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Abstract In this study, a novel safety-critical online support vector regressor (SVR) con-
troller based on the system model estimated by a separate online SVR is proposed. The
parameters of the controller are optimized using closed-loopmargin notion proposed in Uçak
and Günel (Soft Comput 20(7):2531–2556, 2016). The stability analysis of the closed-loop
system has been actualised to design an architecture where operation is interrupted and safety
is assured in case of instability. The SVR controller proposed in Uçak and Günel (2016) has
been improved to a safety-critical structure by the addition of a failure diagnosis block which
carries out Lyapunov stability analysis and detects failures when the overall system becomes
unstable. The performance of the proposedmethod has been evaluated by simulations carried
out on a process control system. The results show that the proposed safety-critical SVR con-
troller attains good modelling and control performances and failures arising from instability
can be successfully detected.
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1 Introduction

The early detection of failures and faults is crucial to maintain reliability and safety of
modern controlled industrial systems. Thus, system shut-down, breakdown and even catas-
trophes involving human fatalities andmaterial damages can be averted [2]. In case a failure is
detected, the system can be provided to complete the operation safely by taking the necessary
actions [3].

Modern control systems can handle a variety of constraints arising from nonlinearities and
saturations.However, the implementation of control architectures in real time faces significant
certification problems, such as guarantee of convergence, time to converge, stability, robust
stability and robust performance.

The primary objective of every control system design is safety. Safety means that even
in the case of an occuring failure the system should not go into a critical state. Compared
to control systems, safety critical systems have additional requirements concerning safety
related aspects, e.g., failure correction or safety integrity. It is clear that the design of a
safety-critical system is based on detecting and controlling the hazardous actions. A way to
control danger is to use blocking and protection devices, which enable hazardous activities
only when it is safe and ensure safety up to the unavoidable residual risk. Besides, the safety
requirements must clearly specify the hazards that may result from the system and define
suitable blocking and protection devices.

A special case is when the safety-critical system itself is the cause of danger and is not
controlled by any external device. Safety of these systems can be guaranteed by continuous
monitoring of their correct functioning. The software implementation of control laws can be
analyzed by simulation, model checking [4], abstract interpretation [5] and by using some
theorem proving techniques [6]. These tools have frequently been used in the verification
phase of safety critical systems [7].

Model-based control methodologies can be utilized to take precautions in fault diagnosis.
However, the main drawback of this class of methods is that they are influenced by the
modeling errors. Therefore, the quality of fault diagnosis directly depends on the quality
of the model. Owing to their high nonlinear approximation competency, the dynamics of
nonlinear systems have frequently been identified via intelligent methods such as Adaptive
Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and Support
Vector Regressors (SVR) to approximate their future behaviour accurately.

In modelling, SVR generally performs superior than ANN and ANFIS since it ensures
global minimumwhile the latter may get stuck at local minima and the model can be obtained
only locally [8–14]. Therefore, due to their good prediction ability and generalization perfor-
mance, SVR based identification and control methods have frequently been applied in recent
years to obtain highly accurate models and enhanced controller performance [1].

In technical literature, there exist various controller structures based on SVR modelling.
These structures can be examined under two main groups; in the first group, SVR is utilized
to optimize conventional controllers and in the second, SVR is employed directly to derive
the control law. For instance, Wanfeng et al. [15], Zhao et al. [16] and Iplikci [9] proposed to
adjust the parameters of PID controllers via adaptation mechanisms based on system model
obtained by SVR where SVR has been utilized to estimate system Jacobian. To exemplify
the studies in the second group, inverse controller based on SVR proposed by Liu et al. [17],
Wang et al. [18] and Yuan et al. [19], SVR basedmodel predictive controller (MPC) proposed
by Iplikci [20,21], Zhiyong and Xianfang [22] and Shin et al. [23] and SVR controller in
which SVR is utilized directly as a controller block [1] can be cited.
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In this paper, a novel safety-critical SVR controller is proposed to control a nonlinear
dynamical system. The controller proposed in [1] has been improved to detect failures result-
ing from instability. For this purpose, a failure diagnosis block has been integrated to the
controller structure.The controller consists of three main parts: SVR controller, SVR model
of the system and a failure diagnosis block to detect transition of the system from a stable
state to instability. SVR controller parameters are optimized by utilizing the margin between
reference input and system output. A second online SVR is used to estimate the model of the
system to be controlled; the estimated system output is used to tune the controller parameters.
A failure diagnosis block, which is the main contribution of this paper, has been constituted
to analyze the stability of the closed-loop system and to maintain the safety of the overall
architecture. The failure diagnosis block carries out Lyapunov stability derivations and con-
cludes whether the system is in the stable range or it is transiting towards the unstable range.
It signals a stability indicator to provide information about the stability of the system. In
case the overall system becomes unstable, the value of the stability indicator changes and the
system halts to avoid any hazardous result. SVR model of the system is deployed to observe
the possible behaviour of the system in response to controller parameter adjustment as well
as to approximate system Jacobian in stability analysis.

