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In this study, the thermodynamic performance of a binary geothermal power plant (GPP) is compara-
tively evaluated using the exergy analysis and optimization method. Thus, in addition to routes to
improve the thermodynamic performance of the system, the thermodynamic relationships between the
system components and improvement performances of the components are determined. With this aim,
the Sinem GPP located in Aydin province in Turkey as a real system is selected. All data from the system
are collected and a numerical model simulating the real system is developed. On the developed model,
the conventional and advanced exergy analyses for exergy analysis and the artificial bee colony (ABC)
method for optimization process are performed. The results of the study show that total exergy effi-
ciencies of the conventional exergy analysis, advanced exergy analysis and artificial bee colony are
determined as 39.1%, 43.1% and 42.8%, respectively. The exergy efficiency obtained from advanced exergy
analysis is higher compared to the other two methods. This is due to the fact that theoretical and un-
avoidable operation assumptions in advanced exergy analysis are arbitrary as a single value depending
on the decision maker. However, decision variables in the ABC method are within certain constraints
chosen by the decision maker. It is better to select constraint limits instead of an arbitrary single value
selection. Therefore, its arbitrary values should be confirmed with any optimization method. Addition-
ally, the highest exergy destruction identified in the three methods is occurred in heat exchangers as the
condenser and vaporizer.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

baseload power generation. Traditionally the most important re-
sponsibility of thus systems is baseload providers, which are power

Energy forms one of the most important and basic requirements
for the economic and social life of humans and countries through
the ages. As a result, energy needs to be clean, cheap, uninter-
rupted, reliable and diversified supply [1]. Currently energy is ob-
tained both from fossil resources and renewable resources. The use
of renewable energy resources has become mandatory as fossil
based energies will run out within a certain period, production
from new reserves is very expensive and it harms the environment.
Therefore, in the 21st century energy production from renewable
energy resources has focused on biomass, solar, wind energies and
to a lesser extent on hydraulic energy [2]. However, the basic
problem related to renewable energy resources is that they are not
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plants able to generate a fixed and predictable supply of electricity
[3]. The primary energy source in the majority of electricity net-
works are baseload electricity power plants using fossil fuels [4].
The renewable energy resources such as geothermal and biomass
energies are the only renewable energy resources that is not
affected by external weather conditions. Thus, geothermal and
biomass energies may be used as a basic energy source [1]. How-
ever, this article focuses on geothermal energy.

Geothermal energy is heat energy carried to the surface as hot
water and steam formed due to heat accumulated at a variety of
depths within the crust with temperatures continuously above the
mean regional atmospheric temperature and containing higher
amounts of dissolved minerals, a variety of salts and gases
compared to normal underground and surface water in the envi-
ronment [5]. Geothermal energy resources are therefore used
linked to their temperature. Generally high temperature
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(T>150°C) resources are used for electricity production, with
moderate (90 °C<T< 150°C) and low temperature (T <90 °C) re-
sources are used in direct use fields such as bathing, individual and
district heating and cooling etc. [6]. In recent times, very low
temperature (T <35 °C) resources have been used in heat pump
applications. Additionally the latest researches have stated that
while the global geothermal installed power capacity was 1.3 GW in
1975, in 2010 this had risen to 10.9 GW and then to 12.7 GW in 2015.
Since 2015, nearly 3.45 GW of the installed power of 12.7 GW was
installed in the USA. There was a 17% increase in global geothermal
installed power and a 10% increase in electricity production in 2015
compared to 2010. In 2020 it is estimated the installed power will
be about 21 GW [6]. According to Bertani [6], the top 5 countries
with highest geothermal installed power and electricity production
globally may be listed as USA, Philippines, Indonesia, Mexico and
New Zealand. In Turkey the installed power from geothermal en-
ergy was 19 MW in 2005, while this had risen to 624 MW in 2015.
Currently this value has reached nearly 821 MW. According to
Turkey’s Energy Atlas, the 32 geothermal power plants in Turkey
reached a total installed power of 921.5 MW and corresponded to
1.2% of the 78497.4 MW installed power in Turkey at the end of
2016 [7]. Thus while the development of geothermal power con-
tinues to meet the increasing electricity demands in the USA and
globally, engineers and policy makers require data about feasibility
and optimum design of geothermal energy power plants within a
spectrum of geothermal resource conditions and climates. There-
fore, there is a need for this type of scientifically robust design,
analysis and optimization guidelines.

In spite of the disadvantages of geothermal power plants, due to
the limitations of primary energy resources and rapid increase in
energy costs, the importance of energy analyses to determine the
energy losses of these and many thermal systems is increased. One
of the important roles of energy analysis within development of
energy systems is to ensure the energy system designers and op-
erators have the necessary information. After the oil crisis occurring
in the 1970s, it was understood that energy analysis alone did not
reveal how effectively energy was used. Thus, exergy analyses
began to gain great importance [8]. However, through the con-
ventional exergy analysis, one cannot assess the mutual in-
terdependencies among the system components neither the real
potential for improving the components. This may be possible in an
advanced exergetic analysis [9]. In recent times, very few re-
searchers have used advanced exergy analysis for a variety of
geothermal power plants [10—12]. In regard, this paper will
comparatively evaluate the thermodynamic performance of a bi-
nary geothermal power plant using conventional and advanced
exergy analyses and the artificial bee colony optimization method.

There are many studies about application of various optimiza-
tion methods in thermodynamic cycles of any energy conversion
system. Dai et al. [13] conducted the thermodynamic optimization
of an organic Rankine cycle (ORC) with low grade waste heat re-
covery using different working fluids with exergy efficiency as the
objective function by means of the genetic algorithm (GA). They
reported that the ORC system with R236EA had higher exergy ef-
ficiency compared with other working fluids (e.g., ammonia, iso-
butene, R11, water). Sun et al. [ 14] proposed a ROSENB optimization
algorithm combining with penalty function method to search the
optimal set of operating variables to maximize either the net power
generation or the thermal efficiency. They investigated the effects
of working fluid mass flow rate, air cooled condenser fan air mass
flow rate and expander inlet pressure on the system thermal effi-
ciency and system net power generation. Rashidi et al. [15] con-
ducted a parametric study and optimization of regenerative ORC
with two feedwater heaters with thermal efficiency, exergy effi-
ciency and specific work as the objective functions by means of

