇒ x /∈ e∗-clθ(E). �

We say that the product space X = X1 × . . . × Xn has Property Pe∗θ if Ai is an

e∗θ-open set in a topological space Xi for i = 1, 2, . . . n, then A1 × . . . × An is also

e∗θ-open in the product space X = X1 × . . . × Xn.

Theorem 4.4. Let f : X1 → Y and g : X2 → Y be two functions, where

(i) X = X1 × X2 has the Property Pe∗θ,

(ii) Y is a Urysohn space,

(iii) f and g are almost contra e∗θ-continuous,

then A = {(x1, x2)|f(x1) = g(x2)} is e∗θ-closed in the product space X = X1 × X2.

Proof. Let (x1, x2) /∈ A.

(x1, x2) /∈ A ⇒ f(x1) 6= g(x2)

Y is Urysohn







⇒

⇒ (∃V1 ∈ O(Y, f(x1)))(∃V2 ∈ O(Y, g(x2)))(cl(V1) ∩ cl(V2) = ∅)(cl(V1), cl(V2) ∈ RC(Y ))

f and g are a.c.e∗θ.c.







⇒

⇒ (f−1[cl(V1)] ∈ e∗θO(X1, x1))(g
−1[cl(V2)] ∈ e∗θO(X2, x2))

X = X1 × X2 has the Property Pe∗θ







⇒

⇒ ((x1, x2) ∈ f−1[cl(V1)] × g−1[cl(V2)] ∈ e∗θO(X))(f−1[cl(V1)] × g−1[cl(V2)] ⊆ \A)

⇒ \A ∈ e∗θO(X1 × X2)

⇒ A ∈ e∗θC(X1 × X2). �
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Theorem 4.5. Let f : X → Y be a function and g : X → X ×Y the graph function,

given by g(x) = (x, f(x)) for every x ∈ X. If g is almost contra e∗θ-continuous, then

f is almost contra e∗θ-continuous.

Proof. Let V ∈ RO(Y ).

V ∈ RO(Y ) ⇒ X × V ∈ RO(X × Y )

g is a.c.e∗θ.c.







⇒ f−1[V ] = g−1[X × V ] ∈ e∗θC(X). �

We recall that for a function f : X → Y, the subset {(x, f(x))|x ∈ X} of X × Y is

called the graph of f and is denoted by G(f).

Definition 4.4. A function f : X → Y has an e∗θ-closed graph if for each (x, y) /∈

G(f), there exist U ∈ e∗θO(X, x) and V ∈ O(Y, y) such that (U × V ) ∩ G(f) = ∅.

Lemma 4.1. The graph G(f) of a function f : X → Y is e∗θ-closed if and only

if for each (x, y) /∈ G(f), there exist U ∈ e∗θO(X, x) and V ∈ O(Y, y) such that

f [U ] ∩ V = ∅.

Proof. Straightforward. �

Theorem 4.6. Let X and Y be two topological spaces. If f : X → Y is a function

with an e∗θ-closed graph, then {f(x)} = ∩{cl(f [U ])|U ∈ e∗θO(X, x)} for each x in

X.

Proof. Let G(f) be e∗θ-closed. Suppose that there exists a point of x in X such that

{f(x)} 6= ∩{cl(f [U ])|U ∈ e∗θO(X, x)}.

{f(x)} 6= ∩{cl(f [U ])|U ∈ e∗θO(X, x)} ⇒ (∃y ∈ ∩{cl(f [U ])|U ∈ e∗θO(X, x)})(y 6= f(x))

⇒ (∀U ∈ e∗θO(X, x))(y ∈ cl(f [U ]))((x, y) /∈ G(f))

G(f) is e∗θ-closed







⇒

⇒ (∃V ∈ O(Y, y))(y ∈ cl(f [U ]))(∅ = f [U ] ∩ V = cl(f [U ]) ∩ V 6= ∅)

This is a contradiction. �



ON ALMOST CONTRA e
∗

θ-CONTINUOUS FUNCTIONS 403

Theorem 4.7. If f : X → Y is almost contra e∗θ -continuous and Y is Hausdorff,

then G(f) is e∗θ-closed.

Proof. Let (x, y) /∈ G(f).

(x, y) /∈ G(f) ⇒ y 6= f(x)

Y is Hausdorff







⇒ (∃U ∈ O(Y, y))(∃V ∈ O(Y, f(x)))(U ∩ V = ∅)

⇒ (f(x) /∈ Y \ cl(V ))(U ⊆ Y \ cl(V ) ∈ RO(Y )) ⇒ f(x) /∈ rker(U)

⇒ x /∈ f−1[rker(U)]
f is a.c.e∗θ.c.

⇒ x /∈ e∗-clθ(f
−1[U ])

V := \e∗-clθ(f
−1[U ])







⇒

⇒ (V ∈ e∗θO(X, x))(U ∈ O(Y, y))(V × U ⊆ \G(f))

⇒ (V ∈ e∗θO(X, x))(U ∈ O(Y, y))((V × U) ∩ G(f) = ∅). �

Theorem 4.8. If f : X → Y have an e∗θ-closed graph and injective, then X is

e∗θ-T1.

Proof. Let x1, x2 ∈ X and x1 6= x2.

