Jordan Journal of Mathematics and Statistics (JJMS) 11(4), 2018, pp 383-408

ON ALMOST CONTRA $e^{*} \theta$-CONTINUOUS FUNCTIONS

B. S. AYHAN ${ }^{(1)}$ AND M. ÖZKOÇ ${ }^{(2)}$

Abstract

The aim of this paper is to introduce and investigate some of fundamental properties of almost contra $e^{*} \theta$-continuous functions via $e^{*} \theta$-closed sets which are defined by Farhan and Yang [15]. Also, we obtain several characterizations of almost contra $e^{*} \theta$-continuous functions. Furthermore, we investigate the relationships between almost contra $e^{*} \theta$-continuous functions and seperation axioms and $e^{*} \theta$-closedness of graphs of functions.

1. Introduction

In 2006, the concept of almost contra continuity [4], which is stronger than almost contra precontinuity [8] is introduced by Ekici and almost contra β-continuity [4] introduced by Baker, is defined. In 2017, some properties and characterizations of the notion of almost contra $\beta \theta$-continuous function [5] defined by Caldas via $\beta \theta$-closed sets are obtained. The notion of almost contra $e^{*} \theta$-continuity is stronger than almost contra e^{*}-continuity which is defined by us in this manuscript. In this paper, we introduce some new forms of contra e^{*}-continuity [9] defined by Ekici. Also, we obtain some characterizations of almost contra $e^{*} \theta$-continuous functions and investigate their some fundamental properties. Moreover, we investigate the relationships between almost contra $e^{*} \theta$-continuity and other related generalized forms of contra continuity.

[^0]
2. Preliminaries

Throughout this present paper, X and Y represent topological spaces. For a subset A of a space $X, \operatorname{cl}(A)$ and $\operatorname{int}(A)$ denote the closure of A and the interior of A, respectively. The family of all closed (resp. open) sets of X is denoted by $C(X)$ (resp. $O(X)$). A subset A is said to be regular open [28] (resp. regular closed [28]) if $A=\operatorname{int}(c l(A))($ resp. $A=\operatorname{cl}(\operatorname{int}(A)))$. A point $x \in X$ is said to be δ-cluster point [30] of A if $\operatorname{int}(c l(U)) \cap A \neq \emptyset$ for each open neighbourhood U of x. The set of all δ-cluster points of A is called the δ-closure [30] of A and is denoted by $\operatorname{cl}_{\delta}(A)$. If $A=\operatorname{cl}_{\delta}(A)$, then A is called δ-closed [30], and the complement of a δ-closed set is called δ-open [30]. The set $\{x \mid(\exists U \in \tau)(x \in U)(\operatorname{int}(\operatorname{cl}(U)) \subseteq A)\}$ is called the δ-interior of A and is denoted by $\operatorname{int}_{\delta}(A)$.

A subset A is called α-open [19] (resp. semiopen [17], δ-semiopen [23], preopen [18], δ-preopen [24], b-open [1], e-open [11], e^{*}-open [12], a-open [10]) if $A \subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))$
 $\left.\subseteq \operatorname{cl}(\operatorname{int}(A)) \cup \operatorname{int}(c l(A)), A \subseteq \operatorname{cl}^{\left(\operatorname{int}_{\delta}(A)\right) \cup \operatorname{int}(\operatorname{cl}}(A)\right), A \subseteq \operatorname{cl}\left(\operatorname{int}\left(\operatorname{cl}_{\delta}(A)\right)\right), A$ $\left.\subseteq \operatorname{int}\left(\operatorname{cl}\left(\operatorname{int}_{\delta}(A)\right)\right)\right)$. The complement of an α-open (resp. semiopen, δ-semiopen, preopen, δ-preopen, b-open, e-open, e^{*}-open, a-open) set is called α-closed [19] (resp. semiclosed [17], δ-semiclosed [23], preclosed [18], δ-preclosed [24], b-closed [1], e-closed [11], e^{*}-closed [12], a-closed [10]). The intersection of all e^{*}-closed (resp. a-closed, semiclosed, δ-semiclosed, preclosed, δ-preclosed) sets of X containing A is called the e^{*}-closure [12] (resp. a-closure [10], semiclosure [17], δ-semiclosure [23], preclosure [18], δ-preclosure [24]) of A and is denoted by $e^{*}-c l(A)($ resp. $a-c l(A), \operatorname{scl}(A), \delta-s c l(A)$, $\operatorname{pcl}(A), \delta$ - $p c l(A))$. The union of all e^{*}-open (resp. a-open, semiopen, δ-semiopen, preopen, δ-preopen) sets of X contained in A is called the e^{*}-interior [12] (resp. a-interior [10], semiinterior [17], δ-semiinterior [23], preinterior [18], δ-preinterior [24]) of A and is denoted by $e^{*}-\operatorname{int}(A)($ resp. $a-\operatorname{int}(A), \operatorname{sint}(A), \delta-\operatorname{sint}(A), \operatorname{pint}(A), \delta-\operatorname{pint}(A))$.

A point x of X is called a θ-cluster [30] point of A if $\operatorname{cl}(U) \cap A \neq \emptyset$ for every open set U of X containing x. The set of all θ-cluster points of A is called the θ-closure [30] of A and is denoted by $c l_{\theta}(A)$. A subset A is said to be θ-closed [30] if $A=c l_{\theta}(A)$. The complement of a θ-closed set is called a θ-open [30] set. A point x of X said to be a θ-interior [30] point of a subset A, denoted by $\operatorname{int}_{\theta}(A)$, if there exists an open set U of X containing x such that $c l(U) \subseteq A$.

A point $x \in X$ is said to be a θ-semicluster point [16] of a subset S of X if $\operatorname{cl}(U) \cap A \neq \emptyset$ for every semiopen U containing x. The set of all θ-semicluster points of A is called the θ-semiclosure of A and is denoted by $\theta-\operatorname{scl}(A)$. A subset A is called θ-semiclosed [16] if $A=\theta-\operatorname{scl}(A)$. The complement of a θ-semiclosed set is called θ-semiopen.

The union of all e^{*}-open sets of X contained in A is called the e^{*}-interior [12] of A and is denoted by $e^{*}-\operatorname{int}(A)$. A subset A is said to be e^{*}-regular [15] if it is e^{*}-open and e^{*}-closed. The family of all e^{*}-regular subsets of X is denoted by $e^{*} R(X)$.

A point x of X is called an $e^{*}-\theta$-cluster point of A if $e^{*}-c l(U) \cap A \neq \emptyset$ for every e^{*}-open set U containing x. The set of all $e^{*}-\theta$-cluster points of A is called the $e^{*}-$ θ-closure [15] of A and is denoted by $e^{*}-c l_{\theta}(A)$. A subset A is said to be $e^{*}-\theta$-closed if $A=e^{*}-\operatorname{cl}_{\theta}(A)$. The complement of an $e^{*}-\theta$-closed set is called an $e^{*}-\theta$-open [15] set. A point x of X said to be an $e^{*}-\theta$-interior [15] point of a subset A, denoted by $e^{*}-\operatorname{int}_{\theta}(A)$, if there exists an e^{*}-open set U of X containing x such that $e^{*}-c l(U) \subseteq A$. Also it is noted in [15] that

$$
e^{*} \text {-regular } \Rightarrow e^{*} \text { - } \theta \text {-open } \Rightarrow e^{*} \text {-open. }
$$

The family of all e^{*} - θ-open (resp. $e^{*}-\theta$-closed, e^{*}-open, e^{*}-closed, regular open, regular closed, δ-open, δ-closed, θ-open, θ-closed, θ-semiopen, θ-semiclosed, semiopen, semiclosed, preopen, preclosed, δ-semiopen, δ-semiclosed, δ-preopen, δ-preclosed, a-open, a-closed) subsets of X is denoted by $e^{*} \theta O(X)$ (resp. $e^{*} \theta C(X), e^{*} O(X), e^{*} C(X)$, $R O(X), R C(X), \delta O(X), \delta C(X), \theta O(X), \theta C(X), \theta S O(X), \theta S C(X), S O(X), S C(X)$,
$P O(X), P C(X), \delta S O(X), \delta S C(X), \delta P O(X), \delta P C(X)), a O(X), a C(X))$. The family of all open (resp. closed, $e^{*}-\theta$-open, $e^{*}-\theta$-closed, e^{*}-open, e^{*}-closed, regular open, regular closed, δ-open, δ-closed, θ-open, θ-closed, θ-semiopen, θ-semiclosed, semiopen, semiclosed, preopen, preclosed, δ-semiopen, δ-semiclosed, δ-preopen, δ preclosed, a-open, a-closed) sets of X containing a point x of X is denoted by $O(X, x)$ (resp. $C(X, x), e^{*} \theta O(X, x), e^{*} \theta C(X, x), e^{*} O(X, x), e^{*} C(X, x), R O(X, x), R C(X, x)$, $\delta O(X, x), \delta C(X, x), \theta O(X, x), \theta C(X, x), \theta S O(X, x), \theta S C(X, x), S O(X, x), S C(X, x)$, $P O(X, x), P C(X, x), \delta S O(X, x), \delta S C(X, x), \delta P O(X, x), \delta P C(X, x), \quad a O(X, x)$, $a C(X, x))$.

We shall use the well-known accepted language almost in the whole of the proofs of the theorems in this article.

Lemma 2.1. [12] Let A be a subset of a space X, then the followings hold:
(1) $e^{*}-\operatorname{cl}(X \backslash A)=X \backslash e^{*}-\operatorname{int}(A)$,
(2) $x \in e^{*}-c l(A)$ if and only if $A \cap U \neq \emptyset$ for every $U \in e^{*} O(X, x)$,
(3) A is $e^{*} C(X)$ if and only if $A=e^{*}-\operatorname{cl}(A)$,
(4) $e^{*}-c l(A) \in e^{*} C(X)$,
(5) $e^{*}-\operatorname{int}(A)=A \cap \operatorname{cl}\left(\operatorname{int}\left(c l_{\delta}(A)\right)\right)$.