artificial neural network (ANN) and artificial bee colony (ABC). They
found that the maximum values of the specific network, the ther-
mal efficiency and the exergy efficiency for R717 were greater than
those for water. Arslan and Yetik [ 16] optimized a supercritical ORC-
Binary geothermal power plant in the Simav region using ANN for
economic costs. Arslan [17] completed a similar study in a
geothermal-sourced Kalina power cycle. Wang et al. [18] used the
non-dominated sorting genetic algorithm-II (NSGA-II) to increase
the thermodynamic and economic performance of a low grade
waste heat recovery organic Rankine cycle. Besides, the effects of
turbine inlet pressure, turbine inlet temperature, pinch tempera-
ture difference, approach temperature difference and condenser
temperature difference on the exergy efficiency and overall capital
cost were investigated. They found that the optimum exergy effi-
ciency and overall capital cost were 13.98% and 1292800 USD,
respectively. Clarke et al. [19] compared the limited, non-linear
simulation-based optimization of a double flash geothermal en-
ergy power plant using GA and particle swarm optimization (PSO)
performance. Another study by Clarke and McLeskey Jr [20] used a
multi-objective PSO method for the Pareto-optimal set used in the
design of a power plant to determine the optimum use of the su-
perheater and/or recuperator in a binary geothermal electricity
power plant at environmental temperatures and brine tempera-
tures. Karadas [21] used the true design parameters of the Dora 1
GPP located in Turkey to design an air-cooled, binary fluid
geothermal power plant and investigated the effect of the design
parameters on the theoretical power plant performance. Addi-
tionally, to be able to assess the power plant performance, they
used real data from the Dora 1 GPP for regression analysis. Using
three measurable independent variables such as ambient air tem-
perature, flow rate and temperature of geofluid, they developed
multiple annual linear regression models from 2006 to 2012. Saffari
et al. [22] used the ABC method to optimize the thermal efficiency
of a low temperature Kalina cycle with double turbine. Additionally,
the study researched the effects of the entry pressure and tem-
perature of the separator, basic ammonia mass fraction and basic
mass flow rate of the working fluid on the net power output and
thermal efficiency of the cycle. They reported that the proposed
Kalina cycle had a thermal efficiency of 26.32%. Another study by
Saffari et al. [23] assessed the thermodynamic performance of the
Husaviv power plant with a Kalina cycle using the ABC optimization
method. With the aim of identifying a more rapid and sensitive
optimization of this system, they compared the ABC method with
the GA, PSO and differential evolution (DE) methods. They
researched the effects of parameters like entry temperature, pres-
sure and mass flow rate of separator and basic ammonia mass
fraction on the energy and exergy efficiencies of the system. They
found the energy and exergy efficiencies of the system were 20.36%
and 48.18%, respectively. They showed again in this study that the
ABC method is more useable compared to the other methods.
Proctor et al. [24] developed a dynamic model of a commercial scale
geothermal ORC and confirmed this with power plant data. The
standard deviation between the model and real power plant for
output power and mean output power was between 1.4% and
0.24%, respectively. Li et al. [25] performed quantitative analysis of
non-design performance for a low temperature geothermal
resource using a Kalina cycle. In this study the non-design models
including the turbines, pump and heat exchangers were previously
created. To maximize the net output power and determine ther-
modynamic parameters in the design stage, they used the GA
method. Wu et al. [26] presented and analysed the transcritical
power cycles used for a CO,-based binary zeotropic mixtures with
temperatures of cooling water of 10—30°C and low grade
geothermal fluid of 100—150 °C. Under these conditions, 6 coolants
were chosen to be added to CO,. The transcritical power cycle
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performances with the 6 chosen COy-based mixtures were opti-
mized with the pattern search algorithm (PSA). The thermody-
namic and economic analyses were performed. In terms of thermal
and economic performances, the best working fluid for the tran-
scritical power cycle was R161/CO, and as the thermal performance
of R290/CO, is low, it was determined not to be an appropriate
working fluid for transcritical power cycles.

When the literature is carefully scanned, the number of studies
using both conventional (CExA) and advanced (AEXA) exergy ana-
lyses and the optimization method (ABC) to maximize the exergy
efficiency of an energy conversion system as a single-objective
function are very low. In this study for first time, the exergy effi-
ciency of a geothermal power system will be optimized with the
ABC method and additionally the thermodynamic performance of
the geothermal power plant will be assessed comparatively with
the results of each method (CExA, AEXA and ABC). In this way the
aim is to obtain further information for thermal system engineers
and designers to use while maximizing the exergy efficiency of a
geothermal power plant or while improving the system. The rest of
paper is organized as follows. In Section 2, the description of the
system, the thermodynamic modelling, the analysis and optimi-
zation processes, and the single objective function are given. The
results of the CEXA and AEXA analyses and the ABC optimization
method used to maximize the system exergy efficiency are dis-
cussed in Section 3 and finally, the paper is concluded in Section 4.

2. Material and methods
2.1. Description of the system

The high temperature geothermal fields in Turkey are located in
the Biiyiik Menderes basin continental rift belt. One of these fields
is the nearly 116 MW capacity Hidirbeyli region in Germencik
county within the boundaries of Aydin province/Turkey. The Sinem
GPP operating at 24 MW installed power in this geothermal field
was chosen. This GPP is an air-cooled, two level binary organic
Rankine cycle power plant. The GPP is designed to operate using
geofluid with 165 °C, 1040 kPa and 445 kg/s and its steam with the
same temperature and pressure and flow rate of 8.33 kg/s from
separators. Then at the exit of the power plant the waste geofluid is
pumped at 85°C and 590 kPa pressure to re-injection wells. In
addition, of this steam 30% comprises non-condensable gases
(NCG). The schematic flow diagram of the Sinem GPP is illustrated
in Fig. 1. In this study it is used operating parameters (pressure,
temperature and mass flow rate) from the available Sinem GPP
shown in the state numbers specified in Fig. 1 that were collected
from the Supervisory Control System (SCADA) program of the
system on April 14, 2013. The environmental temperature and
pressure on that date were recorded as 25 °C and 1 bar.

2.2. Thermodynamic modelling

Actually operated Sinem GPP system is divided into some con-
trol volumes and the thermodynamic balance equations are applied
to these control volumes. These control volumes are the vaporizers
(VAP 1 and VAP 2) and preheaters (PRE-HE 1 and PRE-HE 2) per-
forming heat exchange between the geofluid and the working fluid
of n-pentane, the condensers (CON 1 and CON 2) performing heat
exchange between air and n-pentane, and the recuperator (RECUP),
turbines (TURB 1 and TURB 2) and pumps (PU 1 and PU 2) using
only n-pentane. The thermodynamic properties of water instead of
the geothermal fluid (brine) [27], the working fluid of n-pentane
and the ideal gas of air for each control volume are calculated using
the COOLPROP program [28,29] and thermodynamic balance
equations and numerical calculations are completed with the
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Fig. 1. The schematic flow diagram of the Sinem GPP.