The integration of Lyapunov stability analysis to create a safety-critical architecture was
initially proposed in [7,24–26]. Those publications concentrated mainly on code generation,
and only linear systems were given as examples. States of the system were fed into the
Lyapunov analysis block. The main novelty in our work is that we extend this idea to the
stability analysis of general nonlinear systems, and more importantly stability analysis of the
nonlinear system can be achieved without requiring and observing each state of the system.
State information is not needed in Lyapunov calculations, input and output of the system are
adequate to conclude about stability. Furthermore, the adaptive structure of the SupportVector
Regressor Controller helps to tolerate the instability of the closed loop system to some extent.

The performance of the proposed safety-critical SVR controller has been evaluated by
simulations carried out on a process control system. Robustness of the proposed controller
has been examined by adding parametric uncertainty to the system. The results indicate that
the proposed failure diagnosis block for online SVR controller attains good performance in
detecting failures resulting from transition from stable to unstable operation range.

The paper is organized as follows: Sect. 2 describes the basic principles of online ε-SVR. In
Sect. 3, the proposed control architecture and failure diagnosis block are explained in detail.
Also, the stability analysis of the closed loop system is presented. In Sect. 4, simulation
results for the controller are given for a process control system. The paper ends with a brief
conclusion in Sect. 5.

2 Online ε-Support Vector Regression

Modeling inaccuracies are the main factor that influence the performance of the adaptive
controller structures which are tuned via model based adaptation methodologies. SVR, first
asserted by Vapnik et al. [27–29], has been the leading identification method for nonlinear
control systems among machine-learning algorithms in recent years since it achieves global
minimum and has effective non-linear prediction and generalization competency.

In SVR, first,a non-convex optimization problem in primal form is formulated, then using
Lagrange multipliers method, it is converted to a convex objective function with linear con-
straints, known also as the dual form. Gradient effects which are common in NN and ANFIS
are not observed in SVR, due to its convex objective function and global extremum is obtained
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Fig. 1 ε-Support Vector Regression (a, b), geometric margin (a) and slack variables (b)

[21]. This leads to identification of systemmodels without errors when SVR is used in model
estimation [12].

In this section, a concise description of SVR is given. In Sect. 2.1, the basics of ε-SVR
has been presented. The adjustment rules for online ε-SVR are derived in Sect. 2.2.

2.1 An Overview of ε-Support Vector Regression

This subsection briefly reviews the basic principles of support vector regression. Consider a
training data set:

T = {xi , yi }Ni=1 xi ∈ X ⊆ Rn, yi ∈ R (1)

where N denotes the size of the training data and n is the dimension of the input samples. The
data in T can be represented using a linear regression surface as given in (2) and depictured
in Fig. 1a.

yi = wT xi + b, i = 1, 2, . . . N (2)

where “w” represents the weights of the network, “xi” is the input data, “b” typifies the
bias of regressor and <,> is the inner product [20]. In ε-SVR, ε-error tube representing the
deviations of the all training samples from regression surface underpins the construction of
the optimization problem. Since ε which can be defined as the maximum tolerable error is
initialized to a fixed value at the beginning of the training phase, it can be interpreted as the
maximum training error which the SVR network is allowed to have when learning the data.
In ε-SVR, the optimization problem is based on the maximization of the geometric margin
between the data and regression surface, thus the optimal regression surface is obtained.Using
the approximation of the regressor for frontier points xε and x−ε, the geometricmargin among
the outliers (2ρ = ‖xε − x−ε‖ ) of the ε-tube can be defined as follows:

ŷ(xε) = wT xε + b = yr − ε

ŷ(x−ε) = wT x−ε + b = yr + ε

ŷ(xε) − ŷ(x−ε) = wT (xε − x−ε) = − 2ε

2ρ = ‖xε − x−ε‖ = 2ε

‖w‖

(3)
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The aim in ε-SVR is to maximize the geometric margin to obtain the optimal surface. In order

to ease the derivation of the primal and dual forms of the problem, the term
(

ρ
√
2

ε

)2 = 2ε
‖w‖2

is maximized instead of ρ = ‖xε − x−ε‖ = ε
‖w‖ . Therefore, primitive form of the primal

optimization problem is given as follows:

min
(w,b)

JPr = 1

2
‖w‖2 (4)

with the following constraints constituted via ε-insensitive loss function
yi − wT xi − b ≤ ε

wT xi + b − yi ≤ ε

i = 1, 2, . . . N

(5)

Depending on the ε value, as can be seen from Fig. 1b, some samples may stay out of the
ε-error tube. These samples can be represented using slack variables (ξi , ξ�

i ) and can be
integrated to the primal form of the optimization problem as follows:

min
(w,b,ξ,ξ�)

JPr = 1

2
‖w‖2 + C

N∑
i=1

(ξi + ξ�
i ) (6)

with the following constraints constituted via ε-insensitive loss function
yi − wT xi − b ≤ ε + ξi

wT xi + b − yi ≤ ε + ξ�
i

ξi , ξ
�
i ≥ 0 , i = 1, 2, . . . N

(7)

where JPr indicates primal objective function, ε is the upper value of tolerable error, ξ ’s and
ξ�’s denote the deviation from ε tube and called as slack variables, and C is a penalty term to
optimize slack variables [8,20]. Occassionally, the samples in input spacemay be nonlinearly
distributed. These samples are mapped to a higher dimensional feature space where linear
regression can be successfully performed using kernel functions (�(xi)).The objective func-
tion of the primal form is non-convexwith respect to primal variables (w, b, ξi , ξ�

i ).Therefore,
in order to obtain a convex representation of the problem in dual form, Lagrangian function is
constructed using the primal objective function and corresponding constraints by introducing
a dual set of variables as follows:

LPr = 1

2
‖w‖2 + C

N∑
i=1

(ξi + ξ�
i ) −

N∑
i=1

βi (ε + ξi − yi + wT�(xi) + b)

−
N∑
i=1

β�
i (ε + ξ�

i + yi − wT�(xi) − b) −
N∑
i=1

(ηiξi + η�
i ξ

�
i )

(8)

A saddle point occurs at the solution with respect to the primal and dual variables. Therefore,
first order optimality conditions for LPr can be acquired as in (7–11) [20,30]:

∂LPr

∂w
= 0 −→ w −

N∑
i=1

(βi − β�
i )w

T�(xi) = 0 (9)

∂LPr

∂b
= 0 −→

N∑
i=1

(βi − β�
i ) = 0 (10)

∂LPr

∂ξi
= 0 −→ C − βi − ηi = 0 , i = 1, 2, . . . N (11)
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∂LPr

∂ξ�
i

= 0 −→ C − β�
i − η�

i = 0 , i = 1, 2, . . . N (12)

and the corresponding Karush–Kuhn–Tucker (KKT) complementary conditions are given as
[20]

βi (yi − wT�(xi) − b − ε − ξi ) = 0 , i = 1, 2, . . . N (13)

β�
i (w

T�(xi) + b − yi − ε − ξ�
i ) = 0 , i = 1, 2, . . . N (14)

ξiξ
�
i = 0 βiβ

�
i = 0 , i = 1, 2, . . . N (15)

∂LPr

∂ξ�
i

= 0 −→ C − β�
i − η�

i = 0 , i = 1, 2, . . . N (16)

By substituting the optimality conditions to Lagrangian function, the dual representation
and constraints of the problem can be attained as in (17, 18). The optimal parameters of the
regressor are obtained by finding the minimum of the following QP problem using training
samples in (1).

min
(β,β�)

JD = 1

2

N∑
i=1

N∑
j=1

(βi − β�
i )(β j − β�

j )Ki j + ε

N∑
i=1

(βi + β�
i ) −

N∑
i=1

yi (βi − β�
i ) (17)

with the following constraints
0 ≤ βi ≤ C

0 ≤ β�
i ≤ C

N∑
i=1

(βi − β�
i ) = 0 , i = 1, 2, . . . N

(18)

where Ki j = �(xi)
T�(xj) and ε is the upper value of tolerable error [8,20]. As can be

seen in optimization problem in (17, 18), the problem has a convex objective function with
corresponding linear constraints, so a global solution is ensured. SVR regressionmodelwhich
can represent the data in (1) can be obtained as in (19) by inserting (9) into (2).

ŷ(x) =
N∑
i=1

λi K (xi , x) + b , λi = βi − β�
i (19)

where λ are Lagrange multipliers of the regressor, K (xi , x) is the kernel function which
stores the similarities of the input samples in feature space and b is the bias of the regressor.
The training samples (xi ) with the corresponding Lagrange multiplier λi 	= 0 are called as
support vectors [9,20,31].

2.2 Basic Principles of Online ε-Support Vector Regression

In order to derive online learning rules, the Lagrange function constructed via (17, 18) must
be solved. Using Lagrange multipliers method, a dual Lagrange function can be formed as
in (20).

LD = 1

2

N∑
i=1

N∑
j=1

(βi − β�
i )(β j − β�

j )Ki j + ε

N∑
i=1

(βi + β�
i ) −

N∑
i=1

yi (βi − β�
i )

−
N∑
i=1

(δiβi + δ�
i β

�
i ) −

N∑
i=1

ui (C − βi ) + u�
i (C − β�

i ) + z
N∑
i=1

(βi − β�
i )

(20)
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Fig. 2 E,S and R subsets before (a) and after (b) training

KKT optimality conditions which require that the first order derivatives of Lagrange function
with respect to dual variables equal to zero are derived in (21):

∂LD

∂βi
=

N∑
j=1

(β j − β�
j )Ki j + ε − yi − δi + ui + z = 0

∂LD

∂β�
i

= −
N∑
j=1

(β j − β�
j )Ki j + ε + yi − δ�

i + u�
i − z = 0

δ
(�)
i ≥ 0, u(�)

i ≥ 0, δ(�)
i β

(�)
i = 0, u(�)

i (C − β
(�)
i ) = 0

(21)

According to KKT conditions in (21), at most one of the βi and β�
i should be nonzero and

both are nonnegative [30]. The error margin function for the i th sample xi to be minimized
can be defined as:

h(xi) = f (xi) − yi =
N∑
j=1

λ j Ki j + b − yi (22)