Lemma 2.2. [10, 23, 24] Let A be a subset of a space X, then the followings hold:
(1) $a-\operatorname{cl}(A)=A \cup \operatorname{cl}\left(\operatorname{int}\left(l_{\delta}(A)\right)\right)$,
(2) $\delta-\operatorname{scl}(A)=A \cup \operatorname{int}\left(c l_{\delta}(A)\right)$,
(3) $\delta-p c l(A)=A \cup \operatorname{cl}\left(\operatorname{int}_{\delta}(A)\right)$.

Lemma 2.3. [15] The following properties hold for the $e^{*} \theta$-closure of a subset A of a topological space X.
(1) $A \subseteq e^{*}-\operatorname{cl}(A) \subseteq e^{*}-l_{\theta}(A)$,
(2) If $A \in e^{*} \theta O(X)$, then $e^{*}-l_{\theta}(A)=e^{*}-c l(A)$,
(3) If $A \subseteq B$, then $e^{*}-\operatorname{cl}_{\theta}(A) \subseteq e^{*}-\operatorname{cl}_{\theta}(B)$,
(4) $e^{*}-\operatorname{cl}_{\theta}(A) \in e^{*} \theta C(X)$ and $e^{*}-\operatorname{cl}_{\theta}\left(e^{*}-\operatorname{cl}_{\theta}(A)\right)=e^{*}-c l_{\theta}(A)$,
(5) If $A_{\alpha} \in e^{*} \theta C(X)$ for each $\alpha \in \Lambda$, then $\cap\left\{A_{\alpha} \mid \alpha \in \Lambda\right\} \in e^{*} \theta C(X)$,
(6) If $A_{\alpha} \in e^{*} \theta O(X)$ for each $\alpha \in \Lambda$, then $\cup\left\{A_{\alpha} \mid \alpha \in \Lambda\right\} \in e^{*} \theta O(X)$,
(7) $e^{*}-\operatorname{cl}_{\theta}(X \backslash A)=X \backslash e^{*}-$ int $_{\theta}(A)$.

Lemma 2.4. [15] Let A be a subset of a topological space X, then the followings hold:
(1) If $A \in e^{*} O(X)$, then $e^{*}-c_{\theta}(A) \in e^{*} R(X)$,
(2) $A \in e^{*} R(X)$ if and only if $A \in e^{*} \theta O(X) \cap e^{*} \theta C(X)$,
(3) A is $e^{*} \theta$-open in X if and only if for each $x \in A$ there exists $U \in e^{*} R(X, x)$ such that $x \in U \subseteq A$.

Definition 2.1. Let A be a subset of a space X. The intersection of all regular open sets in X containing A is called the r-kernel of $A[9]$ and is denoted by $\operatorname{rker}(A)$.

Lemma 2.5. [9] The following properties hold for subsets A and B of a space X.
(1) $x \in \operatorname{rker}(A)$ if and only if $A \cap F \neq \emptyset$ for any $F \in R C(X, x)$,
(2) $A \subseteq \operatorname{rker}(A)$,
(3) If A is regular open in X, then $A=\operatorname{rker}(A)$,
(4) If $A \subseteq B$, then $\operatorname{rker}(A) \subseteq \operatorname{rker}(B)$.

Lemma 2.6. [11] The following properties hold for a subset A of a space X.
(1) $c l\left(\operatorname{int}_{\delta}(A)\right)=c l_{\delta}\left(i n t_{\delta}(A)\right)$,
(2) $\operatorname{int}\left(c l_{\delta}(A)\right)=\operatorname{int}_{\delta}\left(\operatorname{cl}_{\delta}(A)\right)$.

Lemma 2.7. Let A be a subset of a topological space X. If A is an e^{*}-open set in X, then $\operatorname{int}_{\delta}(X \backslash A)=X \backslash \operatorname{cl}_{\delta}(A) \in R O(X)$.

$$
\begin{aligned}
& \text { Proof. Let } A \in e^{*} O(X) \text {. } \\
& A \in e^{*} O(X) \Rightarrow A \subseteq \operatorname{cl}\left(\operatorname{int}\left(l_{\delta}(A)\right)\right) \\
& \Rightarrow c l_{\delta}(A) \subseteq c l_{\delta}\left(c l\left(\operatorname{int}\left(c l_{\delta}(A)\right)\right)\right) \stackrel{\text { Lemma } 2.6}{=} \operatorname{cl}_{\delta}\left(c l_{\delta}\left(i n t_{\delta}\left(c l_{\delta}(A)\right)\right)\right) \\
& \Rightarrow c l_{\delta}(A) \subseteq c l_{\delta}\left(c l\left(\operatorname{int}\left(c l_{\delta}(A)\right)\right)\right)=c l_{\delta}\left(i n t_{\delta}\left(c l_{\delta}(A)\right)\right) \\
& \Rightarrow \quad c l_{\delta}(A) \subseteq \operatorname{cl}_{\delta}\left(\operatorname{cl}\left(\operatorname{int}\left(\operatorname{cl}_{\delta}(A)\right)\right)\right) \stackrel{\text { Lemma }}{=}{ }^{2.6} \operatorname{cl}\left(\operatorname{int}\left(\operatorname{cl} l_{\delta}(A)\right)\right) \\
& \Rightarrow \quad \backslash \operatorname{cl}\left(\operatorname{int}\left(\operatorname{cl}_{\delta}(A)\right)\right)=\operatorname{int}\left(\operatorname{cl}\left(\backslash \operatorname{cl}_{\delta}(A)\right)\right) \subseteq \backslash l_{\delta}(A) \ldots(*) \\
& \operatorname{int}\left(\operatorname{cl}_{\delta}(A)\right) \subseteq \operatorname{cl}_{\delta}(A) \Rightarrow \operatorname{cl}\left(\operatorname{int}\left(\operatorname{cl}_{\delta}(A)\right)\right)=\operatorname{cl}_{\delta}\left(\operatorname{int}\left(\operatorname{cl} l_{\delta}(A)\right)\right) \subseteq \operatorname{cl}_{\delta}\left(l_{\delta}(A)\right)=c l_{\delta}(A) \\
& \Rightarrow \quad \backslash \operatorname{cl}_{\delta}(A) \subseteq \backslash \operatorname{cl}\left(\operatorname{int}\left(\operatorname{cl}_{\delta}(A)\right)\right)=\operatorname{int}\left(\operatorname{cl}\left(\backslash \operatorname{cl}_{\delta}(A)\right)\right) \ldots(* *) \\
& (*),(* *) \Rightarrow \backslash \operatorname{cl}_{\delta}(A)=\operatorname{int}\left(\operatorname{cl}\left(\backslash \operatorname{cl}_{\delta}(A)\right)\right) \Rightarrow \backslash \operatorname{cl}_{\delta}(A) \in R O(X) .
\end{aligned}
$$

Definition 2.2. A function $f: X \rightarrow Y$ is said to be:
a) $e^{*} \theta$-continuous (briefly $e^{*} \theta$.c.) if $f^{-1}[V]$ is $e^{*}-\theta$-closed in X for every $V \in C(Y)$, b) almost $e^{*} \theta$-continuous (briefly a. $e^{*} \theta$.c.) if $f^{-1}[V]$ is $e^{*}-\theta$-closed in X for every regular closed set V in Y,
c) contra R-map [9] (resp. contra continuous [7], contra $e^{*} \theta$-continuous [3], contra e^{*}-continuous [13]) if $f^{-1}[V]$ is regular closed (resp. closed, $e^{*}-\theta$-closed, e^{*}-closed) in X for every regular open (resp. open, open, open) set V in Y,
d) almost contra precontinuous [8] (resp. almost contra continuous [4], almost contra β-continuous [4], almost contra e^{*}-continuous) if $f^{-1}[V]$ is preclosed (resp. closed, β-closed, e^{*}-closed) in X for every regular open set V in Y.

Lemma 2.8. [25] For a topological space (X, τ) the followings are equivalent:
(1) (X, τ) is almost regular;
(2) For each point $x \in X$ and each neighbourhood M of x, there exists a regular open neighbourhood V of x such that $\operatorname{cl}(V) \subseteq \operatorname{int}(\operatorname{cl}(M))$.

3. Almost Contra $e^{*} \theta$-continuous Functions

Definition 3.1. A function $f: X \rightarrow Y$ is said to be almost contra $e^{*} \theta$-continuous (briefly a.c. $e^{*} \theta . c$.) if $f^{-1}[V]$ is $e^{*}-\theta$-closed in X for each regular open set V of Y.

Theorem 3.1. For a function $f: X \rightarrow Y$, the following properties are equivalent:
(1) f is almost contra $e^{*} \theta$-continuous;
(2) The inverse image of each regular closed set in Y is $e^{*}-\theta$-open in X;
(3) For each point $x \in X$ and each $V \in R C(Y, f(x))$, there exists $U \in e^{*} \theta O(X, x)$ such that $f[U] \subseteq V$;
(4) For each point $x \in X$ and each $V \in S O(Y, f(x))$, there exists $U \in e^{*} \theta O(X, x)$ such that $f[U] \subseteq \operatorname{cl}(V)$;
(5) $f\left[e^{*}-\operatorname{cl}_{\theta}(A)\right] \subseteq \operatorname{rker}(f[A])$ for every subset A of X;
(6) $e^{*}-\mathrm{cl}_{\theta}\left(f^{-1}[B]\right) \subseteq f^{-1}[\operatorname{rker}(B)]$ for every subset B of Y;
(7) $f^{-1}\left[c l_{\delta}(V)\right]$ is $e^{*}-\theta$-open for every $V \in e^{*} O(Y)$;
(8) $f^{-1}\left[\operatorname{cl}_{\delta}(V)\right]$ is $e^{*}-\theta$-open for every $V \in \delta S O(Y)$;
(9) $f^{-1}\left[\operatorname{int}\left(\operatorname{cl}_{\delta}(V)\right)\right]$ is $e^{*}-\theta$-closed for every $V \in \delta P O(Y)$;
(10) $f^{-1}\left[\operatorname{int}\left(\operatorname{cl}_{\delta}(V)\right)\right]$ is $e^{*}-\theta$-closed for every $V \in O(Y)$;
(11) $f^{-1}\left[c l\left(\operatorname{int}_{\delta}(V)\right)\right]$ is $e^{*}-\theta$-open for every $V \in C(Y)$.

