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Abstract This study proposes a new fuzzy time series

model based on Fuzzy C-Regression Model clustering

algorithm (FCRMF). There are two major superiorities of

FCRMF in comparison with existing fuzzy time series

model based on fuzzy clustering. The first one is that

FCRMF partitions data set by taking into account the

relationship between the classical time series and lagged

values, and thus, it gives the more realistic clustering

results. The second one is that FCRMF produces different

forecasting values for each data point, while the other

fuzzy time series methods produce same forecasting values

for many data points. In order to validate the forecasting

performance of proposed method and compare it to the

other fuzzy time series methods based on fuzzy clustering,

six simulation studies and two real-time examples are

carried out. According to goodness-of-fit measures, it is

observed that FCRMF provides the best forecasting results,

especially in cases when time series are not stationary.

When considering that fuzzy time series was proposed

especially for cases that time series do not satisfy statistical

assumptions such as the stationary, this is very important

advantage.

Keywords Time series � Fuzzy time series � Fuzzy
clustering � Fuzzy C-Regression Model � Forecasting

1 Introduction

Time series analysis is widely used in many fields

including disciplines such as economy, finance, medicine,

astronomy and environment science, and various models

have been proposed in order to model the behavior of time

series. Statistical time series models such as autoregressive

model (AR), moving average model (MA), autoregressive

moving average (ARMA) and autoregressive integrated

moving average (ARIMA) are one particular important

groups of these models. However, these models are based

on strict statistical assumptions. Some of these assumptions

are: Time series has to be stationary, error terms have to

follow standard normal distribution, and the number of data

points of time series should be at least 50. It is very difficult

to satisfy these assumptions for real-time series. Besides,

statistical time series models cannot deal with forecasting

problems in which time series data have uncertainty data

points. Therefore, fuzzy time series methods have been

getting more and more attractive in recent years.

The definition of fuzzy time series firstly was introduced

by Song and Chissom [1–3]. They proposed a fuzzy time

series model that consists of four steps: (i) dividing the

universe discourse into subintervals, (ii) defining fuzzy sets

and fuzzification of classical time series (Y tð ÞÞ, (iii)

determining the fuzzy relations between fuzzy sets and (iv)

forecasting and defuzzification. Since the studies of Song

and Chissom [1–3], a number of fuzzy time series models

were proposed to improve the steps of fuzzy time series

model proposed by them and enhance the forecasting

performance. Sullivan and Woodall [4] analyzed two fuzzy

time series methods, first-order time-invariant and time-

variant. They compared forecasting results obtained from

these models with a time-invariant Markov model and

three classical time series models. Chen [5] proposed the
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new fuzzy time series model to forecast enrollment data of

University of Alabama. The method proposed by Chen [5]

uses simplified arithmetic operations in step of determining

fuzzy relations when comparing with the method proposed

by Song and Chissom [1]. Hwang et al. [6] also aimed to

simplify the arithmetic operation process. Huarng [7]

proposed heuristics models of fuzzy time series. This

model integrates heuristic knowledge relating the problem

with the model proposed by Chen [5]. Huarng [8] also

showed that the selection of length of interval in step of

dividing universe discourse highly affects the forecasting

performance of fuzzy time series and proposed two meth-

ods based on distribution and average of the time series.

Huarng and Yu [9] suggested an approach based on ratios,

instead of equal lengths of intervals. Yolcu et al. [10] and

Eğrioğlu et al. [11] proposed a new approach in order to

determine the lengths of intervals based on single-variable

constrained optimization. In order to partition universe

discourse by taking into account the distributions of data

points and consequently improve forecasting accuracy,

some studies [12–15] used fuzzy clustering algorithms in

the fuzzification step. Using fuzzy clustering algorithms

annihilates the problem of determining interval length.

Besides, fuzzy time series models can be divided into two

groups according to order of fuzzy time series. Most of

these studies are based on first-order fuzzy time series.

Some studies used higher-order fuzzy time series models

[16–21].

This study proposes a new first-order fuzzy time series

model based on Fuzzy C-Regression Model (FCRM)

clustering algorithm proposed by Hathaway and Bezdek

[22]. There are two important advantages of proposed

algorithm as follows:

(i) Existing fuzzy time series models based on fuzzy

clustering only consider time series itself in clus-

tering process and that successive time data points

are independent. This leads to rule out the stochastic

relationship between classical time series ðYðtÞÞ
and its lagged values Y t � 1ð Þ; Y t � 2ð Þ; . . .ð Þ that
can be modeled by the statistical models such as

AR, MA and ARMA. In the proposed fuzzy time

series method, clustering process is carried out by

taking into account the stochastic relationship

between successive time data points since the

cluster center of FCRM that is used the fuzzification

step is defined as autoregressive model. Thus, with

the use of FCRM, more realistic forecasting results

are obtained since both classical and fuzzy rela-

tionship in the time series are considered

simultaneously.