MATLAB program [30]. In this way the thermodynamic fluid
properties in the COOLPROP can be recalled on coded function in
the MATLAB. An algorithm is developed using the MATLAB plat-
form for the thermodynamic analysis and modelling of the real
Sinem GPP. In addition, the balance equations for every component
of a binary GPP with ORC as the Sinem GPP can be found in
Ref. [10—12,20,21,24]. However, for the sake of simplicity the bal-
ance equations used in the thermodynamic modelling of the sys-
tem are given in brief in the text.

Generally ignoring the changes in kinetic and potential energies,
the mass and energy balances may be stated as follows

St = 3 it (1)
Q + Z Miphiy = W+ Z Mouthout (2)

where 11 is the mass flow rate, Q = Q. i, is the net heat input rate,

W = Wpet out is the work output rate, and h is the specific enthalpy.
The conventional exergy balance can be found as:

Exp = Exp+ Y Expj + Ex; (3)

k

and more explicitly;
T ) Y > . .
Z(l - T?) Qr—W+ Zmin‘pin - Zmou“//out = Exp (4)
K

where Exg, Exp, Exp and Ex; are the exergy rates associated with the
fuel, product, exergy destruction and exergy loss of the overall

system, respectively. Q, is the heat transfer rate crossing the
boundary at temperature Ty at location k, W is the work rate, the
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subscript zero indicates properties at the restricted dead state of Py
and Ty, and ¥ is the specific flow exergy as given below:

¥ = (h —hg) — To(s — sp) (5)

where hg and sg denote the enthalpy and entropy in the reference
case, respectively.

If the system boundaries are assumed in the reference state of
To, the exergy losses related to the kth component are not
mentioned [9]. Exergy losses appear only at the level of the overall
system. In this situation the exergy balance at the component level
may be simplified as:

ZEXDJ{ = E.‘Xka — E‘Xp_’k (6)
k

Finally the basic assumptions used in thermodynamic model-
ling may be given as: (i) all processes occur within steady state and
stable volume conditions, (ii) differences in kinetic and potential
energy are neglected, (iii) heat loss occurring in components and
pressure drops within valves and pipes are not considered, (iv) the
thermodynamic properties of water are used for the geofluid
(brine), (v) the air is assumed to be an ideal gas with homogenous
distribution in air-cooled condensers and (vi) the isentropic effi-
ciencies of the turbines, pumps and fans are used, (vii) the direct
drive balancing between the generator and the turbines is ignored
by opening the injection valves on the turbine, (viii) the geofluid
temperature for re-injection does not fall below 80 °C and (ix) the
limit value (>0.98 for X1213,19,20) of the quality of steam to prevent
excessive damage to the turbine blades is accepted.

2.3. Analysis and optimization processes for the system

To gain a better understanding of a problem, the following terms
should be defined that analysis is the process of breaking a complex
topic or substance into smaller parts [31] while optimization is the
process of finding an alternative with the most cost effective or
highest achievable performance under the given constraints, by
maximizing desired factors and minimizing undesired ones [32].
Finally, there are two different solution routes to better understand
and resolve a problem in both processes. The analysis and optimi-
zation methods used in this study are conventional and advanced
exergy analyses and artificial bee colony (ABC) optimization
method. The problem addressed in this study is a rather complex
and non-linear problem, so it is difficult to solve it with mathe-
matical methods as No Free Lunch theorem [33]. They do not
demonstrate same performance when the domain and/or the
structure problem can be changed [34]. Therefore, our problem can
be solved with heuristic methods. Among the best known heuristic
optimization methods like GA, PSO and DE, the reason for choosing
the ABC optimization method is that it is the most effective and
advantageous for multivariate problems [22,23,35,36].

2.3.1. Advanced exergy analysis

The advanced exergy analysis is administered to evaluate the
mutual interdependencies among the system components and the
realistic potential for improving the components. However, such an
evaluation can not be done with the conventional exergy analysis
[9]. Its methodology has been discussed in more detail in
Refs. [37—45].

In the analysis, the interactions among system components can
be evaluated by splitting into endogenous (EN) and exogenous (EX)
portions of the exergy destruction rate within the kth component
[46], which is given by

Exp e = EXGy + EXpy (7)

where the endogenous portion, Exg’i, is the exergy destruction rate

of the kth component related to itself. The calculation of E'xg"f< can

be done in case that the kth component works under the real
conditions while the remaining components work under theoret-

ical conditions. The other portion, Exg)fk, is the exergy destruction

rate caused by the remaining components. It may be found by
subtracting the endogenous exergy destruction rate from the real
exergy destruction.

To evaluate the real potential for improving the components,
their exergy destruction rates are split into unavoidable (UN) and
avoidable (AV) parts [47,48], as follow

Expy = Eng\,i + Exg‘jc (8)

where the unavoidable portion, Exg’\,’(, is the exergy destruction rate

not to be recovered due to technological limitations. The calculation
is made assuming the most appropriate operating conditions by
considering each component as isolated from the system. The as-
sumptions for the unavoidable conditions simulation are linked to
the decision maker and may be arbitrary to a degree [41,47,48]. It
may be given as below [49,50]:

. \UN

~ UN _ Exp

Exp ) = Expy <) (9)
' Exp )

The exergy destruction given above may be divided into sepa-
rated portions again to create new parameters to ensure better
understanding of the interaction between components and the
improvement potentials [51]. The unavoidable endogenous,

: . -UN.EX .
Exg’Z’EN, unavoidable exogenous, Ep) ", avoidable endogenous,

Exg‘/k‘EN , and avoidable exogenous, E DV,(’EX

are calculated, respectively, using [49—52].