Proof. (1) $\Rightarrow(2):$ Let $V \in R C(Y)$.
$V \in R C(Y) \Rightarrow \backslash V \in R O(Y)$ (1) $\} \Rightarrow \Rightarrow f^{-1}[V]=f^{-1}[\backslash V] \in e^{*} \theta C(X)$
$\Rightarrow f^{-1}[V] \in e^{*} \theta O(X)$.
$(2) \Rightarrow(3):$ Let $x \in X$ and $V \in R C(Y, f(x))$.

$$
(x \in X)(V \in R C(Y, f(x))) \text { (2) }\} \Rightarrow\left(U:=f^{-1}[V] \in e^{*} \theta O(X, x)\right)(f[U] \subseteq V)
$$

$(3) \Rightarrow(4):$ Let $x \in X$ and $V \in S O(Y, f(x))$.

$$
V \in S O(Y, f(x)) \Rightarrow c l(\operatorname{int}(V)) \in R C(Y, f(x)), \quad(3)\} \Rightarrow
$$

$$
\Rightarrow\left(\exists U \in e^{*} \theta O(X, x)\right)(f[U] \subseteq \operatorname{cl}(\operatorname{int}(V)) \subseteq \operatorname{cl}(V))
$$

$$
(4) \Rightarrow(5): \text { Let } A \subseteq X \text { and } x \notin f^{-1}[\operatorname{rker}(f[A])] .
$$

$$
x \notin f^{-1}[\operatorname{rker}(f[A])] \Rightarrow f(x) \notin \operatorname{rker}(f[A]) \Rightarrow(\exists F \in R C(Y, f(x)))(F \cap f[A]=\emptyset)
$$

$$
\left.\Rightarrow(\exists F \in S O(Y, f(x)))\left(f^{-1}[F] \cap A=\emptyset\right)\right\}
$$

$$
\Rightarrow\left(\exists U \in e^{*} \theta O(X, x)\right)(f[U] \subseteq c l(F)=F)\left(f^{-1}[F] \cap A=\emptyset\right)
$$

$$
\Rightarrow\left(\exists U \in e^{*} \theta O(X, x)\right)\left(U \subseteq f^{-1}[F]\right)\left(f^{-1}[F] \cap A=\emptyset\right)
$$

$$
\Rightarrow\left(\exists U \in e^{*} \theta O(X, x)\right)(U \cap A=\emptyset)
$$

$$
\Rightarrow x \notin e^{*}-c l_{\theta}(A)
$$

$$
(5) \Rightarrow(6): \text { Let } B \subseteq Y
$$

$$
\Rightarrow e^{*}-c l_{\theta}\left(f^{-1}[B]\right) \subseteq f^{-1}[\operatorname{rker}(B)]
$$

$$
(6) \Rightarrow(7): \text { Let } V \in e^{*} O(Y)
$$

$$
V \in e^{*} O(Y) \stackrel{\text { Lemma } 2.7}{\Rightarrow} \backslash c l_{\delta}(V) \in R O(Y),
$$

$$
\Rightarrow e^{*}-c l_{\theta}\left(f^{-1}\left[\backslash c l_{\delta}(V)\right]\right) \subseteq f^{-1}\left[r k e r\left(\backslash c l_{\delta}(V)\right)\right]=f^{-1}\left[\backslash c l_{\delta}(V)\right]
$$

$$
\Rightarrow \backslash e^{*}-i n t_{\theta}\left(f^{-1}\left[c l_{\delta}(V)\right]\right) \subseteq \backslash f^{-1}\left[c l_{\delta}(V)\right]
$$

$$
\Rightarrow f^{-1}\left[c l_{\delta}(V)\right] \subseteq e^{*}-i n t_{\theta}\left(f^{-1}\left[c l_{\delta}(V)\right]\right)
$$

$$
\Rightarrow f^{-1}\left[c l_{\delta}(V)\right] \in e^{*} \theta O(X)
$$

$(7) \Rightarrow(8)$: This is obvious since every δ-semiopen set is e^{*}-open.
$(8) \Rightarrow(9):$ Let $V \in \delta P O(Y)$.

$$
\left.\begin{array}{r}
V \in \delta P O(Y) \Rightarrow \operatorname{int}_{\delta}(\backslash V) \in \delta S O(Y) \\
(8)
\end{array}\right\} \Rightarrow f^{-1}\left[c l_{\delta}\left(i n t_{\delta}(\backslash V)\right)\right] \in e^{*} \theta O(X)
$$

$$
\begin{aligned}
& \Rightarrow \backslash f^{-1}\left[\operatorname{int}_{\delta}\left(c l_{\delta}(V)\right)\right] \in e^{*} \theta O(X) \\
& \Rightarrow f^{-1}\left[\operatorname{int}\left(c l_{\delta}(V)\right)\right] \in e^{*} \theta C(X) .
\end{aligned}
$$

$(9) \Rightarrow(10)$: This is obvious since every open set is δ-preopen.
$(10) \Rightarrow(11)$: Clear.
$(11) \Rightarrow(1):$ Let $V \in R O(Y)$.

$$
\left.V \in R O(Y) \Rightarrow\left(V=\operatorname{int}\left(\operatorname{cl}_{\delta}(V)\right)\right)(\backslash V \in C(Y)), \quad(11)\right\} \Rightarrow
$$

$$
\Rightarrow f^{-1}[\backslash V]=\backslash f^{-1}[V]=\backslash f^{-1}\left[\operatorname{int}\left(c l_{\delta}(V)\right)\right]=f^{-1}\left[c l\left(\operatorname{int}_{\delta}(\backslash V)\right)\right] \in e^{*} \theta O(X)
$$

$$
\Rightarrow f^{-1}[V] \in e^{*} \theta C(X)
$$

Lemma 3.1. For a subset A of a topological space X, the following properties hold:
(1) If $A \in e^{*} O(X)$, then $a-c l(A)=\operatorname{cl}_{\delta}(A)$,
(2) If $A \in \delta S O(X)$, then $\delta-p c l(A)=\operatorname{cl}_{\delta}(A)$,
(3) If $A \in \delta P O(X)$, then $\delta-\operatorname{scl}(A)=\operatorname{int}\left(\operatorname{cl}_{\delta}(A)\right)$,
(4) If $A \in P O(X)$, then $\operatorname{scl}(A)=\operatorname{int}(\operatorname{cl}(A))$.

Proof. (1) Let $A \in e^{*} O(X)$.

$$
\begin{aligned}
& A \in e^{*} O(X) \Rightarrow A \subseteq \operatorname{cl}\left(\operatorname{int}\left({l_{\delta}}_{\delta}(A)\right)\right) \\
& \Rightarrow \operatorname{cl}_{\delta}(A) \subseteq \operatorname{cl}_{\delta}\left(c l\left(\operatorname{int}\left(c l_{\delta}(A)\right)\right)\right)=\operatorname{cl}\left(\operatorname{int}\left(c l_{\delta}(A)\right)\right) \\
& \Rightarrow A \cup \operatorname{cl}_{\delta}(A)=\operatorname{cl}(A) \subseteq A \cup \operatorname{cl}\left(\operatorname{int}\left(\operatorname{cl} l_{\delta}(A)\right)\right)=a-c l(A) \ldots(*) \\
& \delta C(X) \subseteq a C(X) \Rightarrow a-c l(A) \subseteq c l_{\delta}(A) \ldots(* *) \\
&(*),(* *) \Rightarrow a-c l(A)=\operatorname{cl}_{\delta}(A) .
\end{aligned}
$$

(2) Let $A \in \delta S O(X)$.

$$
\left.\left.\begin{array}{l}
A \in \delta S O(X) \Rightarrow A \subseteq c l\left(i n t_{\delta}(A)\right) \stackrel{\text { Lemma }}{=}{ }^{2.6} c l_{\delta}\left(i n t_{\delta}(A)\right) \\
\Rightarrow c l_{\delta}(A) \subseteq c l_{\delta}\left(l_{\delta}\left(i n t_{\delta}(A)\right)\right)=c l_{\delta}\left(i n t_{\delta}(A)\right)=\operatorname{cl}\left(i n t_{\delta}(A)\right) \\
\quad \delta-p c l(A)=A \cup c l\left(i n t_{\delta}(A)\right)
\end{array}\right\} \Rightarrow \text { } \begin{array}{r}
\Rightarrow \delta-p c l(A) \supseteq A \cup c l_{\delta}(A)=c l_{\delta}(A) \\
\delta C(X) \subseteq \delta P C(X) \Rightarrow \delta-p c l(A) \subseteq c l_{\delta}(A)
\end{array}\right\} \Rightarrow \delta-p c l(A)=c l_{\delta}(A) .
$$

(3) Let $A \in \delta P O(X)$.

$$
\left.\begin{array}{r}
A \in \delta P O(X) \Rightarrow A \subseteq \operatorname{int}\left(\operatorname{cl}_{\delta}(A)\right) \\
\delta-\operatorname{scl}(A)=A \cup \operatorname{int}\left(\operatorname{cl}_{\delta}(A)\right)
\end{array}\right\} \Rightarrow \delta-\operatorname{scl}(A)=\operatorname{int}\left(c l_{\delta}(A)\right)
$$

(4) $[20]$.

Corollary 3.1. For a function $f: X \rightarrow Y$, the following properties are equivalent:
(1) f is almost contra $e^{*} \theta$-continuous;
(2) $f^{-1}[a-c l(A)]$ is $e^{*}-\theta$-open for every $A \in e^{*} O(Y)$;
(3) $f^{-1}[\delta-p c l(A)]$ is $e^{*}-\theta$-open for every $A \in \delta S O(Y)$;
(4) $f^{-1}[\delta-\operatorname{scl}(A)]$ is $e^{*}-\theta$-closed for every $A \in \delta P O(Y)$.

