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1. Introduction

Nanoparticles of spinel ferrites are one of the most attractive 
materials for the development of new technologies due to their 
behaviour at the nanoscale. A large number of ferrimagnetic 
compounds with spinel structures have found a wide range of 
applications, such as in spintronics [1], magnetocaloric refrig-
eration [2, 3] magnetic resonance imaging [4] and magnetic 
hyperthermia [5]. A thorough understanding of their magnetic 
properties allows us to realize new potential applications with 
tailored properties that can be achieved with decreasing par-
ticle size, changing the cation distributions of the tetrahedral 
and octahedral sites, or substituting these sites with different 
ions, such as the rare-earths to further alter the magnetism for 
applications.

The ideal spinel structure has a face centered cubic unit 
cell with 32 O2− anions and metal ions situated in the pos-
sible interstitial sites between the oxygen ions [6]. The general 
structural formula of a spinel can be represented as (M1−xFex)
[ MxFe2−x]O4 (M is the metal ion) [7], where round and square 
brackets denote the tetrahedral (A site) and octahedral (B 
site) coordinations and x is the inversion parameter which is a 
quanti ty identifying the fraction of divalent ions in octahedral 
sites. The spinel structure is called ‘normal’ if all the diva-
lent ions are located in tetrahedral sites, (M2+ )tet(Fe3+ )octO4 
and x  =  0, ‘inverse’ if all the divalent ions are located in octa-
hedral sites, (Fe3+ )tet(M2+ Fe3+ )octO4 and x  =  1 [6]. If the 
divalent ions are located on both tetrahedral and octa hedral 
sites (0  <  x  <  1), the spinel is partially inverted [8]. The 
inversion degree may depend on the synthesis method [9–11], 
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Abstract
The microstructure, composition and magnetism of CoFe2O4, MnFe2O4 and NiFe2O4 
nanoparticles of comparable sizes (∼20 nm) and interparticle spacings (∼20 nm) have 
been characterized from 10 to 400 K. The cation distributions of the tetrahedral and 
octahedral sites of the particles, that have cubic spinel structures, have a high degree 
of inversion, ∼0.98 for CoFe2O4, ∼0.80 for MnFe2O4 and NiFe2O4 nanoparticles. The 
blocking temperatures were  ∼300 K for the MnFe2O4 and NiFe2O4 nanoparticles, while the 
CoFe2O4 nanoparticles, due to their higher intrinsic anisotropy had a significantly higher 
blocking temperature above 400 K. Specifically, the magnetocrystalline anisotropy of the 
CoFe2O4 nanoparticles was K = (2.96 ± 0.03)× 106 ergs cm−3, while for the MnFe2O4 
nanoparticles, K = (0.04 ± 0.01)× 106 ergs cm−3, and for the NiFe2O4 nanoparticles, 
K = (0.07 ± 0.01)× 106 ergs cm−3. The magnetism of these three ferrite systems are 
discussed in detail with regards to their microstructures and cation distributions.
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thermal history of the materials (due to annealing) [10, 12], 
and particle size effects [13].

CoFe2O4, MnFe2O4 and NiFe2O4 are spinels where the dis-
tribution of the cations among the tetrahedral and octa hedral 
sites can be quite different [8] resulting in quite different mag-
netism, especially at the nanoscale. For example, partially 
inverted spinel structures for CoFe2O4 and MnFe2O4 were 
reported in which 80% Co2+ [8] and 20% Mn2+ [14] ions are 
in octahedral sites with high and low degree of inversion for 
CoFe2O4 [15] and MnFe2O4 [8], respectively. MnFe2O4 is a 
more complex system compared to CoFe2O4 and NiFe2O4, as 
it can have different oxidation states of Mn atoms (Mn2+ and/
or Mn3+ ) [16–18]. By contrast, NiFe2O4 is a totally inverted 
spinel structure in which all the nickel ions are located in octa-
hedral sites [17].