, exergy destruction rates

EXINEN _ i <E"_D> " (10)
’ “\Exp /

Eng\,’{’EX = Exg{\,i - Exg{\l’(’EN (11)

EXAVEN _ BN U (12)

EXAVEX _ g ExUNEX (13)

2.3.2. Artificial bee colony (ABC) optimization method

Karaboga [35,36] developed the artificial bee colony (ABC) al-
gorithm by modelling the food search behaviour of bees. Among
the intelligent nutrition behaviour of honey bees are finding rich
food sources near the hive, dancing to direct other bees to a hive or
rich sources and abandoning consumed sources to find potentially
richer sources of nectar [53]. The ABC optimization algorithm at-
tempts to find the location of the richest source of nectar by iter-
atively finding points providing minimum or maximum solutions
to the problem in space. Among the known heuristic optimization
methods like GA, PSO and DE, the ABC algorithm has major benefits
in multi-objective function problems. ABC algorithm has fewer
constraints while it considers a limiting parameter to increase the
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convergence speed of optimization. Premature convergence prob-
lem occurs less in ABC than in GA and PSO algorithms [22,23,35,36].
ABC algorithm produces new solutions by a simple operation and
diversification of the solutions is controlled by random selection.
This accelerates the foraging procedure and the convergence to an
optimum value. Solutions with higher fitness values are selected
which leads to a quick and detailed search over search space on
each cycle of optimization. Owing to the selection schemes
randomly employed and the neighbour generation mechanism
applied, ABC has better performance in terms of local and the global
optimization [22,23]. ABC algorithm are its better or at least similar
function to that of optimization algorithms, although it has less
control parameters making ABC algorithm more efficient in opti-
mizing multi-modal and multi-dimensional problems [22,23,35].
The process involved in this model comprises the following steps
[36,54—56]:

e At the beginning of the food search process, explorer bees
randomly begin to search for food.

o After finding a food source, explorer bees become duty bees
and begin to carry nectar from the source to the hive. Each
d2uty bee empties nectar brought to the hive and at this point
either returns to the source found earlier or communicates
information related to the source to observer bees in the hive
by dancing in the dance area. If the source has been consumed,
the duty bee becomes an explorer bee and begins to search for
new sources.

e The observer bees waiting in the hive watch the dances indi-
cating rich sources and choose a source linked to the dance
frequency which is proportional to the quality of the food.

The ABC algorithm firstly produces random values between the
upper and lower limits for each parameter in a random location
production process as seen in Eq. (14).

i=1,..,SN

i=1..D (14)

Xij = X" 4 rand(0, 1) (xjmax - x]‘.“i“) {

where SN is the number of food sources (or employed bees) and D is
the number of parameters to be optimized.

After the initial stage, the food sources pass through duty bee,
observer bee and explorer bee processes in an attempt to find the
best source. The maximum cycle number (MCN), acceptable error
value or other stopping criteria may be used as stopping criteria for
the ABC algorithm. In this optimization process the number of food
sources is equal to the number of duty bees. Worker bees determine
new food adjacent to the working food source and assess its quality.
If the new source is better than the first, the new source is
remembered. The determination of a new source adjacent to the
current source is given in:

=+ oi(i-xg) {1215 (15)
where ¢ is random number in range of [-1,1] and j#k. As the dif-
ference between the random values of x;; and xy; reduces, in other
words as solutions become similar, the change amount for the x;
parameter reduces. Thus, as the regional optimal solution becomes
closer, the change amount adaptively reduces.

The v; parameter vector produced within limits represents a
new source and its quality is obtained by calculating the fitness
value (fit) given by

1
P B ey A (16)
1+1fil, fi<O

where fj is the cost values of solving the v; source.

Depending on the nectar amount between x; and vj, namely the
fit value, a greedy selection process is applied [57]. If the newly
found vj solution is better, the duty bee wipes the old source from
memory and replaces it with the location of v;. If this is not the case,
the duty bee continues to go to X; source and as the x; solution could
not be developed, the non-development counter related to this
source increases. If the solution is developed the counter goes to
zero.

After all duty bees have completed research in a cycle, they re-
turn to the hive and communicate information related to the nectar
amounts in the sources found to observer bees. Each observer bee
benefits from information shared through dancing and chooses a
region (source) proportional to the amount of nectar in the food
source [58]. In this basic ABC algorithm the selection process linked
to the fit value is completed using a roulette wheel [57]. The angle
of each section of the wheel is proportional to a fit value as:

__fn
S fity
Depending on the calculation of this probability, as the amount
of nectar in a source increases (as the fit value increases), the
number of observer bees choosing this source region will increase.
This property shows that the ABC has similar behaviour to the
positive feedback property of the behaviour of natural bees.

After calculating the probability values of the algorithm, these
values are used according to the roulette wheel selection process to
produce random numbers in the interval [0 1] for each source and if
the pj value is larger than this produced number, the duty bee uses
Eq. (15) to produce a new solution in the source region, like the
observer bee. The new solution is assessed and quality is calculated.
Later the fit of the new solution is compared to the old solution and
the best is chosen by using the greedy selection process. If the new
solution is better, this solution is taken in place of the old solution
and the non-development counter is set to zero. If the fit of the old
solution is better, this solution is protected and the non-
development counter increases. This process continues until all
observer bees have been released to a food source location [59].

pi (17)

2.3.3. Objective function

The analysis and optimization processes produce many possible
solutions to some problems. However, a function should be chosen
to find the correct and acceptable solution and to compare with
alternative solutions. In the literature this function is called the
objective function. Therefore, only by choosing a target function for
the evaluation and optimization of a thermodynamic system can it
be analysed and optimized. The single objective function in this
study is determined as the exergy efficiency (esys) of the whole
system. In the thermodynamic evaluation, the exergy efficiency
[60—62] for the conventional exergy analysis (CExA), the modified
exergy efficiency [49—52] for the advanced exergy analysis (AEXA),
and the maximum possible exergy efficiency by using the artificial
bee colony (ABC) method can be defined (in system and component
levels), respectively as

_1_EXpgs (18a)
Exp SYs
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_ Expy 1 EXD,k

* EXg - EXF,k (18b)
E€modified,sys = E'ijsys - ;:;jl\sljlyss - Exg\;,yfsx (19a)
€modified .k = ExF,k _ E}fg{;{k— Exg\iEX (19b)
€max possible sys = Exg):;/ss;rslax =1- EXEI?XSFy:?m (20a)
€max possible.k = ExPﬁk,max =1- EXDAk,min (ZOb)

EXF k EXF k

where emax possible sys 1S that variables that maximize the exergy
efficiency (esys) of the whole system and their limits are found as a
result of the optimization process performed.