Proof. It follows from Lemma 3.1.
Theorem 3.2. For a function $f: X \rightarrow Y$, the following properties are equivalent:
(1) f is almost contra $e^{*} \theta$-continuous;
(2) $f^{-1}[V]$ is e $e^{*}-\theta$-open in X for each θ-semiopen set of Y;
(3) $f^{-1}[V]$ is $e^{*}-\theta$-closed in X for each θ-semiclosed set of Y;
(4) $f^{-1}[V] \subseteq e^{*}-\operatorname{int}_{\theta}\left(f^{-1}[c l(V)]\right)$ for every $V \in S O(Y)$;
(5) $f\left[e^{*}-\operatorname{cl}_{\theta}(A)\right] \subseteq \theta-\operatorname{scl}(f[A])$ for every subset A of X;
(6) $e^{*}-\mathrm{cl}_{\theta}\left(f^{-1}[B]\right) \subseteq f^{-1}[\theta-\operatorname{scl}(B)]$ for every subset B of Y;
(7) $e^{*}-c l_{\theta}\left(f^{-1}[V]\right) \subseteq f^{-1}[\theta-\operatorname{scl}(V)]$ for every open subset V of Y;
(8) $e^{*}-\operatorname{cl}_{\theta}\left(f^{-1}[V]\right) \subseteq f^{-1}[\operatorname{scl}(V)]$ for every open subset V of Y;
(9) $e^{*}-c l_{\theta}\left(f^{-1}[V]\right) \subseteq f^{-1}[\operatorname{int}(c l(V))]$ for every open subset V of Y.

Proof. (1) \Rightarrow (2) : Let $V \in \theta S O(Y)$.
$V \in \theta S O(Y) \Rightarrow(\exists \mathcal{A} \subseteq R C(Y))(V=\cup \mathcal{A})\}$ (1) $\} \Rightarrow$
$\Rightarrow f^{-1}[V]=\cup\left\{f^{-1}[A] \mid A \in \mathcal{A}\right\} \in e^{*} \theta O(X)$.
$(2) \Rightarrow(3)$: Obvious.
$(3) \Rightarrow(4):$ Let $V \in S O(Y)$.

$$
\begin{aligned}
& \left.\begin{array}{r}
V \in S O(Y) \Rightarrow \backslash c l(V) \in \theta S C(Y) \\
(3)
\end{array}\right\} \Rightarrow \\
& \Rightarrow f^{-1}[\backslash c l(V)] \in e^{*} \theta C(X) \Rightarrow \backslash f^{-1}[c l(V)] \in e^{*} \theta C(X) \\
& \Rightarrow f^{-1}[c l(V)] \in e^{*} \theta O(X) \Rightarrow f^{-1}[V] \subseteq f^{-1}[c l(V)]=e^{*}-i n t_{\theta}\left(f^{-1}[c l(V)]\right) \text {. } \\
& (4) \Rightarrow(5): \text { Let } A \subseteq X \text { and } x \notin f^{-1}[\theta-\operatorname{scl}(f[A])] \text {. } \\
& x \notin f^{-1}[\theta-s c l(f[A])] \Rightarrow f(x) \notin \theta-\operatorname{scl}(f[A]) \Rightarrow(\exists U \in S O(Y, f(x)))(c l(U) \cap f[A]=\emptyset) \\
& \Rightarrow(\exists U \in S O(Y, f(x)))\left(f^{-1}[c l(U)] \cap A=\emptyset\right) \\
& \left.\begin{array}{r}
\Rightarrow(\exists U \in S O(Y, f(x)))\left(e^{*}-\operatorname{int}_{\theta}\left(f^{-1}[c l(U)]\right) \cap A=\emptyset\right) \\
V:=e^{*}-\operatorname{int}_{\theta}\left(f^{-1}[c l(U)]\right)
\end{array}\right\} \stackrel{(4)}{\Rightarrow} \\
& \Rightarrow\left(\exists V \in e^{*} \theta O(X, x)\right)(V \cap A=\emptyset) \\
& \Rightarrow x \notin e^{*}-c_{\theta}(A) \text {. } \\
& \text { (5) } \Rightarrow(6): \text { Let } B \subseteq Y \text {. } \\
& \left.B \subseteq Y \Rightarrow f^{-1}[B] \subseteq X \quad \begin{array}{r}
(5)
\end{array}\right\} \Rightarrow f\left[e^{*}-c l_{\theta}\left(f^{-1}[B]\right)\right] \subseteq \theta-\operatorname{scl}\left(f\left[f^{-1}[B]\right]\right) \subseteq \theta-\operatorname{scl}(B) \\
& \Rightarrow e^{*}-\mathrm{cl}_{\theta}\left(f^{-1}[B]\right) \subseteq f^{-1}[\theta-\operatorname{scl}(B)] \text {. } \\
& (6) \Rightarrow(7) \text { : Obvious. } \\
& (7) \Rightarrow(8) \text { : This is obvious since } \theta-\operatorname{scl}(V)=\operatorname{scl}(V) \text { for an open set } V \text {. } \\
& (8) \Rightarrow(9) \text { : Obvious from Lemma 3.1(4). } \\
& (9) \Rightarrow(1): \text { Let } V \in R O(Y) \text {. } \\
& \left.\begin{array}{r}
V \in R O(Y) \subseteq O(Y) \\
(9)
\end{array}\right\} \Rightarrow e^{*}-c l_{\theta}\left(f^{-1}[V]\right) \subseteq f^{-1}[i n(c l(V))]=f^{-1}[V] \\
& \Rightarrow f^{-1}[V] \in e^{*} \theta C(X) \text {. }
\end{aligned}
$$

We recall that a topological space X is said to be extremally disconnected if the closure of every open set of X is open in X.

Lemma 3.2. Let X be a topological space. If X is an extremally disconnected space, then $R O(X)=R C(X)$.

Theorem 3.3. Let $f: X \rightarrow Y$ be a function. If Y is extremally disconnected, then the following properties are equivalent:
(1) f is almost contra $e^{*} \theta$-continuous;
(2) f is almost $e^{*} \theta$-continuous.

Proof. The proof is obvious from Lemma 3.2.

Remark 1. From Definitions 2.2 and 3.1, we have the following diagram:

Example 3.1. Let $X:=\{a, b, c, d\}$ and $\tau:=\{\emptyset, X,\{a\},\{b\},\{a, b\}\}$. It is not difficult to see $e^{*} \theta O(X)=e^{*} O(X)=2^{X} \backslash\{\{c\},\{d\},\{c, d\}\}$. Then the identity function f : $(X, \tau) \rightarrow(X, \tau)$ is almost contra $e^{*} \theta$-continuous and so almost contra e^{*}-continuous but f is neither contra $e^{*} \theta$-continuous nor contra e^{*}-continuous.

Example 3.2. Let $X:=\{a, b, c, d\}$ and $\tau:=\{\emptyset, X,\{a\},\{b\},\{a, b\},\{a, c\},\{a, b, c\},\{a, b, d\}\}$. It is not difficult to see $e^{*} \theta O(X)=e^{*} O(X)=2^{X} \backslash\{\{d\}\}$ and $\beta O(X)=2^{X} \backslash$ $\{\{c\},\{d\},\{b, c\},\{c, d\},\{b, c, d\}\}$. Define the function $f:(X, \tau) \rightarrow(X, \tau)$ by $f=$ $\{(a, b),(b, a),(c, c),(d, d)\}$. Then f is almost contra $e^{*} \theta$-continuous but it is not almost contra β-continuous.

Theorem 3.4. If $f: X \rightarrow Y$ is an almost contra $e^{*} \theta$-continuous function which satisfies the property $e^{*}-\operatorname{int}_{\theta}\left(f^{-1}\left[c_{\delta}(V)\right]\right) \subseteq f^{-1}[V]$ for each open set V of Y, then f is $e^{*} \theta$-continuous.

```
Proof. Let \(V \in O(Y)\).
    \(\left.\begin{array}{r}V \in O(Y) \\ f \text { is a.c.e } e^{*} \theta . c .\end{array}\right\} \stackrel{\text { Theorem }}{\Rightarrow}{ }^{3.1(7)}\)
\(\Rightarrow f^{-1}[V] \subseteq f^{-1}\left[c l_{\delta}(V)\right]=e^{*}-\operatorname{int}_{\theta}\left(e^{*}-\operatorname{int}_{\theta}\left(f^{-1}[c l(V)]\right)\right) \subseteq e^{*}-i n t_{\theta}\left(f^{-1}[V]\right) \subseteq f^{-1}[V]\)
\(\Rightarrow f^{-1}[V]=e^{*}-\operatorname{int}_{\theta}\left(f^{-1}[V]\right)\)
\(\Rightarrow f^{-1}[V] \in e^{*} \theta O(X)\).
```

We recall that a topological space is said to be P_{Σ} [29] if for any open set V of X and each $x \in V$, there exists a regular closed set F of X containing x such that $x \in F \subseteq V$.

Theorem 3.5. If $f: X \rightarrow Y$ is an almost contra $e^{*} \theta$-continuous function and Y is P_{Σ}, then f is $e^{*} \theta$-continuous.

Proof. Let $V \in O(Y)$.

$$
\left.\left.\begin{array}{l}
y \in V \in O(Y) \stackrel{Y \text { is } P_{\Sigma}}{\Rightarrow}(\exists F \in R C(Y, y))(F \subseteq V) \\
\mathcal{A}:=\{F \mid y \in V \Rightarrow(\exists F \in R C(Y, y))(F \subseteq V)\}
\end{array}\right\} \Rightarrow \begin{array}{c}
\cup \mathcal{A}=V \\
f \text { is a.c.e } e^{*} \theta \cdot \mathrm{c}
\end{array}\right\} \Rightarrow
$$

Definition 3.2. A function $f: X \rightarrow Y$ is said to be:
a) R-map [6] if $f^{-1}[A]$ is regular closed in X for every regular closed A of Y,
b) weakly e^{*}-irresolute [22] if $f^{-1}[A]$ is $e^{*} \theta$-open in X for every $e^{*} \theta$-open set A of Y,
c) pre- $e^{*} \theta$-closed if $f[A]$ is $e^{*} \theta$-closed in Y for every $e^{*} \theta$-closed A of X.