In this paper, we present the structural, compositional and 
magnetic properties of CoFe2O4, MnFe2O4 and NiFe2O4 nano-
particles with similar sizes (∼20 nm) and similar interparticle 
spacings (∼20 nm). By decoupling the effects of interpar-
ticle magnetism, we identify and discuss the nanoparticles’ 
magnetism in the context of their cation distributions. For 
example, an observed increase in the saturation magnetiza-
tion of CoFe2O4 nanoparticles (∼2%) and NiFe2O4 nanopar-
ticles (∼10%), and a decrease of the saturation magnetization 
of the MnFe2O4 nanoparticles (∼20%), all compared to their 
bulk counterparts is understood in terms of the nanoparticles’ 
stoichiometries identified by low temperature Mössbauer 
spectroscopy in addition to a negligible number of Fe-ions 
distributed on the surface of all the particles, in keeping with 
the 20 nm nanoparticles surface-to-volume ratios.

2. Experimental methods

The nanoparticles were prepared using a method modified 
from the conventional organic phase process [19]. For the 
synthesis of CoFe2O4 nanoparticles, cobalt (II) acetate tet-
rahydrate (1 mmol) (⩾98.0%, Sigma-Aldrich) and iron (III) 
acetylacetonate (2 mmol) (97%, Sigma-Aldrich) were mixed 
with oleic acid (4 mL) (90%, Aldrich), oleylamine (4 mL) 
(70%, Aldrich) and dibenzyl ether (20 mL) (⩾98.0%, Sigma-
Aldrich). The final mixture was sealed in a stainless-steel auto-
clave. The resulting solution was then heated to 200 °C and 
maintained at this temperature for 6 h under vigorous stirring. 
After removing the heat source, the autoclave was cooled to 
room temperature, and the black precipitate was washed sev-
eral times with methanol to remove excess ligands. The black 
precipitate was then collected using a magnet and washed 
with chloroform. MnFe2O4 and NiFe2O4 nanoparticles were 
synthesized using a similar process, with manganese (II) 
acetylacetonate (1 mmol) (Sigma-Aldrich), nickel (II) acetate 
tetrahydrate (1 mmol) (98.0%, Sigma-Aldrich) and iron (III) 
acetylacetonate (2 mmol) (97%, Sigma-Aldrich) as reactants 
under similar reaction conditions, but autoclaved for different 
times (1 h and 4 h, respectively).

X-ray powder diffraction (XRD) patterns were collected 
at room temperature on a zero background quartz slide with 
a rotating stage using a Bruker D8 DaVinci diffractometer 

and CuKα radiation. All the XRD patterns have been ana-
lyzed using the Rietveld refinement technique (FullProf pro-
gram [20]). Transmission electron microscopy (TEM) images 
of the samples were collected using a FEI Talos F200X S/
TEM microscope. For TEM grid preparation, the nanopar-
ticles were dispersed in hexane and aliquotes were dropped 
onto a carbon-coated copper grid. A dynamic light-scattering 
(DLS) apparatus (Photocor) was used with a 25 mW Coherent 
solid state laser with λ = 632 nm to measure the hydrody-
namic size of the particles and size distributions of dilutions 
of CoFe2O4 and NiFe2O4 nanoparticles suspended in chlo-
roform, and MnFe2O4 nanoparticles suspended in hexanes 
at room temperature. Transmission Mössbauer spectra were 
collected at 30 K in a Cryo closed-cycle refrigeration system 
using a WissEl spectrometer in constant acceleration mode 
with a 10 GBq 57Co Rh source. The source drive velocity 
was calibrated using a 6 μm thick α-Fe foil at room temper-
ature. Magnetometry and susceptometry was performed using 
a Quantum Design magnetic properties measurement system 
(MPMS XL-5).