(ii) In most of fuzzy time series models, forecasting

values as much as number of fuzzy relations are

obtained. Thus, same forecasting values are

obtained for many time data points since fuzzy

relations less than the number of data points are

obtained. However, proposed method produces

different forecasting values for each data point.

(iii) The forecasting performance of existing fuzzy

time series models is highly dependent on the

length of interval or the number of clusters. In

these methods, as the length of interval or the

number of clusters increases, the forecasting

performance increases. In the proposed method,

the forecasting performance is even considerably

good in the small number of clusters.

In order to evaluate the forecasting performance of pro-

posed fuzzy time series method, six simulation studies and

two real-time examples are carried out. Experimental

results show that proposed model gives the better fore-

casting results when comparing other fuzzy time series

models based on fuzzy clustering. The rest of this paper is

organized as follows. In Sect. 2, some important definitions

related to fuzzy time series are given. In Sect. 3, fuzzy time

series methods based on fuzzy clustering is summarized. In

Sect. 4, proposed fuzzy time series method is introduced.

In Sect. 5, six simulations studies and two real-time

examples are carried out in order to evaluate the perfor-

mance of the proposed method. Section 6 concludes the

paper.

2 Basic Concepts of Fuzzy Time Series

In this section, some definitions are given to understand the

concepts of fuzzy time series.

Definition 2.1 Let U be the universe of discourse with

U ¼ u1; u2; . . .; ucf g. A fuzzy set Ai i ¼ 1; 2; ::; cð Þ of U is

defined as follows:

Ai ¼
fAi

u1ð Þ
u1

þ fAi
u2ð Þ
u2

þ � � � þ fAi
ucð Þ
uc

; ð1Þ

where fAi
: U ! 0; 1½ � is the membership function of the

fuzzy set Ai, fAi
urð Þ denotes the membership degree of the

element ur to the fuzzy set Ai, i; r ¼ 1; 2; . . .; c.

Definition 2.2 Let Y tð Þ 2 R1; t ¼ 0; 1; 2. . . be the uni-

verse of discourse defined by fuzzy set Ai, and if F tð Þ is a
collection of Ai i ¼ 1; 2; . . .; cð Þ, then F tð Þ is called a fuzzy

time series on Y tð Þ t ¼ 1; 2; . . .ð Þ.

Definition 2.3 If F tð Þ is caused by F t � 1ð Þ, then the

first-order model relation of F tð Þ can be represented as

F tð Þ ¼ F t � 1ð ÞoR t; t � 1ð Þ, where R t; t � 1ð Þ is a fuzzy

relation between F tð Þ and F t � 1ð Þ and ‘‘o’’ denotes the

max–min composition operator.
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Definition 2.4 Suppose F tð Þ ¼ Ai and F t � 1ð Þ ¼ Aj,

then fuzzy logical relationship between F tð Þ and F t � 1ð Þ
can be represented as Ai ! Aj.

3 Fuzzy Time Series Method Based on Fuzzy
Clustering

Fuzzy time series method firstly proposed by Song and

Chissom [1–3] consists of four steps: (i) dividing the uni-

verse discourse into subintervals ðUÞ, (ii) defining fuzzy

subsets of the universe discourse and fuzzification of

classical time series (Y tð Þ), (iii) deriving fuzzy relations

from the fuzzy time series and iv) forecasting and

defuzzification.

The steps of dividing universe discourse and fuzzifica-

tion play an important role in the forecasting performance

of fuzzy time series. In the most of fuzzy time series lit-

erature [1–3, 5, 7, 8, 16, 19], the process of dividing uni-

verse of discourse U is defined as follows: Starting and

ending points of U are determined as follows:

U ¼ Dmin � D1;Dmax þ D2½ � ¼ D3;D4½ �; ð2Þ

where Dmin and Dmax are the minimum and maximum

values of classical time series data Y tð Þ, respectively, and
D1 and D2 are two arbitrary values defined by user. The

closed interval ½D3;D4� must contain all values of Y tð Þ. U
is partitioned into equal-width intervals according to pre-

defined interval length, and ui ði ¼ 1; 2; . . .; cÞ subintervals
are determined. However, this kind of partitioning may not

give good forecasting results in cases where the distribu-

tion of Y tð Þ is not uniform. As mentioned in Introduction,

some studies use fuzzy clustering algorithm in order to

partition universe discourse by taking into account the

distributions of data points. General framework fuzzy time

series based on fuzzy clustering [12–15] is presented as

follows:

Step 1 Dividing the universe discourse into subintervals

by using fuzzy clustering.