Theorem 3.6. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions. Then the following properties hold:
(1) If f is almost contra $e^{*} \theta$-continuous and g is an R-map, then $g \circ f: X \rightarrow Z$ is almost contra $e^{*} \theta$-continuous,
(2) If f is almost $e^{*} \theta$-continuous and g is a contra R-map, then $g \circ f: X \rightarrow Z$ is
almost contra $e^{*} \theta$-continuous,
(3) If f is weakly e^{*}-irresolute and g is almost contra $e^{*} \theta$-continuous, then $g \circ f$:
$X \rightarrow Z$ is almost contra $e^{*} \theta$-continuous.
Proof. Routine.
Theorem 3.7. If $f: X \rightarrow Y$ is a pre-e* θ-closed surjection and $g: Y \rightarrow Z$ is a function such that $g \circ f: X \rightarrow Z$ is almost contra $e^{*} \theta$-continuous, then g is almost contra $e^{*} \theta$-continuous.

Proof. Let $V \in R O(Z)$.
$\left.\left.\begin{array}{r}V \in R O(Z) \\ g \circ f \text { is a.c. } e^{*} \theta \text {.c. }\end{array}\right\} \Rightarrow \begin{array}{r}(g \circ f)^{-1}[V]=f^{-1}\left[g^{-1}[V]\right] \in e^{*} \theta C(X) \\ f \text { is pre-e } e^{*} \theta \text {-closed surjection }\end{array}\right\} \Rightarrow$
$\Rightarrow f\left[f^{-1}\left[g^{-1}[V]\right]\right]=g^{-1}[V] \in e^{*} \theta C(Y)$.
Theorem 3.8. Let $\left\{X_{\alpha} \mid \alpha \in \Lambda\right\}$ be any family of topological spaces. If $f: X \rightarrow \Pi X_{\alpha}$ is an almost contra $e^{*} \theta$-continuous function, then $\operatorname{Pr}_{\alpha} \circ f: X \rightarrow X_{\alpha}$ is almost contra $e^{*} \theta$-continuous for each $\alpha \in \Lambda$ where $\operatorname{Pr}_{\alpha}$ is the projection of ΠX_{α} onto X_{α}.

Proof. Let $\alpha \in \Lambda$ and $U_{\alpha} \in R O\left(X_{\alpha}\right)$.

$$
\left.\begin{array}{rl}
\alpha \in \Lambda \Rightarrow P r_{\alpha} \text { is open and continuous } \Rightarrow & P r_{\alpha} \text { is } R \text {-map } \\
& U_{\alpha} \in R O\left(X_{\alpha}\right)
\end{array}\right\} \Rightarrow
$$

Definition 3.3. A function $f: X \rightarrow Y$ is called weakly $e^{*} \theta$-continuous (briefly w.e* θ.c.) if for each $x \in X$ and each open set V of Y containing $f(x)$, there exists a $U \in e^{*} \theta O(X, x)$ such that $f[U] \subseteq c l(V)$.

Theorem 3.9. Let $f: X \rightarrow Y$ be a function. Then the following properties hold:
(1) If f is almost contra $e^{*} \theta$-continuous, then it is weakly $e^{*} \theta$-continuous,
(2) If f is weakly $e^{*} \theta$-continuous and Y is extremally disconnected, then f is almost contra $e^{*} \theta$-continuous.

Proof. (1) Let $x \in X$ and $V \in O(Y, f(x))$.

$$
\left.\begin{array}{r}
\left.(x \in X)(V \in O(Y, f(x))) \Rightarrow \begin{array}{r}
c l(V) \in R C(Y, f(x)) \\
\\
f \text { is a.c.e } e^{*} \theta . c .
\end{array}\right\} \Rightarrow \\
\Rightarrow f^{-1}[c l(V)] \in e^{*} \theta O(X, x) \\
U:=f^{-1}[c l(V)]
\end{array}\right\} \Rightarrow\left(U \in e^{*} \theta O(X, x)\right)(f[U] \subseteq c l(V)) .
$$

(2) Let $V \in R C(Y)$ and $x \in f^{-1}[V]$.
$\left.\begin{array}{r}(V \in R C(Y))\left(x \in f^{-1}[V]\right) \Rightarrow(V \in R C(Y, f(x)))(c l(V)=V) \\ Y \text { is extremally disconnected }\end{array}\right\} \Rightarrow$
$\left.\begin{array}{r}\Rightarrow c l(V) \in R O(Y, f(x)) \\ f \text { is w. } e^{*} \theta \text {.c. }\end{array}\right\} \Rightarrow\left(\exists U \in e^{*} \theta O(X, x)\right)(f[U] \subseteq c l(V)=V)$
$\Rightarrow\left(\exists U \in e^{*} \theta O(X, x)\right)\left(U \subseteq f^{-1}[V]\right)$
$\Rightarrow f^{-1}[V] \in e^{*} \theta O(X)$.

4. Some Fundamental Properties

Definition 4.1. A topological space X is said to be:
a) $e^{*} \theta-T_{0}$ if for any distinct pair of points x and y in X, there is an $e^{*} \theta$-open set U in X containing x but not y or an $e^{*} \theta$-open set V in X containing y but not x,
b) $e^{*} \theta-T_{1}$ if for any distinct pair of points x and y in X, there is an $e^{*} \theta$-open set U in X containing x but not y and an $e^{*} \theta$-open set V in X containing y but not x, c) $e^{*} \theta-T_{2}$ (resp. $\left.e^{*}-T_{2}[13,14]\right)$ if for every pair of distinct points x and y, there exist two $e^{*} \theta$-open (resp. e^{*}-open) sets U and V such that $x \in U, y \in V$ and $U \cap V=\emptyset$.

Theorem 4.1. For a topological space X, the following properties are equivalent:
(1) (X, τ) is $e^{*} \theta-T_{0}$;
(2) (X, τ) is $e^{*} \theta-T_{1}$;
(3) (X, τ) is $e^{*} \theta-T_{2}$;
(4) (X, τ) is $e^{*}-T_{2}$;
(5) For every pair of distinct points $x, y \in X$, there exist $U \in e^{*} O(X, x)$ and $V \in$ $e^{*} O(X, y)$ such that $e^{*}-c l(U) \cap e^{*}-c l(V)=\emptyset$;
(6) For every pair of distinct points $x, y \in X$, there exist $U \in e^{*} R(X, x)$ and $V \in$ $e^{*} R(X, y)$ such that $U \cap V=\emptyset$;
(7) For every pair of distinct points $x, y \in X$, there exist $U \in e^{*} \theta O(X, x)$ and $V \in$ $e^{*} \theta O(X, y)$ such that $e^{*}-c l_{\theta}(U) \cap e^{*}-c l_{\theta}(V)=\emptyset$.

Proof. (3) \Rightarrow (2) : Obvious.
$(2) \Rightarrow(1):$ Obvious.
(1) \Rightarrow (3) : Let $x, y \in X$ and $x \neq y$.

$$
\begin{aligned}
& \left.\begin{array}{r}
(x, y \in X)(x \neq y) \\
(1)
\end{array}\right\} \Rightarrow\left(\exists W \in e^{*} \theta O(X, x)\right)(y \notin W) \\
& \left.\stackrel{\text { Lemma }}{\Rightarrow}{ }^{2.4}\left(\exists U \in e^{*} R(X, x)\right)\left(U=e^{*}-c l_{\theta}(U) \subseteq W\right)\right\} \Rightarrow \\
& \left.V:=\backslash U=\backslash e^{*} c l_{\theta}(U)\right\} \Rightarrow \\
& \Rightarrow\left(U \in e^{*} \theta O(X, x)\right)\left(V \in e^{*} \theta O(X, y)\right)(U \cap V=\emptyset) \text {. } \\
& (3) \Rightarrow(4) \text { : The proof is obvious since } e^{*} \theta O(X) \subseteq e^{*} O(X) \text {. } \\
& (4) \Rightarrow(5): \text { Let } x, y \in X \text { and } x \neq y \text {. } \\
& \left.\begin{array}{r}
(x, y \in X)(x \neq y) \\
X \text { is } e^{*}-T_{2}
\end{array}\right\} \Rightarrow\left(\exists U \in e^{*} O(X, x)\right)\left(\exists V \in e^{*} O(X, y)\right)(U \cap V=\emptyset) \\
& \Rightarrow\left(\exists U \in e^{*} O(X, x)\right)\left(\exists V \in e^{*} O(X, y)\right)(U \subseteq \backslash V) \\
& \Rightarrow\left(\exists U \in e^{*} O(X, x)\right)\left(\exists V \in e^{*} O(X, y)\right)\left(e^{*}-c l(U) \subseteq \backslash V\right) \\
& \Rightarrow\left(\exists U \in e^{*} O(X, x)\right)\left(\exists V \in e^{*} O(X, y)\right)\left(e^{*}-\operatorname{int}\left(e^{*}-c l(U)\right)=e^{*}-c l(U) \subseteq e^{*}-\operatorname{int}(\backslash V)\right. \\
& \Rightarrow\left(\exists U \in e^{*} O(X, x)\right)\left(\exists V \in e^{*} O(X, y)\right)\left(e^{*}-c l(U) \subseteq e^{*}-\operatorname{int}(\backslash V)=\backslash e^{*}-c l(V)\right. \\
& \Rightarrow\left(\exists U \in e^{*} O(X, x)\right)\left(\exists V \in e^{*} O(X, y)\right)\left(e^{*}-\operatorname{int}(U) \cap e^{*}-c l(V)=\emptyset\right) \text {. } \\
& \text { (5) } \Rightarrow \text { (6) : Let } x, y \in X \text { and } x \neq y \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{r}
(x, y \in X)(x \neq y) \\
(5)
\end{array}\right\} \Rightarrow \\
& \left.\begin{array}{r}
\Rightarrow\left(\exists U_{1} \in e^{*} O(X, x)\right)\left(\exists V_{1} \in e^{*} O(X, y)\right)\left(e^{*}-c l\left(U_{1}\right) \cap e^{*}-c l\left(V_{1}\right)=\emptyset\right) \\
\left(U_{2}:=e^{*}-c l\left(U_{1}\right)\right)\left(V_{2}:=e^{*}-c l\left(V_{1}\right)\right)
\end{array}\right\} \Rightarrow \\
& \Rightarrow\left(\exists U_{2} \in e^{*} R(X, x)\right)\left(\exists V_{2} \in e^{*} R(X, y)\right)\left(U_{2} \cap V_{2}=\emptyset\right) . \\
& \text { (6) } \Rightarrow \text { (7) : Let } x, y \in X \text { and } x \neq y \text {. } \\
& \left.\begin{array}{r}
(x, y \in X)(x \neq y) \\
(6)
\end{array}\right\} \Rightarrow\left(\exists U \in e^{*} R(X, x)\right)\left(\exists V \in e^{*} R(X, y)\right)(U \cap V=\emptyset) \\
& \Rightarrow\left(\exists U \in e^{*} \theta O(X, x)\right)\left(\exists V \in e^{*} \theta O(X, y)\right)\left(e^{*}-c l_{\theta}(U) \cap e^{*}-c l_{\theta}(V)=\emptyset\right) \text {. } \\
& (7) \Rightarrow(3) \text { : Obvious. }
\end{aligned}
$$

Definition 4.2. A topological space X is said to be:
a) weakly Hausdorff [27] (briefly weakly- T_{2}) if every point of X is an intersection of regular closed sets of X,
b) s-Urysohn [2] if for each pair of distinct points x and y in X, there exist $U \in$ $S O(X, x)$ and $V \in S O(X, y)$ such that $\operatorname{cl}(U) \cap \operatorname{cl}(V)=\emptyset$.