3. Results and discussion

3.1. Structural analysis

The x-ray diffraction patterns of CoFe2O4, MnFe2O4 and 
NiFe2O4 nanoparticles are shown in figures 1(a)–(c). All the 
reflections correspond to those of CoFe2O4, MnFe2O4 and 
NiFe2O4 nanoparticles and there is no evidence of any impu-
rity. Refinements of the x-ray diffraction patterns using the 
FullProf program [20] revealed that each of the nanoparticle 
system have a spinel structure described by the cubic F d3  
m space group with lattice parameters 8.398 ± 0.001 Å  for 

Figure 1. X-ray patterns of (a) CoFe2O4, (b) MnFe2O4, and (c) 
NiFe2O4 nanoparticles, with the results of the Rietveld refinements 
(black lines). The Bragg markers identify the reflections (green) and 
the residuals to the refinement are presented below (blue lines).
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CoFe2O4, 8.383 ± 0.001 Å  for MnFe2O4, and 8.368 ± 0.001 
Å  for NiFe2O4. Scherrer broadening of the diffraction peaks 
incorporated into the refinements provides an estimate 
of  ∼20 nm for the particle diameter of each of the ferrite 
nanoparticle systems.

Typical TEM images and the corresponding histogram plots 
of the sizes using ImageJ analysis [21] identify the particle size 
distribution of CoFe2O4, MnFe2O4 and NiFe2O4 nanoparticles 
are shown in figures  2(a)–(f). While CoFe2O4 and NiFe2O4 
nanoparticles are nearly spherical, the MnFe2O4 nanoparticles 
present a mixed spherical and cubic morphology. The log-
normal fits of the size histograms yielded the average diam-
eters (〈D〉) with standard deviations (σ) as 〈D〉 = 17 ± 0.2 nm 
and σ = 0.22 for CoFe2O4, 〈D〉 = 21 ± 0.1 nm and σ = 0.19 
for MnFe2O4, 〈D〉 = 19 ± 0.3 nm and σ = 0.27 for NiFe2O4 
nanoparticles. These sizes are in good agreement with those 
from the XRD refinements. We did not observe any peak 
asymmetry or unusual enhancement of the peak intensities in 
the XRD patterns of the ferrite systems which signifies the 
absence of any dominant or preferred crystallographic planes.

To better identify the clustering (that may impact the mag-
netism through interparticle interactions) and its relevant size 
scale, hinted at in the TEM images (e.g. figure  2(c)), DLS 
measurements were made on nanoparticles suspended in 
organics and analyzed with the DynaLS© software (figures 
3(a)–(c)). The different size distributions with scattering angle, 
θ, indicate particle clusters in a size range  ∼450–800 nm for 
CoFe2O4, ∼60–300 nm for MnFe2O4 and  ∼400–750 nm for 

NiFe2O4 nanoparticles. Keep in mind that the DLS measur-
ments identify a hydrodynamic size which reflects the oleic 
acid (OA) coatings in addition to possible clustering effects in 
suspension. Gaussian hydrodynamic particle size distributions 
with an average of  ∼600 ± 30 nm for CoFe2O4, ∼150 ± 20 
nm for MnFe2O4 and  ∼550 ± 50 nm for NiFe2O4 nanoparti-
cles are consistent with the values previously reported for dif-
ferent magnetic nanoparticles with surface coating [22], and 
indicates the existence of particle clusters of nanoparticles 
when in suspension.

To identify the compositions of the nanoparticles, 
Mössbauer spectra were collected at low temperature (30 K, 
well below the blocking temperature, TB, to ensure the spin 
dynamics were negligible), as shown in figures 4(a)–(c). The 
spectra were fitted using a nonlinear least squares program 
with Lorentzian lineshapes, and the relative areas were used 
to determine the number of the ions in the sites. Excellent fits 
were obtained with superpositions of three subspectra for all 
samples. The Mössbauer parameters resulting from the fitting 
for each sample are listed in table  1. The presense of a B2 
site is indicative of Fe ions that have a 2+ charge [23], which 

Figure 2. Typical TEM images of (a) CoFe2O4, (b) MnFe2O4, 
and (c) NiFe2O4 nanoparticles. The corresponding size histograms 
((d)–(f)) are shown with log-normal fits (red lines).