Fuzzy clustering algorithms such as Fuzzy C-Means

[23] and Gustafson-Kessel [24] are applied to classical

time series, and it is partitioned into 2� c\n number of

fuzzy clusters. As a result of fuzzy clustering, c number of

cluster centers ðv1; v2; . . .; vcÞ and membership degrees of

data points (utit ¼ 1; 2. . .; n; i ¼ 1; 2; . . .; c where n is the

number of data points in time series) to these clusters are

obtained.

Step 2 Fuzzification of classical time series.

Cluster centers are sorted ascending, and these sorted

clusters are used to determine fuzzy sets. The fuzzy sets are

represented by Aii ¼ 1; 2; . . .c. Each data point is assigned

to a fuzzy set according to its maximum membership value.

Step 3 Establishing fuzzy relations between the fuzzy

sets.

For the first-order fuzzy time series, one lagged fuzzy

sets of the fuzzy set at time tðt ¼ 1; 2; . . .; n;) are obtained.

For example, let Ai be fuzzy set at time t and Aj;Ap;As be

one lagged fuzzy sets of Ai. Then, the fuzzy relation

between F tð Þ and F t � 1ð Þ is denoted as Ai ! Aj;Ap;As.

As a result of this step, fuzzy relation matrix (R) with size

ðcxcÞ is obtained. The elements of this matrix are equal to

one or zero. For fuzzy relation Ai ! Aj;Ap;As, elements

rij; rip and ris of matrix R are equal to one, and the others

are equal to zero.

Step 4 Forecasting and defuzzification.

Forecasting values are obtained at two steps.

Step 4.1 Fuzzy relation matrix Rcxcð Þ is multiplied by

cluster center vector Vcx1ð Þ, and vector RV with size cx1 is

obtained.

Step 4.2 c number of forecasting values are obtained by

using the following equations:

ŷi ¼
RViPc
j¼1 rij

i ¼ 1; 2; . . .c; ð3Þ

where if F tð Þ ¼ Ai t ¼ 1; 2; . . .; ni ¼ 1; 2; . . .; cð Þ, then

forecasting value of F tð Þ is equal to ŷi. It is noted that c\n

number of forecasting values are obtained for n number of

data points. Thus, fuzzy time series method based on FCM

and GK does not produce realistic forecasting results. This

study proposes to use Fuzzy C-Regression Model cluster-

ing algorithm in the fuzzification step, differently from

[12, 14].

4 Fuzzy Time Series Method Based on Fuzzy
C-Regression Model

This section presents the proposed fuzzy time series

method based on Fuzzy C-Regression Model (FCRMF).

Firstly, Fuzzy C-Regression Model clustering algorithm

used in the fuzzification step is given and then algorithm of

proposed method is described.

4.1 Fuzzy C-Regression Model Clustering

Algorithm

Fuzzy C-Regression Model (FCRM) clustering algorithm

was proposed by Hathaway and Bezdek22 and can be

viewed as an extension of FCM [23] to linear cluster
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centers. In the other words, while FCM finds dot-shaped

clusters fi ¼ vi1; vi2ð Þð Þ, FCRM finds the linear function-

shaped clusters such as fi ¼ /i0 þ /i1yt�1 þ � � � þ /ipyt�p.

For first-order autoregressive model, assume the data to

be clustered, Y ¼ f ðy1;y2Þ; y2; y3ð Þ; . . .; yt�1; ytð Þ; . . .;
yn�1; ynð Þg, come from c number of fuzzy regression

models. In this case, the cluster centers of i: cluster can be

expressed as autoregressive model [25]:

fi yt;/ið Þ ¼ /i0 þ /i1yt�1 t ¼ 1; 2; . . .n; i ¼ 1; 2; . . .; c;

ð4Þ

where /i i ¼ 1; 2; . . .; cð Þ is the parameter vector to be

estimated, yt is the current value of the time series, and yt�1

is the one lagged values of time series yt.

FCRM clustering algorithm is based on obtaining the

update equations for membership values (uti) and param-

eter /ið Þ to be minimized the following objective function:

J Y;U;/ð Þ ¼
Xn

t¼1

Xc

i¼1

umti yt � fi yt;/ið Þð Þ2; ð5Þ

where n is the number of time data points, c is the number

of clusters, 1\m\1 is the fuzziness index, and uti is the

membership degree of t data point to i cluster. uti has to

satisfy the following conditions:

uti 2 0; 1½ � t ¼ 1; 2; . . .; n i ¼ 1; 2; . . .; c ð6Þ

0\
Xn

t¼1

uti\n i ¼ 1; 2; . . .; c ð7Þ

Xc

i¼1

uti ¼ 1 t ¼ 1; 2; . . .; n: ð8Þ

Update equations for parameters are as follows:

/i ¼ X1WiX1½ ��1
XT
1WiY i ¼ 1; 2; . . .c ð9Þ

X1 and Wi are given in (10) and (11), respectively.