The training samples in (1) are seperated into three subsets depending on corresponding
Lagrange multipliers and margin values [30,32]. These subsets are called as:
Set E: Error Support Vectors E = {i | |λi | = C, |h(xi)| ≥ ε}
Set S: Margin Support Vectors S = {i | 0 < |λi | < C, |h(xi)| = 0}
Set R: Remaining Samples R = {i | |λi | = 0, |h(xi)| ≤ ε}

They are depicted in Fig. 2.When a new sample xc is to be learned by the regressor, the
Lagrange multipliers of the previously learned samples must be updated and as a result of the
adaptation some samples in E,S and R may change their subsets. The aim is to classify xc into
one of the three sets, while KKT conditions are still satisfied automatically [32]. Firstly, the
Lagrange multiplier of the new added data is set to λc = 0, then the value of λc is gradually
updated so that all other samples satisfy KKT conditions. When λc = 0, the margin for this
new data is obtained as

h(xc) = f (xc) − yc =
N∑
j=1

λ j K (x j , xc) + b − yc (23)
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The variation in Lagrange multipliers of previously learned samples(�λ j ) , changes in the
bias of the regressor �b and margin values (�h(xi )) are related as in (24) for the obtained
λc [30,33].

�h(xi) = Kic�λc +
N∑
j=1

Ki j�λ j + �b (24)

Since adaptation must prove the constraint in (18), the Lagrange value of the new sample
must satisfy (25)

λc +
N∑
j=1

λ j = 0 (25)

If any vector related to previous or new data is an element of the subset E or R, the corre-
sponding value of the Lagrange multiplier (λc) equals to “0” or “C” [1]. If the previously
learned sample in S remains in subset S again, then �h(xi) = 0, i ∈ S [33]. However, it is
required to update the Lagrange values of the samples in subset S. If �h(xi) = 0, i ∈ S in
(24),the variations of Lagrange multipliers for the data in the support vector set can be easily
computed for the obtained �λc as follows:

N∑
j=1

Ki j�λ j + �b = − Kic�λc

∑
j∈SV

�λ j = −�λc

(26)

(26) can be expressed in matrix form as
⎡
⎢⎢⎢⎣

0 1 · · · 1
1 Ks1s1 · · · Ks1sk
...

...
. . .

...

1 Ksks1 · · · Ksksk

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

�b
�λs1

...

�λsk

⎤
⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎣

1
Ks1c

...

Kskc

⎤
⎥⎥⎥⎦ �λc (27)

where sk’s indicate the indices of the kth sample in S. Thus,

�λ =

⎡
⎢⎢⎢⎣

�b
�λs1

...

�λsk

⎤
⎥⎥⎥⎦ = β�λc (28)

where

β =

⎡
⎢⎢⎢⎣

β

βs1
...

βsk

⎤
⎥⎥⎥⎦ = −�

⎡
⎢⎢⎢⎣

1
Ks1c

...

Kskc

⎤
⎥⎥⎥⎦ , � =

⎡
⎢⎢⎢⎣

0 1 · · · 1
1 Ks1s1 · · · Ks1sk
...

...
. . .

...

1 Ksks1 · · · Ksksk

⎤
⎥⎥⎥⎦

−1

(29)

as given in [30]. Thus, the relation between the model parameters of the samples in the
support set (S) and a given �λc can be defined via (28–29). As mentioned before, Lagrange
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multipliers (λi ) of the samples in subsets E or R equal to “0” or “C”; therefore, the margin
values (�h(xzm ), zm ∈ E or R) of non-support samples can be calculated as follows:

⎡
⎢⎢⎢⎣

�h(xz1)
�h(xz2)

...

�h(xzm )

⎤
⎥⎥⎥⎦ = γ�λc , γ =

⎡
⎢⎢⎢⎣

Kz1c
Kz2c

...

Kzmc

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

1 Kz1s1 · · · Kz1sl
1 Kz2s1 · · · Kz2sl
...

...
. . .

...

1 Kzms1 · · · Kzmsl

⎤
⎥⎥⎥⎦ β (30)

where z1, z2, . . . , zm are the indices of non-support samples, γ are margin sensitivities and
γ = 0 for samples in S. Up to this point, it is assumed that �λc is known. �λc is calculated
in two steps. As in all tuning rules, firstly the direction of the update is obtained, then the
length of the update is calculated. The first step is to determine whether the change �λc
should be positive or negative as follows [30]:

q = sign(�λc) = sign(yc − f (xc)) = sign(−h(xc)) (31)

After the sign of the �λc is specified, in the second step, the bound on �λc imposed by each
sample in the training set is computed [30].�λc is calculated as the minimum absolute value
among all possible �λc. Thus increment of the current data is

�λc = q min(|Lc1 |, |Lc2 |, |LS |, |LE |, |LR |) (32)

where q = sign(−h(xc)) and Lc1 , Lc2 are variations of the current sample and LS , LE

, LR are the variations of the xi data in sets S, E, R respectively. In order to calculate the
largest possible �λc, a bookkeeping procedure which includes five possible cases and takes
into account all possible immigrations among subset S, E and R that new added data result
in, is performed. The bookkeeping procedure is detailed in [1].