Figure 3. The hydrodynamic size distribution of (a) CoFe2O4, (b) 
MnFe2O4, and (c) NiFe2O4 nanoparticles measured by DLS. The 
red lines through the data at different scattering angles present the 
Gaussian fitting.
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is likely due to some B-sites residing on the surface of the 
crystallites. However, unlike the Mössbauer spectra of many 
nanoscale ferrites [24, 25], no electric field gradient on the 
Fe-ions (i.e. a doublet) was observed which is expected for 
significant broken coordination. Estimate of the surface spin 
to core spin population ratio of  ∼0.1 for all samples was cal-
culated using the relative ratio of sublattices from Mössbauer 
measurements. This value of the ratio of surface to core spin is 
exactly matching with the value of  ∼0.1 was obtained for all 

samples by considering the surface layer thickness of order of 
the lattice parameter [26, 27] according to chemical core-shell 
model [28]. These results indicated that there is a negligible 
number of Fe-ions distributed on the surface of all the parti-
cles. A study of size dependent magnetic properties of man-
ganese ferrite fine particles revealed that the surface effects 
disappear when the particle size is larger than  ∼20 nm and our 
particles are in the same size range [29].

Bhf represents the hyperfine field that is proportional to 
the interaction between the Fe nucleus and its surrounding 
magn etic field, δ represents the isomer shift that is responsible 
for interaction occuring between the nucleus and the s-elec-
trons (density), and Γ is the FWHM Lorentzian linewidth 
(0.133  ±  0.003 mm s−1 is the source’s linewidth that is a 
measure of the lifetime of the excited state of the nucleus), 
and the spectral area is directly proportional to the number of 
Fe atoms in the A and B sites, respectively. The sextet with the 
smallest isomer shift is assigned to the Fe+3 ions occupying 
the tetrahedral sites. Because the number of d-electrons in the 
Fe+2 ions is larger than Fe+3 ions, the nucleus becomes more 
strongly shielded from s-electrons [30], the larger isomer 
shift is assigned to Fe+2 ions occupying the octahedral sites. 
The third sextet with the smallest hyperfine field interpreted 
as the presence of  ∼9% Fe2+ ions for CoFe2O4, ∼8% Fe2+ 
ions for MnFe2O4 and  ∼7% Fe2+ ions for NiFe2O4 nanopar-
ticles occupying on the surface of the nanoparticles [31]. In 
addition, the Γs of the individual sites reflect the local site 
disorder, as expected from nanoparticles and in agreement 
with the local stress and strain, for example, mirrored in the 
Scherrer-broadened x-ray diffraction pattern reflections.

The distributions of the cations in tetrahedral and octa hedral 
sites obtained from the Mössbauer fits lead to a chemical 
form ula of (Co2+

0.02Fe3+
1.00) [Co2+

0.81Fe3+
0.99Fe2+

0.19]O
−2
4  for Co-ferrite, 

(Mn2+
0.26Fe3+

0.86) [Mn2+
0.80Fe3+

1.00Fe2+
0.15]O

−2
4  for Mn-ferrite and 

(Ni2+0.36Fe3+
0.83) [Ni2+0.78Fe3+

1.00Fe2+
0.13]O

−2
4  for Ni-ferrite nanoparti-

cles. Mössbauer spectroscopy is a direct measure of the Fe ion 
environments [17] so the numbers of Co, Mn and Ni ions in 
the systems were estimated from charge balance arguments. 
Thus, the degree of inversion, x, was determined from the 
fraction of Co, Mn and Ni ions occupied in octahedral sites 
corresponded to that  ∼98% of Co+2 ions, ∼80% of Mn+2 ions 
and  ∼80% of Ni+2 ions in octahedral sites. These results indi-
cated that the each of samples has a partially inverted (mixed) 
structure of a spinel (0  <  x  <  1) with high degree of inversion. 
All our values are comparable with previous reports [8, 31, 
32].