X1 ¼

1 y1
1

..

.

1

y2

..

.

yt�1

0

B
B
@

1

C
C
A; ð10Þ

where y1; y2; . . .; yt�1 is the successive elements of the time

series under consideration:

Wi ¼

u1i 0 . . . 0

0

..

.

0

u2i . . . 0

..

. ..
. ..

.

0 . . . uni

0

B
B
@

1

C
C
A; ð11Þ

where uti is calculated as follows:

uti ¼
Xc

k¼1

yt � fi yt;/ið Þð Þ2

yt � fk yt;/kð Þð Þ2

 ! 1
m�1

t ¼ 1; 2; . . .; n; i ¼ 1; 2; . . .; c:

ð12Þ

The working principle of FCRM is summarized in Table 1.

As can be seen in Table 1, FCRM is carried out through

an iterative minimization of the objective function given in

(5) with the update of the parameter vectors computed in

(9) and membership degree in (12).

4.2 Algorithm of the Proposed Method

In this section, fuzzy time series method based on FCRM

clustering algorithm is proposed. The proposed algorithm

consists of four steps as is the other fuzzy time series

methods.

Step 1 Apply FCRM to classical time series y tð Þ.

FCRM presented in Sect. 4.1 with number of clusters c

is applied to classical time series data y tð Þð Þ. As a result of
FCRM, membership degrees

uti t ¼ 1; 2; . . .; n i ¼ 1; 2; . . .; cð Þ to be utilized in the

fuzzification step and parameters /i i ¼ 1; 2; . . .; cð Þ and

cluster centers fi yt;/ið Þ ðt ¼ 1; 2; . . .; ni ¼ 1; 2; . . .; c) given

in Eq. (4) are obtained.

Step 2 Fuzzification.

In this step, classical time series Ytð Þ is transformed to

fuzzy time series F tð Þð Þ. For this purpose, firstly, the

cluster number related to maximum membership degree is

found for each time data point. For example, if k time data

point belongs to cluster i with maximum membership

degree, fuzzy equivalent of k time data point is F kð Þ ¼ Ai,

where Ai is the i fuzzy set.

Step 3 Defining fuzzy relations.

For the first-order model, fuzzy set that corresponds to

F t � 1ð Þ for each F tð Þ t ¼ 1; 2; . . .; nð Þ is found. If F tð Þ ¼
Ai and F t � 1ð Þ ¼ Aj;Ap;As

� �
, fuzzy relation is expressed

Table 1 Working principle of FCRM

Step 1 Initialization

Determining initial values such as number of clusters c,

fuzziness index m, termination criteria e and initial

membership matrix U

Step 2 Estimate parameters /i i ¼ 1; 2; ::; cð Þ by using Eq. (9)

Step 3 Calculate membership degrees uti by using Eq. (12)

Step 4 If Ur � Ur�1
�
�

�
�\e, then terminate algorithm, otherwise go

to Step 2 (where r is iteration number)

Step 5 Calculate the value of cluster center for each data point

based on Eq. (4)
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as Ai ! Aj;Ap;As. Fuzzy relation matrix Rcxcð Þ is estab-

lished by using these fuzzy relations similar to other fuzzy

time series methods. To give an example, at the result of

fuzzification operation, let us obtain F tð Þ ¼

A1;A1;A3;A1;A2;A2;A3ð Þ for the time series y tð Þ consisted
of 7 time data points and consider the number of clusters is

equal to 3. In the circumstances, fuzzy relation is deter-

mined as below:

Table 2 Success percentages

of FCMF, GKF and FCRMF for

non-stationary time series with

length 50

No. of clusters MAPE-training (%) RMSE-training (%) MAPE-test (%) RMSE-test (%)

c = 5

FCMF 0 0 0 0

GKF 0 0 0 0

FCRMF 100 100 100 100

c = 10

FCMF 0 0 0 0

GKF 0 0 0 0

FCRMF 100 100 100 100

c = 15

FCMF 0 0 0 0

GKF 0 0 0 0

FCRMF 100 100 100 100

c = 20

FCMF 0 0 0 0

GKF 0 0 0 0

FCRMF 100 100 100 100

c = 25

FCMF 0 0 0 0

GKF 0 0 0 0

FCRMF 100 100 100 100

Table 3 Success percentages

of FCMF, GKF and FCRMF for

non-stationary time series with

length 100

No. of clusters MAPE-training (%) RMSE-training (%) MAPE-test (%) RMSE-test (%)