3. Results and discussion

In this study, the analysis and optimization methods are used to
assess the performance in terms of thermodynamics of a binary
geothermal power plant (GPP) to (i) improve the thermodynamic
performance of the system and its components and (ii) compare
the results of the analysis (exergy) and optimization (artificial bee
colony) methods about system performance. The Sinem GPP
operated in Turkey as a case study is chosen. With this aim, the
temperature, pressure and mass flow rate for each state within the
system are collected on the 14 April 2013 as shown in Fig. 1. The

Table 2

The exergetic variables for the GPP system and all its components.

Component, k Exg i (KW) Exp (KW) Exp .k (KW) EXL ot (KW)
CON 1 6069.49 4094.42 1975.06 —

CON 2 5553.70 3062.96 2490.75 -
PRE-HE 1 4273.64 3634.71 638.93 -
PRE-HE 2 5678.41 4586.55 1091.86 -

TURB 1 12908.34 12066.15 842.19 -

TURB 2 10801.98 9000.32 1801.65 -

VAP 1 16682.38 15365.76 1316.61 -

VAP 2 13950.34 11494.18 2456.16 —

RECUP 1041.22 621.05 420.17 -

PU 1 2323.60 397.53 1926.04 -

PU 2 2192.20 27495 1917.26 —
Overall system 53771.73 21028.56 16876.69 15866.48

procedure mentioned in the thermodynamic modelling section is
performed with the MATLAB program associated with the COOL-
PROP to obtain the results in Table 1. Before applying the advanced
exergy analysis and artificial bee colony optimization method to the
available system, the necessity to complete conventional exergy
analysis is not forgotten because this is provided the target function
of the study.

3.1. Results of the conventional exergy analysis (CEXA)

Using the data in Table 1 and Eq. (3) or (4), the thermodynamic
analysis (conventional one) for the Sinem GPP and its components
is performed. The results obtained from applying the conventional
exergy analysis (CExA) are given in Table 2. As seen in Table 2 there
is an exergy input of 53772 kW to the system from the geothermal
fluid. Of this total exergy input, nearly 15866 kW is calculated to
be exergy loss due to re-injection and NCG. As a result, while the
exergy destruction rate occurring from all components in the
system is 16876 kW, the exergy amount produced by the system is

Table 1

The recorded and calculated thermodynamics variables at various system locations for the Sinem GPP on 14.04.2013.
Steam, j Fluid type T; (°C) P; (kPa) h; (KJ/kg K) s (kJ/kg K) m; (kg/s) Exj (kW)
1 Brine 164 1040 692.43 1.98 445 52693
1 Brine - steam 165 1040 696.78 1.99 5.83 699
1 NCG 165 1040 629.69 2.64 2.50 380
2 Brine 136 730 573.07 1.70 445 36010
3 Brine 110 690 459.30 1.41 445 22589
4 Brine 110 690 459.30 1.41 222.50 11295
5 Brine 110 690 459.30 1.41 222.50 11295
6 Brine 89 590 371.51 1.18 222.50 7021
7 Brine 81 570 337.74 1.08 222.50 5616
8 Brine 85 590 354.54 1.13 445 12447
9 Brine 107 690 448.50 1.38 0.83 40
10 Brine - steam 107 690 448.50 1.38 5.25 253
10 NCG 107 690 575.29 2.58 2.25 257
11 n-pentane 105 1261 176.25 0.51 160 4776
12 n-pentane 137 1261 516.04 1.35 160 20142
13 n-pentane 82 150 440.76 1.36 160 7237
14 n-pentane 60 150 398.48 1.24 160 6193
15 n-pentane 31 150 -11.44 —-0.04 160 123
16 n-pentane 37 1261 3.07 0.00 160 520
17 n-pentane 55 1261 47.00 0.14 160 1141
18 n-pentane 106 687 179.16 0.52 169 5018
19 n-pentane 109 687 469.92 1.28 169 16512
20 n-pentane 69 119 416.78 1.32 169 5713
21 n-pentane 33 119 -7.00 -0.02 169 157
22 n-pentane 39 687 593 0.02 169 431
23 Air 25 101 424.29 3.88 2000 0
24 Air 25.5 106 424.70 3.87 2000 8238
25 Air 25 101 424.29 3.88 2000 0
26 Air 25.5 106 424.70 3.87 2000 8238

Note: The environmental temperature and pressure on that date were recorded as 25 °C and 1 bar, respectively.
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21029 kW. The highest exergy destruction rate in the power plant
is nearly 2491 kW occurring in the condenser CON 2. This is fol-
lowed by the vaporizer VAP 2 and the condenser CON 1. In this
situation it is understood that the components requiring priority
improvement are CON 2, VAP 2 and CON 1, respectively. However,
the cause of the exergy destruction is not sufficient to allow us to
understand what the interaction between the components is and
how to complete the improvements. Additionally, our objective
function of total exergy efficiency is found to be 39.11% based on
the exergy input from the geofluid (brine) entering the GPP ac-
cording to the CExA.

3.2. Results of the advanced exergy analysis (AExA)

Advanced exergy analysis (AEXA) is an analysis type focusing not
on the system as a whole, but on the component level; in other
words, only on the exergy destruction amounts in components. It is
used to assess the thermodynamic performance of the Sinem GPP
comprising 11 pieces of components. Using the unavoidable and
theoretical operating conditions given in Table 3, the exergy
destruction rate of the 11 components of the GPP system are
divided into endogenous/exogenous and unavoidable/avoidable
portions. Thus, reduction of the exergy destruction of the system
components will be divided into resources (endogenous/exogenous
sections) and potential (unavoidable/avoidable sections). The al-
gorithm written in the MATLAB program associated with the
COOLPROP is used to simulate the Sinem GPP based on a plant
model that uses actual and variable data.

To calculate the endogenous exergy destruction rates for system
components, the real and theoretical operating conditions in
Tables 1 and 3 are used. The calculation procedure involved all
equipment in the system working under theoretical conditions
while the calculated component was working under real operating
conditions. During this process, the output power of the whole
system was held constant [63]. It should be noted that theoretical
operating conditions are impossible with real world engineering.
The exogenous exergy destruction rate for the component used is
calculated using Eq. (7). The AEXA results completed to find
whether the amount of exergy destruction in components of the
Sinem GPP was due to the component or to neighbouring compo-
nents are listed in the second and third columns of Table 4.

Table 3
The unavoidable and theoretical operation conditions conducted for the study.