3 Safety-Critical Adaptive SVR Controller

In this paper, the Adaptive Support Vector Regressor Controller proposed in [1] is augmented
with a failure diagnosis block and converted to a safety-critical architecture. The failure
diagnosis block basically computes the Lyapunov function of the system and its derivative
at each iteration, checks for stability conditions and outputs a stability indicator. In case the
system becomes unstable, it is stopped to prevent any hazardous events. Section 3.1 briefly
reviews the Adaptive Support Vector Regressor Controller which was introduced in [1], and
Sect. 3.2 summarizes the Online Support Vector Regression algorithm derived to train the
controller. The architecture proposed in this paper, namely the safety-critical online adaptive
SVR controller is described in detail in Sect. 3.3.

3.1 An Overview of the Adaptive Support Vector Regressor Controller

The adaptation mechanism of Adaptive Support Vector Regressor Controller proposed in
[1] is depicted in Fig. 3. The mechanism is composed of two SVR structures: SVRcontroller

generates the control input to be applied to the system and SVRmodel is utilized to observe
the impacts resulting from tuned controller parameters on system behaviour. The parameters
of SVRcontroller are optimized via approximated tracking error (êtrn+1 ) as given in Fig. 3
where SVRmodel is used to approximate corresponding system output ŷn+1 and SVRmodel

parameters are adjusted via modelling error emn+1 .
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Fig. 3 The adaptation mechanism of SVRcontroller and SVRmodel

The output of SVRcontroller is computed as:

un =
∑

k∈SVcontroller
αk Kcontroller (�c,�k) + bcontroller (33)

where �c is input vector, Kcontroller (, ., ) is the kernel , αk , �k and bcontroller are the
parameters of the controller to be tuned at time index n. The output of SVRmodel is given as

ŷn+1 =
∑

j∈SVmodel

λ j Kmodel(Mc, Mj) + bmodel (34)

where Kmodel is the kernel matrix of the system model, Mc is current input, and λ j ,Mj
and bmodel are the parameters of the system model to be adjusted. Learning, prediction and
control phases are consecutively carried out online both in SVRcontroller and SVRmodel. When
the parameters of SVRcontroller are optimized, in order to calculate and observe the effect of
the computed control signal(un) on system behaviour and train SVRcontroller precisely, the
computed control signal is applied to SVRmodel at every step of training phase of the controller
to predict behaviour of the system (yn+1). It is expected that ŷn+1 will eventually converge
to yn+1 during the course of online working [1]. After the training phase for SVRcontroller is
accomplished, the control signal is applied to the system and the input of system model Mc
and output yn+1 which are training samples for SVRmodel can be operationalized for training
phase of system model.

The input and output of SVRmodel, namely the training data pair (Mc, yn+1) is available
during online operation, therefore the training process can be performed straightforwardly as
explained in Sect. 2.2. However, the training of SVRcontroller is not apparent since the input of
SVRcontroller (�c) is known, but the desired output of the controller, namely the control signal
(un) is not available to the designer in advance. Therefore, the parameters of the SVRcontroller

must be optimized without explicit information of control input (un). This situation causes a
significant dilemma to train SVR structures without the explicit information of desired output
data [34].

Uçak and Öke Günel proposed “closed-loop system margin” notion to solve this situation
in order to overcome this dilemma in [1]. The closed-loopmargin emerges from the combined
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(a) (b)

Fig. 4 Margins of SVRcontroller (a) and SVRmodel (b)

(a) (b)

Fig. 5 Projected closed loop margin before (a) and after (b) training

effects of the margin of the controller and margin of the system model. Considering the
adaptation mechanism in Fig. 3, the margin of each subsystem can be depicted as in Fig. 4a,
b where fcontroller and fmodel denote the regression functions of controller and system model,
respectively. As system model margin is projected onto M − Ysys in terms of input–output
data pair for system model in Fig. 4b, the closed-loop margin is projected onto � and R axes
as in Fig. 5. As explained elaborately in [1], the training data pair (�c, rn+1) is utilized to
force the closed-loop system track the reference input.

3.2 Online Support Vector Regression for Controller Design

Assume that the training data set for closed-loop system is given as:

T = {�i, ri+1}Ni=1 �i ∈ � ⊆ Rn, ri+1 ∈ R (35)

where N is the size of the training data, n is the dimension of the input, �i is input feature
vector of controller and ri+1 is the reference signal that system is forced to track. The input–
output relationship for closed-loop system can be predicted as:

ŷi+1 = fmodel(Mi) =
∑

j∈SVmodel

λ j Kmodel(Mj, Mi) + bmodel , λ j = β j − β�
j

Mi = [ui · · · ui−nu , yi · · · yi−ny ]
ui = fcontroller (�i) =

∑
k∈SVcontroller

αk Kcontroller (�k,�i) + bcontroller (36)
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αk = θk − θ�
k

�i = [ri · · · ri−nr , yi · · · yi−ny , ui−1 · · · ui−nu ]

where �i is the input of the controller and ŷn+1 is the approximated system output by
SVRcontroller. The closed-loop error margin function of the system for the i th sample �i can
be defined as follows in order to optimize controller parameters properly.