c = 5

FCMF 0 0 0 0

GKF 0 0 0 0

FCRMF 100 100 100 100

c = 10

FCMF 0 0 0 0

GKF 0 0 0 0

FCRMF 100 100 100 100

c = 15

FCMF 0 0 0 0

GKF 0 0 0 0

FCRMF 100 100 100 100

c = 20

FCMF 0 0 0 0

GKF 0 0 0 0

FCRMF 100 100 100 100

c = 25

FCMF 0 0 0 0

GKF 0 0 0 0

FCRMF 100 100 100 100
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Fig. 1 RMSE and MAPE values for non-stationary time series with length 50 and c ¼ 25

Table 4 Success percentages

of FCMF, GKF and FCRMF for

non-stationary time series with

length 150

No. of clusters MAPE-training (%) RMSE-training (%) MAPE-test (%) RMSE-test (%)

c = 5

FCMF 0 0 0 0

GKF 0 0 0 0

FCRMF 100 100 100 100

c = 10

FCMF 0 0 0 0

GKF 0 0 0 0

FCRMF 100 100 100 100

c = 15

FCMF 0 0 0 0

GKF 0 0 0 0

FCRMF 100 100 100 100

c = 20

FCMF 0 0 0 0

GKF 0 0 0 0

FCRMF 100 100 100 100

c = 25

FCMF 0 0 0 0

GKF 0 0 0 0

FCRMF 100 100 100 100
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A1 ! A1;A3 ! A1;A1 ! A3;A2 ! A1;A2 ! A2;A3 ! A2

A1 ! A1;A3

A2 ! A1;A2

A3 ! A1;A2

Fuzzy relation matrix R is obtained as follows:

R ¼
1 0 1

1 1 0

1 1 0

0

@

1

A:

Step 4 Forecasting and defuzzification.

Step 4.1 Fuzzy relation matrix Rcxcð Þ defined in the pre-

vious step is multiplied by cluster center matrix Vcxnð Þ, and
forecasting matrix RVð Þ is calculated. Vcxn is constructed as

follows:

V ¼

f1 y1;/1ð Þ f1 y2;/1ð Þ . . . f1 yn;/1ð Þ
f2 y1;/2ð Þ

..

.

fc y1;/cð Þ

f2 y2;/2ð Þ . . . f2 yn;/2ð Þ
..
.

. . . ..
.

fc y2;/cð Þ . . . fc yn;/cð Þ

0

B
B
B
@

1

C
C
C
A
: ð13Þ

Step 4.2 If the fuzzy set for k time data point is Ai, then

forecasting value for this point is calculated as follows:

ŷk ¼ RVik=
Xc

j¼1

rij i ¼ 1; 2; . . .; c k ¼ 1; 2; . . .; n; ð14Þ

where rij is i row and j column element of fuzzy relation

matrix (R).

5 Experimental Results

In order to validate the performance of the proposed fuzzy

time series model and compare it with the performance of

the fuzzy time series methods based on Gustafson-Kessel

(GKF) [14] and Fuzzy C-Means (FCMF) [12], six simu-

lation studies and two real-time examples are carried out.

In the first real time example, 29 time series consisted of

Electricity Consumption Per Capita (ECPC) of Asia

countries are used. The other real-time example is imple-

mented on historical enrollment of Alabama University

from 1971 to 1992, which has been used in fuzzy time

series studies in the literature. In simulation studies, time

series with length 50,100 and 150 are generated as follows:

Y tð Þ ¼ /1Y t � 1ð Þ þ e tð Þ; ð15Þ

where e tð Þ follows standard normal distribution and
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Fig. 2 RMSE and MAPE values for non-stationary time series with length 100 and c ¼ 25
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Table 5 Success percentages

of FCMF, GKF and FCRMF for

stationary time series with

length 50

No. of clusters MAPE-training (%) RMSE-training (%) MAPE-test (%) RMSE-test (%)

c = 5

FCMF 0 0 3 3

GKF 0 0 1 2

FCRMF 100 100 96 95

c = 10

FCMF 1 1 5 3

GKF 0 0 2 4

FCRMF 99 99 93 93

c = 15

FCMF 1 2 13 10

GKF 2 1 5 3

FCRMF 97 97 82 87

c = 20

FCMF 5 5 8 10

GKF 5 7 6 4

FCRMF 90 88 86 86

c = 25

FCMF 5 5 8 10

GKF 5 7 6 4

FCRMF 90 88 86 86
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Fig. 3 RMSE and MAPE values for non-stationary time series with length 150 and c ¼ 25
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Y t � 1ð Þ is one lagged value of Y tð Þ t ¼ 1; 2; . . .; n. For the