Theorem 4.2. For a function $f: X \rightarrow Y$, the following properties hold:
(1) If f is an almost contra $e^{*} \theta$-continuous injection of a topological space X into a s-Urysohn space Y, then X is $e^{*} \theta-T_{2}$,
(2) If f is an almost contra $e^{*} \theta$-continuous injection of a topological space X into a weakly Hausdorff space Y, then X is $e^{*} \theta-T_{1}$.

Proof. (1) Let $x, y \in X$ and $x \neq y$.

$$
\left.\begin{array}{l}
\left.\left.\begin{array}{r}
(x, y \in X)(x \neq y) \\
f \text { is injective }
\end{array}\right\} \Rightarrow \begin{array}{c}
f(x) \neq f(y) \\
Y \text { is } s \text {-Urysohn }
\end{array}\right\} \Rightarrow \\
\Rightarrow\left(\exists V_{1} \in S O(Y, f(x))\right)\left(\left(\exists V_{2} \in S O(Y, f(y))\right)\left(c l\left(V_{1}\right) \cap c l\left(V_{2}\right)=\emptyset\right)\right. \\
f \text { is a.c. } e^{*} \theta . c .
\end{array}\right\} \stackrel{\text { Theorem }}{\Rightarrow} 3.1(4)
$$

$$
\begin{aligned}
& \Rightarrow\left(\exists U_{1} \in e^{*} \theta O(X, x)\right)\left(\exists U_{2} \in e^{*} \theta O(X, y)\right)\left(f\left[U_{1}\right] \cap f\left[U_{2}\right] \subseteq c l\left(V_{1}\right) \cap c l\left(V_{2}\right)=\emptyset\right) \\
& \Rightarrow\left(\exists U_{1} \in e^{*} \theta O(X, x)\right)\left(\exists U_{2} \in e^{*} \theta O(X, y)\right)\left(f\left[U_{1} \cap U_{2}\right]=f\left[U_{1}\right] \cap f\left[U_{2}\right]=\emptyset\right) \\
& \Rightarrow\left(\exists U_{1} \in e^{*} \theta O(X, x)\right)\left(\exists U_{2} \in e^{*} \theta O(X, y)\right)\left(U_{1} \cap U_{2}=\emptyset\right) .
\end{aligned}
$$

(2) Let $x, y \in X$ and $x \neq y$.

$$
\left.\begin{array}{l}
\left.\left.\begin{array}{r}
(x, y \in X)(x \neq y) \\
f \text { is injective }
\end{array}\right\} \Rightarrow \begin{array}{c}
f(x) \neq f(y) \\
Y \text { is weakly- } T_{2}
\end{array}\right\} \Rightarrow \\
\Rightarrow\left(\exists V_{1} \in R C(Y, f(x))\right)\left(\exists V_{2} \in R C(Y, f(y))\right)\left(f(x) \notin V_{2}\right)\left(f(y) \notin V_{1}\right) \\
\quad f \text { is a.c. } e^{*} \theta . c . .
\end{array}\right\} \stackrel{\text { Theorem 3.3 }}{\Rightarrow} \begin{aligned}
& \text { 3.1(3) } \\
& \Rightarrow\left(\exists U_{1} \in e^{*} \theta O(X, x)\right)\left(\exists U_{2} \in e^{*} \theta O(X, y)\right)\left(f\left[U_{1}\right] \subseteq V_{1}\right)\left(f\left[U_{2}\right] \subseteq V_{2}\right)\left(f(x) \notin V_{2}\right)\left(f(y) \notin V_{1}\right) \\
& \Rightarrow\left(\exists U_{1} \in e^{*} \theta O(X, x)\right)\left(\exists U_{2} \in e^{*} \theta O(X, y)\right)\left(x \notin U_{2}\right)\left(y \notin U_{1}\right) .
\end{aligned}
$$

Remark 2. [15] The intersection of two $e^{*} \theta$-open sets is not necessarily $e^{*} \theta$-open as shown in the following example.

Example 4.1. [15] Let $X=\{a, b, c, d\}$ and $\tau=\{\emptyset, X,\{a\},\{b\},\{a, b\}\}$. Although the subsets $\{b, c, d\}$ and $\{a, c, d\}$ are $e^{*} \theta$-open in X, the set $\{c, d\}$ which is the intersection of these sets is not $e^{*} \theta$-open in X.

Definition 4.3. A topological space X is called an $e^{*} \theta c$-space if the intersection of any two $e^{*} \theta$-open sets is an $e^{*} \theta$-open set.

Theorem 4.3. If $f, g: X \rightarrow Y$ are almost contra $e^{*} \theta$-continuous functions, X is an $e^{*} \theta c$-space and Y is s-Urysohn, then $E=\{x \in X \mid f(x)=g(x)\}$ is $e^{*} \theta$-closed in X.

Proof. Let $x \notin E$.

$$
\left.\begin{array}{r}
\left.\begin{array}{r}
x \notin E \Rightarrow f(x) \neq g(x) \\
Y \text { is } s \text {-Urysohn }
\end{array}\right\} \Rightarrow \\
\Rightarrow\left(\exists V_{1} \in S O(Y, f(x))\right)\left(\exists V_{2} \in S O(Y, g(x))\right)\left(c l\left(V_{1}\right) \cap c l\left(V_{2}\right)=\emptyset\right) \\
f \text { and } g \text { are a.c.e } e^{*} \theta . c .
\end{array}\right\} \Rightarrow
$$

$$
\left.\begin{array}{r}
\left(\exists U_{1} \in e^{*} \theta O(X, x)\right)\left(\exists U_{2} \in e^{*} \theta O(X, x)\right)\left(f\left[U_{1}\right] \cap g\left[U_{2}\right] \subseteq c l\left(V_{1}\right) \cap c l\left(V_{2}\right)=\emptyset\right) \\
X \text { is } e^{*} \theta c \text {-space }
\end{array}\right\} \Rightarrow
$$

$$
\Rightarrow\left(\exists U:=U_{1} \cap U_{2} \in e^{*} \theta O(X, x)\right)\left(f[U] \cap g[U] \subseteq f\left[U_{1}\right] \cap g\left[U_{2}\right]=\emptyset\right)
$$

$\Rightarrow\left(\exists U \in e^{*} \theta O(X, x)\right)(U \cap E=\emptyset)$
$\Rightarrow x \notin e^{*}-\operatorname{cl}_{\theta}(E)$.

We say that the product space $X=X_{1} \times \ldots \times X_{n}$ has Property $P_{e^{*} \theta}$ if A_{i} is an $e^{*} \theta$-open set in a topological space X_{i} for $i=1,2, \ldots n$, then $A_{1} \times \ldots \times A_{n}$ is also $e^{*} \theta$-open in the product space $X=X_{1} \times \ldots \times X_{n}$.

Theorem 4.4. Let $f: X_{1} \rightarrow Y$ and $g: X_{2} \rightarrow Y$ be two functions, where
(i) $X=X_{1} \times X_{2}$ has the Property $P_{e^{*} \theta}$,
(ii) Y is a Urysohn space,
(iii) f and g are almost contra $e^{*} \theta$-continuous,
then $A=\left\{\left(x_{1}, x_{2}\right) \mid f\left(x_{1}\right)=g\left(x_{2}\right)\right\}$ is $e^{*} \theta$-closed in the product space $X=X_{1} \times X_{2}$.

Proof. Let $\left(x_{1}, x_{2}\right) \notin A$.

$$
\begin{aligned}
& \left.\begin{array}{rl}
\left(x_{1}, x_{2}\right) \notin A \Rightarrow & f\left(x_{1}\right) \neq g\left(x_{2}\right) \\
Y \text { is Urysohn }
\end{array}\right\} \Rightarrow \\
& \left.\begin{array}{r}
\Rightarrow\left(\exists V_{1} \in O\left(Y, f\left(x_{1}\right)\right)\right)\left(\exists V_{2} \in O\left(Y, g\left(x_{2}\right)\right)\right)\left(c l\left(V_{1}\right) \cap c l\left(V_{2}\right)=\emptyset\right)\left(c l\left(V_{1}\right), \operatorname{cl}\left(V_{2}\right) \in R C(Y)\right) \\
f \text { and } g \text { are a.c.e } \theta \text {.c. }
\end{array}\right\} \Rightarrow \\
& \left.\begin{array}{r}
\left(f^{-1}\left[c l\left(V_{1}\right)\right] \in e^{*} \theta O\left(X_{1}, x_{1}\right)\right)\left(g^{-1}\left[c l\left(V_{2}\right)\right] \in e^{*} \theta O\left(X_{2}, x_{2}\right)\right) \\
X=X_{1} \times X_{2} \text { has the Property } P_{e^{*} \theta}
\end{array}\right\} \Rightarrow \\
& \Rightarrow\left(\left(x_{1}, x_{2}\right) \in f^{-1}\left[c l\left(V_{1}\right)\right] \times g^{-1}\left[c l\left(V_{2}\right)\right] \in e^{*} \theta O(X)\right)\left(f^{-1}\left[c l\left(V_{1}\right)\right] \times g^{-1}\left[c l\left(V_{2}\right)\right] \subseteq \backslash A\right) \\
& \Rightarrow \backslash A \in e^{*} \theta O\left(X_{1} \times X_{2}\right) \\
& \Rightarrow A \in e^{*} \theta C\left(X_{1} \times X_{2}\right) \text {. }
\end{aligned}
$$

Theorem 4.5. Let $f: X \rightarrow Y$ be a function and $g: X \rightarrow X \times Y$ the graph function, given by $g(x)=(x, f(x))$ for every $x \in X$. If g is almost contra $e^{*} \theta$-continuous, then f is almost contra $e^{*} \theta$-continuous.