Component, k  Parameter Unavoidable conditions Theoretical conditions

CON 1 ATpinch 3K 0K
AP 10 kPa 0 kPa
CON 2 ATpinch 3K 0K
AP 10kPa 0 kPa
PRE-HE 1 ATpinch 43K 0K
AP 10 kPa 0 kPa
PRE-HE 2 ATpinch 5K 0K
AP 10 kPa 0 kPa
TURB 1 Mis 93% 100%
MNmech 100% 100%
TURB 2 Nis 93% 100%
Nmech 100% 100%
VAP 1 ATpinch 6K 0K
AP 10kPa 0 kPa
VAP 2 ATpinch 5K 0K
AP 10 kPa 0 kPa
RECUP ATpinch 5K 0K
AP 10kPa 0kPa
PU 1 MNis 82% 100%
Nmech 100% 100%
PU 2 Nis 77% 100%
Nmech 100% 100%

On Table 4, the majority of exergy destruction rate of all com-
ponents apart from the pumps are endogenous, that is, sourced
within the components themselves. The difference in endogenous
and exogenous exergy destruction rates specially in CON 2, VAP 2
and CON 1 is very large. The choice of low capacity condensers at
the start and then the polluting and dampening effect of the cooling
water within them reduce the efficiency of the condensers. Due to
these reasons, higher levels of endogenous exergy destruction rate
occur. This situation affects PU 1 and PU 2 more as they have
pressure falls due to the pollution and dampening within the
condensers. As a result, their exogenous exergy destruction is
greater than the endogenous one. In the situation where there
output temperature of turbine TURB 2 and the cooling water input
temperature falls, CON 2 is affected exogenously. Low turbine yield
for TURB 1 is due to temperature differences, leaks and pressure
drops, in other words due to itself, with very high exergy
destruction rate of 1244 kW. The endogenous exergy destruction
rate is nearly 558 kW. This is caused by temperature drops occur-
ring at the output of the vaporizer VAP 2. In the second level, the
same reasons can be mentioned for TURB 1. The VAP 2 system
component has higher exergy destruction rate than VAP 1 in the
first level. The reason for this is due to the great fall in geofluid
temperature coming out of VAP 1. If this output temperature were
increased, this would increase the exergy destruction rate of VAP 1.
Therefore, exogenous exergy destruction rate caused by VAP 1
would occur in VAP 2. If there was improvement within the
vaporizer VAP 1 in the system, this would cause a reduction in the
exogenous exergy destruction rate in the turbine TURB 1. Addi-
tionally, reducing the exogenous exergy destruction rate in VAP 2
would thus cause a reduction in the exogenous exergy destruction
rate in TURB 2.

To calculate the unavoidable exergy destruction rate in system
components, the unavoidable operating conditions (best possible
working conditions) in Table 4 are used. Thus when all components
in the system is operated under unavoidable conditions, the exergy
destruction occurring in the calculated component is the un-
avoidable exergy destruction rate. Determination of unavoidable
operating conditions is completely linked to the decision maker
and it should be noted are arbitrary to a degree. Additionally, the
avoidable exergy destruction rate can be easily calculated using Eq.
(8). In conclusion, the results of the AEXA analysis performed to
determine whether there is improvement potential for the exergy
destruction in system components or to understand how this may
occur, are listed in the fourth and fifth columns in Table 4.

In Table 4, the avoidable exergy destruction rate is higher than
the unavoidable exergy destruction rate for all components, apart
from components like TURB 1, TURB 2, VAP 2, RECUP, PU 1 and PU 2.
The main components producing power in the system of TURB 1
and TURB 2 have very high unavoidable exergy destruction. This
means that these turbines need maintenance or to be replaced.
Within these components it is understood there is only 43 kW and
563 kW improvement potential. Among the components CON 2 has
highest value for avoidable energy destruction of 1929 kW. This
means that this component has very high improvement potential.
This is followed by the components CON 1 and VAP 1 with values of
1443 and 1095 kW, respectively.

For more advanced analyses, the endogenous and exogenous
portions of the unavoidable and avoidable exergy destruction rates
in the components may be determined. The results obtained using
Eqgs. (10)—(13) are presented in Table 4. The most significant portion
of the AEXA analysis is the avoidable endogenous portion and this
portion should be specially evaluated. In Table 4, it appears that
endogenous exergy destruction rate may be prevented in all com-
ponents apart from the pumps. This destruction in the pumps is
due to the temperature of the n-pentane emerging from the
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Table 4

The advanced exergetic variables for the GPP system and all its components.
Component, k Exf)’j(( kW) ExEX (kW) Ex (kW) ExSN (kW) ExdN E'xg‘i

ExUNEN (o) EXOVEX (kW) Exgz(‘m (kW) X B (kw)

CON 1 1551.15 42391 1442.77 532.29 122.75 409.54 1428.40 14.37
CON 2 1647.90 842.85 1928.88 561.87 109.20 452.66 1538.69 390.19
PRE-HE 1 353.34 285.59 359.98 278.95 102.94 176.01 250.40 109.58
PRE-HE 2 576.79 515.07 641.86 450.00 167.56 282.44 394.81 247.05
TURB 1 692.86 149.33 43.32 798.87 657.17 141.70 35.70 7.63
TURB 2 1243.81 557.84 563.16 1238.49 855.01 383.49 388.80 174.35
VAP 1 844.42 47219 1095.44 221.17 141.43 79.75 703.01 392.42
VAP 2 1614.73 84143 708.13 1748.03 940.63 807.40 674.10 34.03
RECUP 224.25 195.92 68.06 352.11 256.96 95.15 52.37 15.69
PU1 757.58 1168.46 309.51 1616.53 609.72 1006.81 147.86 161.65
PU 2 457.05 1460.21 460.83 1456.43 316.05 1140.38 141.00 319.83
Overall System 12105.42 4772.09 7585.91 9291.60 6929.24 2362.39 5176.21 2409.73

condensers. Among system components CON 2 has the highest
avoidable endogenous exergy destruction rate. This is followed by
CON 1 and VAP 1. In conclusion, when the components with highest
improvement potential are listed they are found during CON 2, CON
1 and VAP 2. However, in the CEXA this order was CON 2, VAP 2 and
CON 1.