hclosed−loop(�i) = ŷi+1 − ri+1 = fmodel(Mi) − ri+1 (37)

As mentioned before, the parameters of SVRcontroller and SVRmodel are optimized consec-
utively. Therefore, in the learning stage of the controller, the system model parameters are
known and fixed, so the closed loop margin can be rewritten as

hclosed−loop(�i) = ŷi+1 − ri+1 = fclosed−loop(�i) − ri+1 = − êtri+1 (38)

with respect to an input–output data pair of closed-loop system (�i,ri+1) where fclosed−loop

is the approximated output of the closed-loop system [1]. In training phase of the controller,
the basic idea is to change the coefficient αc corresponding to the new sample �c in a finite
number of discrete steps until it meets the KKT conditions while ensuring that the existing
samples in T continue to satisfy the KKT conditions at each step [30]. Since the Lagrange
multiplier (αc) value for training sample which is the element of subset E or R equals to “0”
or “C”, the Lagrange multipliers of the samples in subset S are optimized. The adjustment
rule for samples in subset S depending on the Lagrange multiplier of the current sample
(�αc) is given as

�α =

⎡
⎢⎢⎢⎣

�bcontroller
�αs1

...

�αsk

⎤
⎥⎥⎥⎦ = β�αc (39)

where

β =

⎡
⎢⎢⎢⎣

β

βs1
...

βsk

⎤
⎥⎥⎥⎦ = −�

⎡
⎢⎢⎢⎣

1
Kcontrollers1c

...

Kcontrollerskc

⎤
⎥⎥⎥⎦ , � =

⎡
⎢⎢⎢⎣

0 1 · · · 1
1 Kcontrollers1s1

· · · Kcontrollers1sk
...

...
. . .

...

1 Kcontrollersk s1
· · · Kcontrollersk sk

⎤
⎥⎥⎥⎦

−1

(40)

and sk is the indices of the kth sample in support vector set S. The increment for current data
(�αc) is defined as the one with minimum absolute value among all possible �αc as follows
[30]:

�αc = q min(|Lc1 |, |Lc2 |, |LS |, |LE |, |LR |) (41)

where q = sign(−hclosed−loop(�c)) = sign(etrn+1) and Lc1 , Lc2 are variations of the
current sample and LS, LE, LR are the variations of the �i data in sets S, E, R respectively.
Since the Lagrange mutipliers of the samples in non-support samples (subset E or R) are
equal to “0” or “C”, only the margin values of the non-support samples are influenced by

123



Safety-Critical SVR Controller for Nonlinear Systems 431

�αc and the alternation in margin for non-support samples can be updated via (42)
⎡
⎢⎢⎢⎣

�hclosed−loop(�n1)

�hclosed−loop(�n2)
...

�hclosed−loop(�nz )

⎤
⎥⎥⎥⎦ = γ�λc

γ =

⎡
⎢⎢⎢⎣

Kcontrollern1c
Kcontrollern2c

...

Kcontrollernzc

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

1 Kcontrollern1s1
· · · Kcontrollern1sl

1 Kcontrollern2s1
· · · Kcontrollern2sl

...
...

. . .
...

1 Kcontrollernz s1
· · · Kcontrollernz sl

⎤
⎥⎥⎥⎦ β

(42)

where n1, n2, . . . , nz are the indices of non-support samples, γ are margin sensitivities and
γ = 0 for samples in S. The recursive algorithm is detailed in [30,32] and [33] for training
and forgetting phases.

3.3 Safety-Critical Adaptive Online SVR Controller

The architecture of the proposed safety-critical SVRcontroller is depicted in Fig. 6. In addition
to the SVRcontroller and SVRmodel which were explained in detail in Sect. 3.1 and illustrated
in Fig. 3, a failure diagnosis block is added to the overall system to observe the problems
resulting from instability, which is the main contribution in this paper. The failure diagnosis
block takes the inputs and outputs of SVRcontroller and SVRmodel blocks, namely, �c, un , Mc
and ŷn+1, and produces the signal δ which is an indicator of the stability of the overall system.
Themain function of the failure diagnosis block is to carry out the Lyapunov stability analysis
of the system as presented in detail in [1], and compute δ accordingly. δ is an indicator of
stability, depending on its value the system will continue its functioning or stop in case the
system enters a hazardous range. Hence, the safety of the nonlinear control system will be
assured. The main advantage of the proposed method is that the stability of the system is
analysed without requiring the states of the system since the input–output relationship of
the system represented by SVRmodel is adequate for determining stability and designing the
controller. In Fig. 6, the failure diagnosis block is utilized to carry out the stability analysis
and determine whether the overall system is in stable operation region or it has become
unstable. A comprehensive stability analysis of closed-loop system has been derived in [1].
In this sequel, the Lyapunov function is chosen as

V (etrn+1) = eTtrn+1
P etrn+1

2
(43)

The derivative of the Lyapunov function in (43) is derived as

∂V (etrn+1)

∂t
= −eTtrn+1

(G + Z) etrn+1 (44)

with

G = P
∂yn+1

∂un

[
∂ fcontroller (α,�c)