We recall that for a function $f: X \rightarrow Y$, the subset $\{(x, f(x)) \mid x \in X\}$ of $X \times Y$ is called the graph of f and is denoted by $G(f)$.

Definition 4.4. A function $f: X \rightarrow Y$ has an $e^{*} \theta$-closed graph if for each $(x, y) \notin$ $G(f)$, there exist $U \in e^{*} \theta O(X, x)$ and $V \in O(Y, y)$ such that $(U \times V) \cap G(f)=\emptyset$.

Lemma 4.1. The graph $G(f)$ of a function $f: X \rightarrow Y$ is $e^{*} \theta$-closed if and only if for each $(x, y) \notin G(f)$, there exist $U \in e^{*} \theta O(X, x)$ and $V \in O(Y, y)$ such that $f[U] \cap V=\emptyset$.

Proof. Straightforward.

Theorem 4.6. Let X and Y be two topological spaces. If $f: X \rightarrow Y$ is a function with an $e^{*} \theta$-closed graph, then $\{f(x)\}=\cap\left\{\operatorname{cl}(f[U]) \mid U \in e^{*} \theta O(X, x)\right\}$ for each x in X.

Proof. Let $G(f)$ be $e^{*} \theta$-closed. Suppose that there exists a point of x in X such that $\{f(x)\} \neq \cap\left\{c l(f[U]) \mid U \in e^{*} \theta O(X, x)\right\}$.

$$
\left.\begin{array}{l}
\{f(x)\} \neq \cap\left\{c l(f[U]) \mid U \in e^{*} \theta O(X, x)\right\} \Rightarrow\left(\exists y \in \cap\left\{c l(f[U]) \mid U \in e^{*} \theta O(X, x)\right\}\right)(y \neq f(x)) \\
\Rightarrow\left(\forall U \in e^{*} \theta O(X, x)\right)(y \in c l(f[U]))((x, y) \notin G(f)) \\
G(f) \text { is } e^{*} \theta \text {-closed }
\end{array}\right\} \Rightarrow
$$

$$
\Rightarrow(\exists V \in O(Y, y))(y \in \operatorname{cl}(f[U]))(\emptyset=f[U] \cap V=\operatorname{cl}(f[U]) \cap V \neq \emptyset)
$$

This is a contradiction.

$$
\begin{aligned}
& \text { Proof. Let } V \in R O(Y) \text {. } \\
& V \in R O(Y) \Rightarrow X \times V \in R O(X \times Y), \quad f^{-1}[V]=g^{-1}[X \times V] \in e^{*} \theta C(X) .
\end{aligned}
$$

Theorem 4.7. If $f: X \rightarrow Y$ is almost contra $e^{*} \theta$-continuous and Y is Hausdorff, then $G(f)$ is $e^{*} \theta$-closed.

Proof. Let $(x, y) \notin G(f)$.

$$
\begin{aligned}
& \left.\begin{array}{r}
(x, y) \notin G(f) \Rightarrow y \neq f(x) \\
Y \text { is Hausdorff }
\end{array}\right\} \Rightarrow(\exists U \in O(Y, y))(\exists V \in O(Y, f(x)))(U \cap V=\emptyset) \\
& \Rightarrow(f(x) \notin Y \backslash c l(V))(U \subseteq Y \backslash c l(V) \in R O(Y)) \Rightarrow f(x) \notin \operatorname{rker}(U) \\
& \left.\Rightarrow x \notin f^{-1}[r k e r(U)] \stackrel{f \text { is a.c. } e^{*} \theta \cdot \mathrm{cc} .}{ } \begin{array}{r}
x \notin e^{*}-c l_{\theta}\left(f^{-1}[U]\right) \\
V:=\backslash e^{*}-c l_{\theta}\left(f^{-1}[U]\right)
\end{array}\right\} \Rightarrow \\
& \Rightarrow\left(V \in e^{*} \theta O(X, x)\right)(U \in O(Y, y))(V \times U \subseteq \backslash G(f)) \\
& \Rightarrow\left(V \in e^{*} \theta O(X, x)\right)(U \in O(Y, y))((V \times U) \cap G(f)=\emptyset) \text {. }
\end{aligned}
$$

Theorem 4.8. If $f: X \rightarrow Y$ have an $e^{*} \theta$-closed graph and injective, then X is $e^{*} \theta-T_{1}$.

Proof. Let $x_{1}, x_{2} \in X$ and $x_{1} \neq x_{2}$.

$$
\begin{aligned}
& \left.\left.\begin{array}{r}
\left(x_{1}, x_{2} \in X\right)\left(x_{1} \neq x_{2}\right) \\
f \text { is injective }
\end{array}\right\} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right) \Rightarrow\left(x_{1}, f\left(x_{2}\right)\right) \in(X \times Y) \backslash G(f) \quad \begin{array}{r}
\\
G(f) \text { is } e^{*} \theta \text {-closed }
\end{array}\right\} \Rightarrow \\
& \Rightarrow\left(\exists U \in e^{*} \theta O\left(X, x_{1}\right)\right)\left(\exists V \in O\left(Y, f\left(x_{2}\right)\right)\right)(f[U] \cap V=\emptyset) \\
& \Rightarrow\left(\exists U \in e^{*} \theta O\left(X, x_{1}\right)\right)\left(\exists V \in O\left(Y, f\left(x_{2}\right)\right)\right)\left(U \cap f^{-1}[V]=\emptyset\right) \\
& \Rightarrow\left(\exists U \in e^{*} \theta O\left(X, x_{1}\right)\right)\left(x_{2} \notin U\right)
\end{aligned}
$$

Then X is $e^{*} \theta-T_{0}$. On the other hand, the notions of $e^{*} \theta-T_{0}$ and $e^{*} \theta-T_{1}$ are equivalent from Theorem 4.1. Thus X is $e^{*} \theta-T_{1}$.

Theorem 4.9. If $f: X \rightarrow Y$ has an $e^{*} \theta$-closed graph and X is an $e^{*} \theta c$-space, then $f^{-1}[K]$ is $e^{*} \theta$-closed for every compact subset K of Y.

Proof. Let K be a compact subset of Y and let $x \notin f^{-1}[K]$.

$$
\begin{aligned}
& \left.x \notin f^{-1}[K] \Rightarrow f(x) \notin K \Rightarrow(\forall y \in K)(y \neq f(x)) \Rightarrow(x, y) \in(X \times Y) \backslash G(f), \begin{array}{r}
\\
G(f) \text { is } e^{*} \theta \text {-closed }
\end{array}\right\} \Rightarrow \\
& \left.\begin{array}{r}
\Rightarrow\left(\exists U_{y} \in e^{*} \theta O(X, x)\right)\left(\exists V_{y} \in O(Y, y)\right)\left(f\left[U_{y}\right] \cap V_{y}=\emptyset\right) \\
\mathcal{A}:=\left\{V_{y} \mid y \in K\right\}
\end{array}\right\} \Rightarrow \\
& \left.\left.\begin{array}{r}
\Rightarrow(\mathcal{A} \subseteq O(Y))(K \subseteq \cup \mathcal{A}) \\
K \text { is compact }
\end{array}\right\} \Rightarrow \begin{array}{r}
\left(\exists \mathcal{A}^{*} \subseteq \mathcal{A}\right)\left(\left|\mathcal{A}^{*}\right|<\aleph_{0}\right)\left(K \subseteq \cup \mathcal{A}^{*}\right) \\
U:=\cap\left\{U_{y_{i}} \mid=1,2, \ldots, n\right\}
\end{array}\right\} \underset{\text { is } e^{* *} \theta c \text {-space }}{\Rightarrow} \\
& \Rightarrow\left(U \in e^{*} \theta O(X, x)\right)(f[U] \cap K=\emptyset) \\
& \Rightarrow\left(U \in e^{*} \theta O(X, x)\right)\left(U \cap f^{-1}[K]=\emptyset\right) \\
& \Rightarrow\left(U \in e^{*} \theta O(X, x)\right)\left(U \subseteq \backslash f^{-1}[K]\right) \\
& \Rightarrow x \in e^{*}-i n t_{\theta}\left(X \backslash f^{-1}[K]\right) \\
& \stackrel{\text { Lemma }}{\Rightarrow}{ }^{2.3(7)} x \in X \backslash e^{*}-c l_{\theta}\left(f^{-1}[K]\right) \\
& \Rightarrow x \notin e^{*}-\operatorname{cl}_{\theta}\left(f^{-1}[K]\right) \text {. }
\end{aligned}
$$

Definition 4.5. A topological space X is said to be:
a) strongly $e^{*} \theta C$-compact if every $e^{*} \theta$-closed cover of X has a finite subcover (resp. $A \subseteq X$ is strongly $e^{*} \theta C$-compact if the subspace A is strongly $e^{*} \theta C$-compact),
$b)$ nearly compact [26] if every regular open cover of X has a finite subcover.

Theorem 4.10. If $f: X \rightarrow Y$ is an almost contra $e^{*} \theta$-continuous surjection and X is strongly $e^{*} \theta C$-compact, then Y is nearly compact.