first three simulation studies, one hundred non-stationary

time series Y tð Þð Þ are generated with parameters /1 that

vary between 1 and 1.3. For the last three simulation

studies, one hundred stationary time series are generated

with /1 that vary between 0.2 and 0.8. FCRMF, GKF and

Table 7 Success percentages

of FCMF, GKF and FCRMF for

stationary time series with

length 150

No. of clusters MAPE-training (%) RMSE-training (%) MAPE-test (%) RMSE-test (%)

c = 5

FCMF 0 0 2 0

GKF 0 0 3 0

FCRMF 100 100 95 100

c = 10

FCMF 0 0 6 0

GKF 0 0 2 0

FCRMF 100 100 92 100

c = 15

FCMF 0 0 4 2

GKF 0 0 8 3

FCRMF 100 100 88 95

c = 20

FCMF 0 0 13 4

GKF 0 0 9 6

FCRMF 100 100 78 90

c = 25

FCMF 1 0 7 7

GKF 0 1 15 5

FCRMF 99 99 78 88

Table 6 Success percentages

of FCMF, GKF and FCRMF for

stationary time series with

length 100

No. of clusters MAPE-training (%) RMSE-training (%) MAPE-test (%) RMSE-test (%)

c = 5

FCMF 0 0 4 3

GKF 0 0 7 3

FCRMF 100 100 89 94

c = 10

FCMF 0 1 7 6

GKF 0 0 6 5

FCRMF 100 99 87 89

c = 15

FCMF 0 0 3 4

GKF 1 1 12 8

FCRMF 99 99 85 88

c = 20

FCMF 0 1 6 4

GKF 1 1 9 6

FCRMF 99 98 85 90

c = 25

FCMF 3 2 13 9

GKF 3 5 8 3

FCRMF 94 93 79 88
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FCMF are applied to these time series with 5, 10, 15, 20

and 25 numbers of clusters, respectively. The reasoning of

repeating simulation studies for different lengths of time

series is to evaluate the influence of the length of time

series on the performance of the proposed method. The

goodness-of-fit measures used in the comparisons are mean

absolute percentage error (MAPE) and root-mean-square

error (RMSE), calculated as follows:

MAPE ¼
Xn

t¼1

yt � ŷt�1

yt

�
�
�
�

�
�
�
�� 100

 !
.
n; ð16Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

t¼1 yt � ŷt�1ð Þ2

n

s

; ð17Þ

where n is the number of data points, yt is actual value of

time series, and ŷt is the forecasting value. For compar-

isons, all time series are divided into two mutually exclu-

sive data sets: 95% of time series are designated as the

training sets, and the remaining 5% are designated as test

sets. Training sets are used to construct fuzzy time series

models, and test sets are used to evaluate the performance

in long-term forecasting of the models. The results for

simulation studies have been given as percentage of suc-

cess (PS) of each method calculated as follows:

PS ¼ The number of time series that themethod provides best forecasting results

Total number of time series 100ð Þ � 100;

ð18Þ

where the method having the smallest MSE and MAPE

values is determined as the method providing the best

forecasting results.

5.1 The Simulation Studies Results for Non-

stationary Time Series

Tables 2, 3 and 4 show the PS values defined in Eq. (18)

for time series with length 50, 100 and 150, respectively.

As shown in Tables 2, 3 and 4, FCRMF provides one

hundred percent success for all cases and the forecasting

performance of it does not vary in terms of the length of

time series. Besides, as a result of analyses, it has been

observed that the performance of GK and FCMF increases

as the number of clusters increases. Therefore, in Figs. 1, 2

and 3, MAPE and RMSE values relating to each method

have been given for the case that the number of clusters is

equal to 25.
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According to Figs. 1, 2 and 3, FCRMF has the smallest

MAPE and RMSE values for all cases. Thus, it can be said

that the proposed method produces the best forecasting

results in even case that GKF and FCMF give their best

forecasting results. Besides, the reason that the RMSE and

MAPE values of FCMF cannot be seen in Figs. 1, 2 and 3

is that FCMF and GKF give almost the same results.

5.2 The Simulation Studies Results for Stationary

Time Series

Tables 5, 6 and 7 present the PS values of each method for

stationary time series.

From Tables 5, 6 and 7, it can be seen that the PS values

of the proposed method have decreased, while those of

GKF and FCMF have increased for especially test sets

when comparing with in case of non-stationary time series.