∂α

]T
β μ(etrn+1 , αi ,C)

Z = P
∂yn+1

∂un

[
∂ fcontroller (α,�c)

∂�c

]T (45)
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Fig. 6 Safety-critical adaptive SVRcontroller

where ∂yn+1
∂un

is the system Jacobian, approximated via system model ( fmodel ), computed in

(45), andμ(etrn+1 , αi ,C) = min(|Lc1 |,|Lc2 |,|LS |,|LE |,|LR |)
|etrn+1 | ≥ 0. Both the stability of the system

and the convergence of the controller are guaranteed when ∂V
∂t ≤ 0 [35]. Thus, the stability

conditions for closed-loop system can be summarized as follows:

• Condition 1: If G ≥ 0 and Z ≥ 0 , the closed-loop system is stable
• Condition 2: If G ≥ 0 and Z ≤ 0 and ‖ G ‖≥‖ Z ‖, the closed-loop system is stable
• Condition 3: If G ≤ 0 and Z ≥ 0 and ‖ Z ‖≥‖ G ‖, the closed-loop system is stable

As can be seen from Fig. 6, the failure diagnosis block performs the above stability analysis
and outputs δ as a stability indicator parameter. Depending on ∂V

∂t the value of δ is set as
−1, 0 or 1. If ∂V

∂t < 0, δ is assigned as δ = − 1. In the case that ∂V
∂t = 0, δ is set to δ = 0.

Therefore, the closed-loop system is stable for δ = 0 or δ = − 1. In the case that ∂V
∂t > 0,

in other words the closed loop system is unstable, δ is set to δ = 1. When δ = 1 the control
operation is interrupted and safety is foregrounded.

4 Simulation Results

The performance of the online safety-critical SVRcontroller based on system model estimated
by SVRmodel is examined on a process control system. We have selected the bioreactor

123



Safety-Critical SVR Controller for Nonlinear Systems 433

benckmark system to evaluate the performance of the proposed method since bioreactor
involves highly nonlinear unstable dynamics. Therefore, it is required to control the system
actively in order to hinder divergent behaviour since the system involves severe nonlinearity
with a tendency to instability [36]. Bioreactor is a challenging benchmark problemused to test
the performance of the controller designs in technical literature. Simulations are performed
to show how the failure detection block is utilized to determine the stability of the system
and how the proposed controller can be used to prevent any hazardous events resulting from
instability.

4.1 Bioreactor System

A bioreactor is a tank containing water and cells (e.g., yeast or bacteria ) which consume
nutrients (substrate) and produce product (both desired and undesired) and more cells [37].
In nonlinear control theory, the performances of the developed control methodologies can be
examined and compared on the bioreactor benchmark system since it has highly nonlinear
dynamics and exhibits limit cycles [9,20,37,38]. Thedynamics of the systemcanbe expressed
via the following differential equations

ċ1(t) = − c1(t)u(t) + c1(t)(1 − c2(t))e
c2(t)
γ (t)

ċ2(t) = − c2(t)u(t) + c1(t)(1 − c2(t))e
c2(t)
γ (t)

1 + β(t)

1 + β(t) − c2(t)

(46)

where c1(t) is the cell concentration which is the controlled output of the system (y(t) =
c1(t)), c2(t) is the amount of nutrients per unit volume, u(t) is the flow rate used as the control
signal, γ (t) is nutrient inhibition parameter, β(t) is grow rate parameter [9,20,37,38]. The
control signal is limited to the range umin = 0 and umax = 2; and its duration is kept
constant at τmin = τmax = 0.5s. Simulations have been performed for two separate cases.
1) Nominal case with no parametric uncertainty 2) Parametric uncertainty is introduced to
the system to derive the system to the unstable region. For both cases, the input feature
vectors for SVRmodel and SVRcontroller are designated as Mc = [un . . . un−nu , yn . . . yn−ny ]T
where ny = nu = 2 and �c = [rn . . . rn−nr , yn . . . yn−ny , un−1 . . . un−nu ]T where nr ,
ny and nu express the number of the past features. The exponential kernel parameters of
SVRmodel and SVRcontroller are chosen as σ = 0.75, error tolerance parameters are utilized
as εclosed−loop = εmodel = 10−3 and C is fixed at 1000.

4.2 Nominal Case with No Parametric Uncertainty

The tracking performance of the controller for noiseless condition is depicted in Fig. 7. It is
observed that the reference signal is tracked accurately. The parameters of SVRcontroller and
SVRmodel are illustrated in Fig. 8. In Fig. 8, α1(t), bc(t) and #svc stand for the first Lagrange
multiplier, bias of the regression function and number of the support vectors for SVRcontroller,
respectively. Similarly, thefirst lagrangemultiplier, bias of the regression function andnumber
of the support vectors for SVRmodel are denoted as λ1(t), bm(t) and #svm . In Fig. 9, ∂V

∂t ,
the time derivative of the Lyapunov function is depicted. For stability, both V (t) > 0 and
∂V
∂t ≤ 0 must be satisfied simultaneously. Since in Fig. 9, it is observed that ∂V