Proof. Let $\mathcal{B} \subseteq R O(Y)$ and $Y=\cup \mathcal{B}$.

$$
\left.\left.\begin{array}{r}
(\mathcal{B} \subseteq R O(Y))(Y=\cup \mathcal{B}) \\
f \text { is a.c.e } e^{*} \theta . c .
\end{array}\right\} \Rightarrow\left(\mathcal{A}:=\left\{f^{-1}[B] \mid B \in \mathcal{B}\right\} \subseteq e^{*} \theta C(X)\right)(X=\cup \mathcal{A})\right\}
$$

$$
\begin{aligned}
& \left.\begin{array}{r}
\left(\exists \mathcal{A}^{*} \subseteq \mathcal{A}\right)\left(\left|\mathcal{A}^{*}\right|<\aleph_{0}\right)\left(X=\cup \mathcal{A}^{*}\right) \\
f \text { is surjective }
\end{array}\right\} \Rightarrow \\
& \Rightarrow\left(\mathcal{B}^{*}:=\left\{f[A] \mid A \in \mathcal{A}^{*}\right\} \subseteq \mathcal{B}\right)\left(\left|\mathcal{B}^{*}\right|<\aleph_{0}\right)\left(Y=\cup \mathcal{B}^{*}\right) .
\end{aligned}
$$

We recall that a topological space X is said to be almost regular [25] if for each regular closed set F of X and each point $x \in X \backslash F$, there exist disjoint open sets U and V such that $F \subseteq V$ and $x \in U$.

Theorem 4.11. If a function $f: X \rightarrow Y$ is almost contra $e^{*} \theta$-continuous and Y is almost regular, then f is almost $e^{*} \theta$-continuous.

Proof. Let $x \in X$ and $V \in O(Y, f(x))$.

$$
\begin{aligned}
& \left.\begin{array}{r}
(x \in X)(V \in O(Y, f(x))) \\
Y \text { is almost regular }
\end{array}\right\} \stackrel{\text { Lemma } 2.8}{\Rightarrow} \\
& \left.\begin{array}{r}
\Rightarrow(\exists W \in R O(Y, f(x)))(c l(W) \subseteq \operatorname{int}(c l(V))) \\
f \text { is a.c.e } \theta . c .
\end{array}\right\} \stackrel{\text { Theorem }}{\Rightarrow}{ }^{3.1(3)} \\
& \Rightarrow\left(\exists U \in e^{*} \theta O(X, x)\right)(f[U] \subseteq c l(W) \subseteq \operatorname{int}(c l(V))) .
\end{aligned}
$$

Definition 4.6. The $e^{*} \theta$-frontier of a subset A, denoted by $F r_{e^{*} \theta}(A)$, is defined as $F r_{e^{*} \theta}(A)=e^{*}-c l_{\theta}(A) \backslash e^{*}-i n t_{\theta}(A)$, equivalently $F r_{e^{*} \theta}(A)=e^{*}-c l_{\theta}(A) \cap e^{*}-c l_{\theta}(X \backslash A)$.

Theorem 4.12. The set of points $x \in X$ on which $f: X \rightarrow Y$ is not almost contra $e^{*} \theta$-continuous is identical with the union of the $e^{*} \theta$-frontiers of the inverse images of regular closed sets of Y containing $f(x)$.

$$
\begin{aligned}
& \text { Proof. Let } A:=\{x \mid f \text { is not a.c.e } \theta \text {.c. at } x \in X\} . \\
& \begin{aligned}
x \in A & \Rightarrow f \text { is not a.c.e } \theta \text {.c. at } x \\
& \Rightarrow(\exists V \in R C(Y, f(x)))\left(\forall U \in e^{*} \theta O(X, x)\right)(f[U] \nsubseteq V) \\
& \Rightarrow(\exists V \in R C(Y, f(x)))\left(\forall U \in e^{*} \theta O(X, x)\right)\left(U \cap\left(X \backslash f^{-1}[V]\right) \neq \emptyset\right) \\
& \Rightarrow\left(x \in f^{-1}[V]\right)\left(x \in e^{*}-c l_{\theta}\left(X \backslash f^{-1}[V]\right)=X \backslash e^{*}-\operatorname{int}_{\theta}\left(f^{-1}[V]\right)\right) \\
& \Rightarrow x \in F r_{e^{*} \theta}\left(f^{-1}[V]\right)
\end{aligned}
\end{aligned}
$$

Then we have $A \subseteq \cup\left\{F r_{e^{*} \theta}\left(f^{-1}[V]\right) \mid V \in R C(Y, f(x))\right\} \ldots(*)$

$$
\left.\begin{array}{l}
x \notin A \Rightarrow f \text { is a.c. } e^{*} \theta . c . \text { at } x \\
\quad V \in R C(Y, f(x))
\end{array}\right\} \Rightarrow\left(\exists U \in e^{*} \theta O(X, x)\right)\left(U \subseteq f^{-1}[V]\right)
$$

Then we have $\cup\left\{F r_{e^{*} \theta}\left(f^{-1}[V]\right) \mid V \in R C(Y, f(x))\right\} \subseteq A \ldots(* *)$
$(*),(* *) \Rightarrow A=\cup\left\{\operatorname{Fr}_{e^{*} \theta}\left(f^{-1}[V]\right) \mid V \in R C(Y, f(x))\right\}$.

Acknowledgement

We would like to thank the editor and the referees for their valuable suggestions and comments which are improved the value of the paper. This work is supported by the Scientific Research Project Fund of Muğla Sıtkı Koçman UNIVERSITY under the project number 17/277.

References

[1] D. Andrijević, On b-open sets, Mat. Vesnik, 48 (1996), 59-64.
[2] S.P. Arya and M.P. Bhamini, Some generalizations of pairwise Urysohn spaces, Indian J. Pure Appl. Math., 18 (1987), 1088-1093.
[3] B.S. Ayhan and M. Özkoç, On contra $e^{*} \theta$-continuous functions (Submitted)
[4] C.W. Baker, On contra almost β-continuous functions in topological spaces, Kochi J. Math., 1 (2006), 1-8.
[5] M. Caldas, M. Ganster, S. Jafari, T. Noiri and V. Popa, Almost contra $\beta \theta$-continuity in topological spaces, J. Egyptian Math. Soc., 25(2) (2017), 158-163.
[6] D. Carnahan, Some properties related to compactness in topological spaces, Ph. D. Thesis, Univ. of Arkansas, 1973.
[7] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. Math. Sci., 19 (1996), 303-310.
[8] E. Ekici, Almost contra-precontinuous functions, Bull. Malaysian Math. Sci. Soc., 27 (2006), 53-65.
[9] , Another form of contra-continuity, Kochi J. Math., 1 (2006), 21-29.
$[10]-$, On a-open sets, \mathcal{A}^{*}-sets and decompositions of continuity and super-continuity, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 51 (2008), 39-51.
$[11]-$ On e-open sets, $\mathcal{D P}^{*}$-sets and $\mathcal{D P} \mathcal{E}^{*}$-sets and decompositions of continuity, Arabian J. Sci. Eng., 33(2A) (2008), 269-282.
$[12]-$, On e^{*}-open sets and $(\mathcal{D}, \mathcal{S})^{*}$-sets, Math. Morav., 13(1) (2009), 29-36.
$[13]-$, New forms of contra-continuity, Carpathian J. Math., 24(1) (2008), 37-45.
$[14] \quad$, Some weak forms of δ-continuity and e^{*}-first-countable spaces (Submitted)
[15] A.M. Farhan and X.S. Yang, New types of strongly continuous functions in topological spaces via δ - β-open sets, Eur. J. Pure Appl. Math., 8(2) (2015), 185-200.
[16] J.E. Joseph and M.H. Kwack, On S-closed spaces, Proc. Amer. Math. Soc., 80 (1980), 341-348.
[17] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
[18] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.
[19] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
[20] T. Noiri, Almost quasi-continuous functions, Bull. Inst. Math. Acad. Sinica, 18(4) (1990), 321332.
[21] T. Noiri, On almost continuous functions, Indian J. Pure Appl. Math., 20 (1989), 571-576.
[22] M. Özkoç and K.S. Atasever, On some forms of e^{*}-irresoluteness, J. Linear Topol. Algebra, (in press).
[23] J.H. Park, B.Y. Lee and M.J. Son, On δ-semiopen sets in topological space, J. Indian Acad. Math., 19(1) (1997), 59-67.
[24] S. Raychaudhuri and M.N. Mukherjee, On δ-almost continuity and δ-preopen sets, Bull. Inst. Math. Acad. Sinica, 21 (1993), 357-366.
[25] M.K. Singal and S.P. Arya, On almost-regular spaces, Glasnik Mat. Ser. III, 4(24), (1969), 89-99.
[26] M.K. Singal and A. Mathur, On nearly compact spaces, Boll. Un. Mat. Ital.,, 4(2) (1969), 702-710.
[27] T. Soundarajan, Weakly Hausdorff space and the cardinality of topological spaces, General Topology and its Relation to Modern Analysis and Algebra III, Proc. Conf. Kampur, 168, Acad. Prague (1971), 301-306.
[28] M.H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 375-381.
[29] G.J. Wang, On S-closed spaces, Acta Math. Sinica, 24 (1981), 55-63.
[30] N.V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl. (2), 78 (1968), 103-118.
(1) Muğla Sitki Koçman University, Faculty of Science, Department of Mathematics 48000 Menteşe-MuğLa/TURKEY

E-mail address: brcyhn@gmail.com
(2) Muğla Sitki Koçman University, Faculty of Science, Department of Mathematics 48000 Menteşe-MuğLa/TURKEY E-mail address: murad.ozkoc@mu.edu.tr \& murad.ozkoc@gmail.com

[^0]: 2000 Mathematics Subject Classification. 54C08, 54C10, 54C05.
 Key words and phrases. $e^{*} \theta$-open set, $e^{*} \theta$-closed set, almost contra $e^{*} \theta$-continuity, almost $e^{*} \theta$ continuity, $e^{*} \theta$-continuity, $e^{*} \theta$-closed graph.

 Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.
 Received: April 14, 2018
 Accepted: Jul. 9, 2018.