The reason of this can be explained as follows. Stationary

time series do not show massive increase or decrease with

time, and its mean and variance are constant through time.

These properties of stationary time series are compatible

with GKF and FCMF since they produce same forecasting

values for many data points. Figures 4, 5 and 6 denote the

RMSE and MAPE values for 100 number of stationary

time series.

From Figs. 4, 5 and 6, it can be seen that the perfor-

mance of FCRMF is better in training sets in comparison

with test sets and the performance of the proposed method

does not vary according to the length of time series.

5.3 The Results of Real-Time Examples

In this section, GKF, FCMF and FCRMF firstly are applied

to ECPC time series of 29 Asia countries and then FCRMF

and some existing methods are applied to historical

enrollment of Alabama University from 1971 to 1992.

Table 8 provides the RMSE and MAPE values for ECPC

time series.

In Table 8, the cases that FCMF and GKF methods

provide the smallest RMSE and MAPE values are marked

as bold. Accordingly, FCRMF gives the best forecasting

results for 27 of 29 time series in the case of RMSE-

training, all time series in case of MAPE-training, 22 of 29

time series in case of RMSE-test and lastly 23 of 29 time

series in case of MAPE-test. Besides, when looking at the

RMSE and MAPE values in Table 8, it can be seen that
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Fig. 5 RMSE and MAPE values for stationary time series with length 100 and c ¼ 25
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while RMSE and MAPE values of FCRMF are consider-

ably smaller than those of FCMF and GKF in case FCRMF

gives the best results, there is no significant difference

between RMSE and MAPE values in case FCMF or GKF

provides best results. Table 9 shows the comparison results

of FCRMF with some existing fuzzy time series methods.

In Table 9, values marked as bold indicate the cases that

FCRMF is the best with regard to forecasting performance.

Accordingly, it can be said that FCRMF has the best per-

formance and provides a higher forecasting accuracy.

Besides, it can be seen that proposed method gives the

different forecasting value for each data point, while in

other methods same forecasting values are obtained for

many data points.

6 Conclusion

In this study, a new fuzzy time series model based on

FCRM has been proposed. The major superiorities of

proposed model are that it takes into account the rela-

tionship between classical time series and its lagged values

in clustering process (fuzzification step) and it produces the

different forecasting values for each data point. In order to

evaluate the performance of the proposed model, six sim-

ulations studies are carried out. In the first three simulation

studies, one hundred non-stationary time series with length

50, 100 and 150 are generated. Fuzzy time series models

based on FCM, GK clustering algorithm and proposed

model are applied to these time series with 5, 10, 15, 20

and 25 numbers of clusters, respectively. According to

RMSE and MAPE goodness-of-fit measures, it is observed

that proposed method gives the best forecasting results for

all cases. For the last three simulation studies, one hundred

stationary time series are generated and same procedure is

repeated for these time series, and it is observed that the

performance of proposed model decreases and nevertheless

is considerably good when comparing GKF and FCMF.

Besides, according to the results of simulation studies, it is

concluded that the performance of the proposed model is

not affected by the length of time series. Lastly, proposed

model and some existing fuzzy time series models are

applied to two real-time examples: enrollment data set of

Alabama University and electricity power consumption per

capita time series of 29 Asia countries. The results have
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Table 8 RMSE and MAPE values for ECPC time series of Asia countries