3.3. Results of the artificial bee colony (ABC)

The previously mentioned artificial bee colony (ABC) was used
to optimize the value of the total exergy efficiency in the system (to
maximize its value). The converging conditions and their values
used in ABC are given in Table 5. As seen in the table, there is one
parameter to be optimized and this is the single objective function
(as total exergy efficiency of the system). The 9 decision variables
and their constraints used in the ABC algorithm to find the
maximum possible exergy efficiency are presented in Table 6. It
should not be forgotten that there are at least 78 decision variables
at 26 points within the GPP system considered. To optimize such a
large number of variables, the computer operation time is endless.
As a result, the decision variables in Table 6 were very carefully
chosen. They are the most important variables that affect the sys-
tem performance and efficiency. Constraints should be determined
accordingly to resolve any thermodynamic problem. In this study,
they consist of the pressure and mass flow rate values of the
components on the line through which the geothermal fluid passes.
By using the decision variables and their constraint range, the ABC
algorithm is used to optimize total exergy efficiency of the Sinem
GPP model on which the algorithm is written in the MATLAB pro-
gram associated with the COOLPROP. Each optimization procedure
was repeated at least once to obtain appropriate results.

The convergence behaviour of the ABC algorithm to optimize
the thermodynamic performance of the Sinem GPP is given in
Fig. 2. As seen in Fig. 2, the exergy efficiency is maximised on the
4th cycle. Though there is a slow drop until the 27th cycle,

Table 5

The converging conditions used in the ABC algorithm.
Parameters Value
Number of colony size (NP) 10
Number of food sources 10
Number of colony cycles 50
Boundary (limit and max cycle) 100
Number of parameters for optimization process (D) 1
Iterative relative convergence error tolerance, % 0.05

Table 6
The decision variables and their constraints determined for the ABC method (only
geofluid/brine line of the GPP).

Decision variables Unit Constraint range (to ... from ...)

Py kPa 950—-1150
P1 steam kPa 950-1150
AP\/Ap 1 kPa 0—440
APVAP 2 kPa 0—-230
APpRre-HE 1 kPa 0-200
APpRe-HE 2 kPa 0—200

iy kg/s 442—-446
My steam kg/s 8—10
NCG % 20—-40

maximum exergy efficiency converges at nearly the 28th food
search cycle. As can be seen, the maximum exergy efficiency was
found to be 42.80%.

Table 7 presents the true and optimum values of the decision
variables chosen during optimization of the system. As listed in
Table 7, the true and optimum values for the input pressure of the
geofluid into the system are respectively 1040 kPa and 1107.7 kPa.
For geofluid steam these values are calculated as 1040 kPa and
1095.3 kPa, respectively. As can be seen, the optimum values are
higher than the true values. Similar results are obtained for their
mass flow rates. Additionally, the pressure differences between the
input and output geofluid in vaporizers and preheaters should be
lowered. If possible, it is necessary to lower the percentage of NCG.

50 T T T T T T T T T
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!
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5 10 15 20 25 30 35 40 45 50
Cycle Number

Fig. 2. The convergence behaviour of ABC algorithm for maximizing exergy efficiency
of whole system.
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Table 7
The real and optimized values of the decision variables for the GPP system.

Decision variables Real value Optimum value
Py 1040 1107.70

Pl,steam 1040 1095.30

APyap 1 310 123.26

APyap 2 40 10.34

APpRE-HE 1 100 84.85

APpRE-HE 2 120 59.35

1y 445 446

m],steam 8.33 9.32

NCG 30 27

Table 8
The maximum possible exergetic variables obtained from the ABC method for the
GPP system and all its components.

Component, k Expx (KW) Expic (KW) Exp (KW) EXLtor (KW)
CON 1 5983.26 4108.19 1875.07 -

CON 2 5554.04 3163.29 2390.75 -
PRE-HE 1 4488.51 3845.92 642.59 —
PRE-HE 2 573343 4713.45 1019.98 -

TURB 1 12904.32 12166.15 738.17 -

TURB 2 10801.59 9100.32 1701.27 —

VAP 1 16630.73 15487.45 1143.28 -

VAP 2 13997.43 11594.18 2403.25 -

RECUP 1145.20 700.60 444.60 —

PU1 2224.84 398.8 1826.04 —

PU 2 2165.26 348.01 1817.25 -
Overall system 54044.93 23130.24 16002.25 14639.24

In conclusion, if the optimum values for the decision variables can
be reached, the total system exergy efficiency will reach maximum.

The maximum possible exergetic variables obtained with the
ABC method are listed in Table 8. In Table 8 there is nearly
54045 kW exergy input into the GPP system. Of this total exergy
input nearly 4639 kW is exergy loss due to both re-injection and
NCG. The exergy destruction rate caused by whole system com-
ponents is 16002 kW, while the exergy rate produced by the system
is 23130 kW. The highest exergy destruction rate in the GPP is
2403 kW occurring in the vaporizer VAP 2. This is followed by the

Ooé\ Ooe‘lz ' N
&

<&
< X3

condensers CON 2 and CON 1. In this situation the components
requiring priority improvement are understood to be VAP 2, CON 2
and CON 1.

3.4. Comparison of the methods conducted for the system
performance

Fig. 3 shows the variation in exergy destruction rates for the
system components at the three methods. Regarding Fig. 3, similar
to the AEXA analysis results, the ABC method optimizes decision
variables chosen along the geothermal fluid line according to
accepted constraints to reduce the exergy destruction rates of all
components. As seen in Fig. 3, the component with highest exergy
destruction is the condenser CON 2. However, according to the ABC
method, it is the vaporizer VAP 2. From a different aspect,
condenser CON 2 had exergy destruction rates of 2491 kW and
2403 kW according to the CExA and the ABC, respectively. Ac-
cording to the AEXA analysis, this value was 1539 kW. When these
methods are compared, a very low exergy destruction rate was
obtained from the AEXA analysis. This is a reality of the assumptions
in the AEXA analysis being linked to the decision maker and arbi-
trary to an extent [41,47,48]. In this situation, this means that to
complete the AEXA analysis accurately requires experience and
ability.