(x1, x2 ∈ X)(x1 6= x2)

f is injective







⇒ f(x1) 6= f(x2) ⇒ (x1, f(x2)) ∈ (X × Y ) \ G(f)

G(f) is e∗θ-closed







⇒

⇒ (∃U ∈ e∗θO(X, x1))(∃V ∈ O(Y, f(x2)))(f [U ] ∩ V = ∅)

⇒ (∃U ∈ e∗θO(X, x1))(∃V ∈ O(Y, f(x2)))(U ∩ f−1[V ] = ∅)

⇒ (∃U ∈ e∗θO(X, x1))(x2 /∈ U)

Then X is e∗θ-T0. On the other hand, the notions of e∗θ-T0 and e∗θ-T1 are equivalent

from Theorem 4.1. Thus X is e∗θ-T1. �

Theorem 4.9. If f : X → Y has an e∗θ-closed graph and X is an e∗θc-space, then

f−1[K] is e∗θ-closed for every compact subset K of Y .
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Proof. Let K be a compact subset of Y and let x /∈ f−1[K].

x /∈ f−1[K] ⇒ f(x) /∈ K ⇒ (∀y ∈ K)(y 6= f(x)) ⇒ (x, y) ∈ (X × Y ) \ G(f)

G(f) is e∗θ-closed







⇒

⇒ (∃Uy ∈ e∗θO(X, x))(∃Vy ∈ O(Y, y))(f [Uy] ∩ Vy = ∅)

A := {Vy|y ∈ K}







⇒

⇒ (A ⊆ O(Y ))(K ⊆ ∪A)

K is compact







⇒ (∃A∗ ⊆ A)(|A∗| < ℵ0)(K ⊆ ∪A∗)

U := ∩{Uyi
|i = 1, 2, . . . , n}







X is e∗θc-space
⇒

⇒ (U ∈ e∗θO(X, x))(f [U ] ∩ K = ∅)

⇒ (U ∈ e∗θO(X, x))(U ∩ f−1[K] = ∅)

⇒ (U ∈ e∗θO(X, x))(U ⊆ \f−1[K])

⇒ x ∈ e∗-intθ(X \ f−1[K])

Lemma 2.3(7)
⇒ x ∈ X \ e∗-clθ(f

−1[K])

⇒ x /∈ e∗-clθ(f
−1[K]). �

Definition 4.5. A topological space X is said to be:

a) strongly e∗θC-compact if every e∗θ -closed cover of X has a finite subcover (resp.

A ⊆ X is strongly e∗θC-compact if the subspace A is strongly e∗θC-compact),

b) nearly compact [26] if every regular open cover of X has a finite subcover.

Theorem 4.10. If f : X → Y is an almost contra e∗θ-continuous surjection and X

is strongly e∗θC-compact, then Y is nearly compact.

Proof. Let B ⊆ RO(Y ) and Y = ∪B.

(B ⊆ RO(Y ))(Y = ∪B)

f is a.c.e∗θ.c.







⇒ (A := {f−1[B]|B ∈ B} ⊆ e∗θC(X))(X = ∪A)

X is strongly e∗θC-compact







⇒
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⇒ (∃A∗ ⊆ A)(|A∗| < ℵ0)(X = ∪A∗)

f is surjective







⇒

⇒ (B∗ := {f [A]|A ∈ A∗} ⊆ B)(|B∗| < ℵ0)(Y = ∪B∗). �

We recall that a topological space X is said to be almost regular [25] if for each

regular closed set F of X and each point x ∈ X \ F, there exist disjoint open sets U

and V such that F ⊆ V and x ∈ U.

Theorem 4.11. If a function f : X → Y is almost contra e∗θ-continuous and Y is

almost regular, then f is almost e∗θ-continuous.

Proof. Let x ∈ X and V ∈ O(Y, f(x)).

(x ∈ X)(V ∈ O(Y, f(x)))

Y is almost regular







Lemma 2.8
⇒

⇒ (∃W ∈ RO(Y, f(x)))(cl(W ) ⊆ int(cl(V )))

f is a.c.e∗θ.c.







Theorem 3.1(3)
⇒

⇒ (∃U ∈ e∗θO(X, x))(f [U ] ⊆ cl(W ) ⊆ int(cl(V ))). �

Definition 4.6. The e∗θ-frontier of a subset A, denoted by Fre∗θ(A), is defined as

Fre∗θ(A) = e∗-clθ(A) \ e∗-intθ(A), equivalently Fre∗θ(A) = e∗-clθ(A) ∩ e∗-clθ(X \ A).

Theorem 4.12. The set of points x ∈ X on which f : X → Y is not almost contra

e∗θ-continuous is identical with the union of the e∗θ-frontiers of the inverse images

of regular closed sets of Y containing f(x).

Proof. Let A := {x|f is not a.c.e∗θ.c. at x ∈ X}.

x ∈ A ⇒ f is not a.c.e∗θ.c. at x

⇒ (∃V ∈ RC(Y, f(x)))(∀U ∈ e∗θO(X, x))(f [U ] * V )

⇒ (∃V ∈ RC(Y, f(x)))(∀U ∈ e∗θO(X, x))(U ∩ (X \ f−1[V ]) 6= ∅)

⇒ (x ∈ f−1[V ])(x ∈ e∗-clθ(X \ f−1[V ]) = X \ e∗-intθ(f
−1[V ]))

⇒ x ∈ Fre∗θ(f
−1[V ])
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Then we have A ⊆ ∪{Fre∗θ(f
−1[V ])|V ∈ RC(Y, f(x))} . . . (∗)

x /∈ A ⇒ f is a.c.e∗θ.c. at x

V ∈ RC(Y, f(x))







⇒ (∃U ∈ e∗θO(X, x))(U ⊆ f−1[V ])

⇒ x ∈ e∗-intθ(f
−1[V ])

⇒ x /∈ Fre∗θ(f
−1[V ])

⇒ x /∈ ∪{Fre∗θ(f
−1[V ])|V ∈ RC(Y, f(x))}

Then we have ∪{Fre∗θ(f
−1[V ])|V ∈ RC(Y, f(x))} ⊆ A . . . (∗∗)

(∗), (∗∗) ⇒ A = ∪{Fre∗θ(f
−1[V ])|V ∈ RC(Y, f(x))} . �
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