Countries Method RMSE-training MAPE-training RMSE-test MAPE-test

Bangladesh FCMF 18.94 11.85 43.32 104.91

GKF 18.94 11.85 43.32 104.91

FCRMF 6.68 2.51 17.36 42.22

Brunei FCMF 14.54 719.87 14.07 1233.71

GKF 14.54 719.83 14.07 1233.68

FCRMF 8.15 291.37 6.28 665.42

China FCMF 16.16 112.96 49.90 1457.07

GKF 16.15 112.94 49.90 1457.06

FCRMF 2.03 12.46 7.29 182.68

Egypt, Arab Rep. FCMF 15.82 98.92 27.73 457.82

GKF 15.81 98.91 27.73 457.80

FCRMF 5.42 27.44 7.43 188.73

India FCMF 12.55 38.05 29.75 206.27

GKF 12.54 38.04 29.75 206.26

FCRMF 3.66 8.04 5.83 46.24

Indonesia FCMF 29.17 46.07 27.38 188.35

GKF 29.17 46.06 27.38 188.35

FCRMF 11.58 9.73 19.92 148.10

Iran FCMF 14.32 143.76 28.67 753.74

GKF 14.32 143.74 28.67 753.72

FCRMF 2.50 21.97 4.94 181.19

Iraq FCMF 11.33 118.24 27.68 297.15

GKF 11.33 118.23 27.68 297.16

FCRMF 12.39 97.49 29.07 315.83

Israel FCMF 8.81 457.73 7.95 597.66

GKF 8.81 457.66 7.94 597.59

FCRMF 3.01 178.10 3.57 313.31

Japan FCMF 6.75 474.53 4.10 413.37

GKF 6.75 474.50 4.10 413.37

FCRMF 2.18 149.62 4.62 493.34

Jordan FCMF 12.59 115.02 29.77 674.62

GKF 12.58 114.98 29.77 674.60

FCRMF 6.69 40.22 4.10 134.05

Korea FCMF 23.77 662.79 26.08 2601.19

GKF 23.77 662.65 26.08 2601.18

FCRMF 11.47 255.49 16.99 1900.80

Kuwait FCMF 26.29 1984.88 8.73 1593.60

GKF 26.29 1984.78 8.73 1593.58

FCRMF 14.17 1311.47 14.26 3024.54

Lebanon FCMF 16.00 254.07 6.63 255.15

GKF 16.00 254.06 6.63 255.15

FCRMF 16.79 251.48 16.95 537.48

Malaysia FCMF 16.93 251.37 22.26 1009.04

GKF 16.93 251.32 22.26 1009.04

FCRMF 11.00 100.10 8.28 452.30

Myanmar FCMF 10.23 5.34 28.78 43.92

GKF 15.37 6.70 24.11 40.58

FCRMF 5.72 3.57 9.35 15.49
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Table 8 continued

Countries Method RMSE-training MAPE-training RMSE-test MAPE-test

Nepal FCMF 19.24 5.95 28.47 32.06

GKF 19.24 5.95 28.47 32.06

FCRMF 7.88 1.65 3.59 4.76

Oman FCMF 51.41 406.70 29.23 1765.85

GKF 51.42 406.64 29.23 1765.84

FCRMF 32.00 92.28 16.75 1128.65

Pakistan FCMF 10.96 32.02 18.78 89.20

GKF 10.96 32.02 18.78 89.20

FCRMF 6.58 13.75 5.04 31.36

Philippines FCMF 5.60 26.88 14.13 94.66

GKF 5.60 26.88 14.13 94.66

FCRMF 4.72 24.96 13.06 87.04

Qatar FCMF 16.29 1750.54 7.02 1319.99

GKF 21.87 2286.50 4.76 846.31

FCRMF 11.29 893.88 21.84 3846.76

Saudi Arabia FCMF 22.14 680.17 20.12 1647.31

GKF 22.14 680.04 20.12 1647.30

FCRMF 8.19 124.85 9.08 848.74

Singapore FCMF 15.10 758.45 12.77 1102.01

GKF 15.09 758.19 12.76 1101.92

FCRMF 2.29 119.38 8.50 922.13

Syrian FCMF 15.85 115.49 22.82 406.25

GKF 15.86 115.48 22.82 406.23

FCRMF 7.75 39.83 26.17 578.13

Thailand FCMF 18.64 143.65 30.33 686.27

GKF 21.06 161.40 26.03 603.50

FCRMF 4.50 35.60 11.78 351.54

Turkey FCMF 15.26 163.60 29.70 779.61

GKF 15.26 163.58 29.70 779.60

FCRMF 2.72 33.74 10.55 283.70

United Arab Emirates FCMF 18.23 1417.86 8.92 1209.61

GKF 18.23 1417.69 8.92 1209.62

FCRMF 4.38 365.92 26.11 3275.03

Vietnam FCMF 20.06 31.18 49.66 512.57

GKF 20.06 31.18 49.66 512.57

FCRMF 4.22 4.28 17.17 249.89

Yemen FCMF 13.53 13.56 25.66 59.80

GKF 13.53 13.56 25.66 59.80

FCRMF 7.74 6.58 11.55 30.62
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been demonstrated that FCRMF is considerably good in

modeling fuzzy time series.
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11. Eğrioğlu, E., Aladağ, C.H., Basaran, M.A., Yolcu, U., Uslu, V.R.:

A new approach based on the optimization of the length of

intervals in fuzzy time series. J. Intell. Fuzzy Syst. 22(1), 15–19
(2011)

12. Cheng, C.H., Cheng, G.W., Wang, J.W.: Multi-attribute fuzzy

time series method based on fuzzy clustering. Expert Syst. Appl.

34, 1235–1242 (2008)

13. Li, S.T., Cheng, Y.C., Lin, S.Y.: A FCM-based deterministic

forecasting model for fuzzy time series. Comput. Math Appl. 56,
3052–3063 (2008)
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