The unavoidable portion of the exergy destruction rates in
system components is obtained by subtracting separately the
exergy destruction rates obtained in the other two methods from
the exergy destruction rates in the CEXA. Thus, these last two
methods can be compared more clearly. The obtained results are
presented in Fig. 4. As seen on Fig. 4, the unavoidable portion of the
exergy destruction amounts for component in the ABC method is
much lower than in the AEXA analysis. For example, for the
condenser CON 2 the value is 562 kW for the AExA and 100 kW for
the ABC. Additionally, on AExA analysis the unavoidable portions
for the vaporizer VAP 2, pumps PU 1 and PU 2 and turbine TURB 2
are 1748 kW, 1617 kW, 1456 kW and 1238 kW, respectively, while
for ABC analysis these values are 53 kW, 100 kW, 100 kW and
101 kW, respectively. Thus, the largest difference between the two
methods is due to the vaporizer VAP 2.
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Fig. 3. The change of destruction exergy rates of the system components for the conventional and advanced exergy analyses (CEXA and AExA) and the artificial bee colony (ABC)

method.
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Fig. 4. The change of unavoidable destruction exergy rates for the system components
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A comparison of the exergy efficiencies at the component level
obtained from the three different methods used in the study is
given in Fig. 5. In this way it can be observed which methods are
more significant. As seen in Fig. 5, for the exergy efficiency values
for all components it is appeared that exergy efficiency on the AEXA
analysis is higher than those from the other two methods. This
indicates that if the maximum improvement to the component
within the system is completed, its efficiency will only reach as
high as the modified exergy efficiency (of the AExA). However,
while the maximum possible exergy efficiency with the ABC
method is higher than that of the CExA analysis, it is lower than that
of the AEXA analysis. The reason for this may be that assumptions
are linked to the decision maker and somewhat arbitrary. From
Fig. 5, the real exergy efficiencies (CExA) for TURB 1 and TURB 2
were 93.5% and 83%, respectively while if the maximum improve-
ments were made the modified exergy yields (AEXA) would only be
99.7% and 95.9%. On the other hand, with the ABC method their
maximum possible exergy efficiencies are 94.3% and 84.2%,
respectively. As seen in the figure, the CEXA and ABC methods have
lowest values of exergy efficiencies for the pumps, while according
to the AEXA analysis, the efficiencies are seen to rise to nearly 70%.
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Fig. 6. The comparison of exergy efficiencies for overall system in the three different
methods.

Fig. 6 shows a comparison of the methods considering exergy
efficiency of the whole system. Regarding Fig. 6, under real condi-
tions in the system the total system efficiency from the CEXA is
found to be 39.11%, while with maximum improvements per-
formed the exergy efficiency will increase to 43.11%. When the
system is optimized according to the ABC method, the maximum
possible exergy efficiency will only reach 42.80%. The AExA and ABC
methods produce very close results for total exergy efficiency of the
system.

It is thought that as temperatures, mass flow rates and pressures
are measured, total uncertainties for all these parameters are
individually determined using the method described by Holman
[64]. In the present study, total uncertainties for the measured
parameters such as temperature, pressure and volumetric flow rate
are 1.05% (in °C), 1.98% (in kPa) and 2.37% (in m>/s), while the total
uncertainties for the calculated parameters such as exergy input
rate, exergy output rate, exergy efficiency, modified exergy effi-
ciency and maximum possible exergy efficiency are 1.02% (in kW),
1.41% (in kW), 2.14%, 6.34% and 2.51%, respectively.
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Fig. 5. The comparison of exergy efficiencies for the system components in the three different methods examined in this study.
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4. Conclusions

In this study, the conventional (CExA) and advanced (AExA)
exergy analyses in addition to the optimization method of the
artificial bee colony (ABC) are applied to an available operating
geothermal binary power plant (Sinem GPP in Turkey) to improve
the thermodynamic performance of the system. Initially a simula-
tion model accurately representing the real system is created. Then
the conventional and advanced exergy analyses are considered on
the model. Finally, to maximize total exergy efficiency in the sys-
tem, the optimization procedure using the ABC method is per-
formed on the system model. As mentioned above the results
obtained from the three methods are compared to assess thermo-
dynamic performance of whole system. Thus, the study impels us
to the results listed below:

a) The total exergy efficiency of the system is found to be 39.1%,
43.1% and 42.8%, respectively, for the CExA, AEXA and ABC
methods. The exergy efficiencies in the AExA and ABC
methods are observed to be very close.

b) The exergy rate produced in Sinem GPP is 21028 kW ac-
cording to the CEXA and AExA analyses, while this value
reaches 23130 kW for the ABC method. In this situation the
difference in these values of 2102 kW more exergy may be
produced.

c) When the components with highest exergy destruction rate
are listed, they are CON 2, VAP 2 and CON 1 for the CExA
analysis, CON 2, CON 1 and VAP 2 for the AEXA analysis, and
VAP 2, CON 2 and CON 1 for the ABC optimization method.
Thus the components requiring priority improvement are
determined.

d) The highest exergy destruction rate obtained from calcula-
tions of the methods used to improve thermodynamic per-
formance of the GPP occurs in heat exchangers (CONs, VAPs).

e) It is worth mentioning that the results of the AEXA analysis
should be verified with those of ABC optimization method.
The reason for this is that the theoretical and unavoidable
assumptions in the AEXA analysis are linked to the decision
maker and are therefore somewhat arbitrary as a single
value. In the ABC method, value of each optimized parameter
is selected at constraint limits (min and max range). There-
fore, its fitness value is determined as estranged from
arbitrariness.

Thus to increase the thermodynamic performance of
geothermal power plants, similar analysis and numerical simula-
tion studies to this one should be performed and it should be
confirmed that the results reflect reality. Therefore, the study and
similar studies will ensure a boost to the performance of systems
producing power from geothermal and other sources.
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Nomenclature

D number of parameters to be optimized
Ex exergy rate (kJ/s or kW)

h specific enthalpy (kJ/kg)
m mass flow rate (kg/s)

NP number of colony size

P pressure (kPa)

Q heat transfer rate (kW)

S specific entropy (kJ/kgK)
SN number of food sources
T temperature (°C or K)

W work rate, power (kW)
Greek symbols

A difference

€ exergy or second law efficiency (%)
0 random number [-1,1]

U] flow exergy (kJ/kg)
Subscripts

D destruction

F fuel

in input

is isentropic

j successive number of elements
k location

L loss

mech mechanical

out output

P product

sys system

0 reference state
Superscripts

AV avoidable

EN endogenous

EX exogenous

UN unavoidable
Abbreviations

ABC artificial bee colony
AExA advanced exergy analysis
ANN artificial neural network
CExA conventional exergy analysis
CON condenser

DE differential evolution

GA genetic algorithm

GPP geothermal power plant
NCG non-condensable gases
ORC organic Rankine cycle
PRE-HE preheater

PSA pattern search algorithm
PSO particle swarm optimization
PU pump

RECUP recuperator

SCADA Supervisory Control System
TURB turbine

VAP vaporizer
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