∂t ≤ 0 and
δ = − 1 or 0 during the course of control, we can conclude that the closed-loop system is
stable.
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Fig. 7 System output, y(t) (a), control signal, u(t) (b) for variable step input for the nominal case without
parametric uncertainty
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Fig. 8 The first Lagrange multiplier, α1(t) (a), bias value, bc(t) (b) and number of support vectors, #svc(t)(c)
for SVRcontroller (left), the first Lagrange multiplier, λ1(t) (a), bias value, bm (t) (b) and number of support
vectors, #svm (t) (c) for SVRmodel (right) for the nominal case without parametric uncertainty

4.3 Uncertainty in System Parameters

In order to observe the stability of the system for the case with parameter uncertainty, γ (t) is
considered as the time-varying parameter of the system, where its nominal value is γnom(t) =
0.48 and it is allowed to vary slowly in the purlieu of its nominal value as γ (t) = 0.48 +
0.06 sin(0.004π t) as depicted in Fig. 10c. Fig. 10 illustrates the tracking performance of
SVRcontroller, the control signal applied to the system and the time-varying system parameter.
Parameters of SVRcontroller and SVRmodel are depicted in Fig. 11. In Fig. 11, α1(t), bc(t)
and #svc stand for the first lagrange multiplier, bias of the regression function and number
of the support vectors for SVRcontroller, respectively. The first lagrange multiplier, bias of
the regression function and number of the support vectors for SVRmodel are denoted as
λ1(t), bm(t) and #svm . The closed-loop system including uncertainty in system parameter
is successfully controlled and maintained in the stable range as depicted in Fig. 12. When
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Fig. 9 Time derivative of Lyapunov function, ∂V
∂t (a) and stability indicator, δ(t) (b) for the nominal case

without parametric uncertainty
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Fig. 10 System output, y(t) (a), control signal, u(t) (b), time varying parameter, γ (t) (c) for the case with
parameteric uncertainty

the control signal produced for nominal system parameters in Fig. 7 and for the time varying
parameter situation in Fig. 10 are compared, it can be observed how the control signal in
Fig. 10 tries to tolerate the uncertainty of the time varying system parameter.
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Fig. 11 The first Lagrange multiplier, α1(t) (a), bias value, bc(t) (b) and number of support vectors, #svc(t)
(c) for SVRcontroller (left), the first Lagrange multiplier, λ1(t) (a), bias value, bm (t) (b) and number of support
vectors, #svm (t)(c) for SVRmodel (right) for the case with parameteric uncertainty
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Fig. 12 Time derivative of Lyapunov function, ∂V
∂t (a) and stability indicator, δ(t) (b) for the case with

parameteric uncertainty

4.4 Closed-loop Lyapunov Stability Analysis

In the simulations performed in this section, the parameters of system are deliberately alter-
nated to force system towards the unstable region where the adaptive mechanism can not
manage to control the system. The tracking performance of the system is illustrated in Fig. 13.
The parameters of the system are changed in two regions: at 130th sec and 350th sec as
shown in Fig. 13. The time derivative of the Lyapunov function and the stability indicator
δ are depicted in Fig. 14. There are three cases to be examined in Fig. 14. These cases are
given as follows:
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Fig. 13 System output, y(t) (a), control signal, u(t) (b), time varying parameter, γ (t) (c), β(t) (d)

• Case 1: The system parameter γ (t) = 0.48 is switched to γ (t) = 0.5 at 150th sec. The
system becomes unstable and the adaptive structure of controller succesfully deals with
unstability within 20 sec.

• Case 2: The system becomes unstable transiently at 200th and 210th secs resulting from
alternation in reference signal, but the controller has overcome this situation.

• Case 3: The parameters of system are changed as γ (t) = 0.5, β = 2 × 10−3 at 350th
sec. The controller endeavours to eliminate unstability, but it can not be achieved.

In a nutshell, as can be seen from Fig. 14b, the system becomes unstable at times as in case
1–2, but the adaptive mechanism of the controller can immediately manage to derive system
to the region where closed-loop system is stable. However, for cases where the adaptive
mechanism is inadequate to stabilize the system, as in case 3, the failure diagnosis block
of the proposed mechanism given in Fig. 6 detects the situation, the control operation is
interrupted and safety is foregrounded.
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Fig. 14 Time derivative of Lyapunov function, ∂V
∂t (a) and stability indicator, δ(t) (b) for case 1, 2 and 3

5 Conclusion

In this paper, a novel safety-critical SVRcontroller has been proposed by combining a failure
diagnosis block to the controller in [1]. Failures resulting from instability can be detected
via Lyapunov stability analysis of the overall system. Owing to the adaptive structure of
the controller, the proposed mechanism achieves to tolerate the instability of the closed loop
system to some extent. To evaluate the performance of the failure diagnosis block, simulations
have been performed where the stability of closed-loop system has intentionally been ruined
and the proposed mechanism to detect the instability of the system is tested. In future works,
it is planned to realize the proposed controller structure on ANSYS SCADE [39], one of the
commercially available autocoding environments to obtain a more reliable and predictable
code and to develop new SVR based fail-safe controllers for nonlinear systems.
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