3.2. Magnetic analysis

In order to study the magnetism of nanoparticles, the same 
amount of dried nanoparticles and GE varnish (VGE 7031) 
were mixed to keep the particles stabilized with the similar 
interparticle spacings. The interparticle spacings, 〈d〉, were 
estimated assuming a distribution of spherical particles via 

〈d〉 = 〈D〉
2 ( 4π

3χv
), where 〈D〉 is the mean nanoparticle diam-

eter (estimated from XRD and TEM observations) and χv 
is the volume fraction of the nanoparticles. The interparticle 

Figure 4. Mössbauer spectroscopy of (a) CoFe2O4, (b) MnFe2O4, 
and (c) NiFe2O4 nanoparticles at 30 K. The black points represent 
the experimental data and coloured lines through the data are the fits 
for the respective sites as described in the text.

Table 1. Mössbauer parameters obtained from the fitting: hyperfine 
field (Bhf), isomer shift (δ), linewidth (Γ), and area ratio of the A 
and B site components.

CoFe2O4

Bhf (T) δ (mm s−1) Γ (mm s−1) Area (%)

A 50.4  ±  0.1 0.40  ±  0.01 0.23  ±  0.02 45.7  ±  4.2
B1 52.9  ±  0.1 0.49  ±  0.01 0.26  ±  0.01 45.6  ±  3.6
B2 48.0  ±  0.3 0.50  ±  0.03 0.24  ±  0.05 8.7  ±  3.6

MnFe2O4

Bhf (T) δ (mm s−1) Γ (mm s−1) Area (%)

A 50.9  ±  0.1 0.43  ±  0.01 0.27  ±  0.02 42.9  ±  6.5
B1 53.3  ±  0.1 0.48  ±  0.05 0.25  ±  0.01 49.6  ±  5.1
B2 45.0  ±  0.3 0.84  ±  0.03 0.29  ±  0.06 7.5  ±  2.4

NiFe2O4

Bhf (T) δ (mm s−1) Γ (mm s−1) Area (%)

A 50.2  ±  0.1 0.45  ±  0.01 0.24  ±  0.01 42.4  ±  5.1
B1 53.0  ±  0.1 0.53  ±  0.01 0.28  ±  0.01 51.1  ±  4.6
B2 46.6  ±  0.2 0.85  ±  0.04 0.28  ±  0.05 6.5  ±  3.4

J. Phys. D: Appl. Phys. 51 (2018) 025003
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spacings were 〈d〉 = 20 nm, 〈d〉 = 25 nm, 〈d〉 = 24 nm for 
CoFe2O4, MnFe2O4 and NiFe2O4 nanoparticles, respectively.

The zero-field cooled (ZFC) and field-cooled (FC) low-field 
magnetization temperature-dependence (M-T) of the CoFe2O4, 
MnFe2O4 and NiFe2O4 nanoparticles were measured with an 
applied field of 100 Oe in the temperature range of 10–400 K 
for each sample, as shown in figures  5(a)–(c). For the ZFC 
measurements, the samples were first cooled down to 10 K 
at zero-field and then the magnetization was measured up to 
400 K at a field of 100 Oe. In the FC sequence, the data were 
collected in the cooling cycle using the same magnetic field. 
In a ZFC-FC M-T scan of nanoparticles undergoing dynamical 
freezing that experience both inter- and intraparticle effects 
on the magnetism, three characteristic properties can often be 
distinguished [33]. The blocking temperature (TB) where the 
maximum of the ZFC magnetization, the irreversibility temper-
ature (Tirr) where the ZFC magnetization departs from the FC 
one due to interparticle interactions and f (V), the particle size 
distribution from the d(MFC − MZFC)/dT  versus T shape.

In a ZFC measurement, MZFC increases at first with warming 
and then reaches the maximum value at TB. At T < TB the par-
ticles are called in blocked regime as their magnetic moments 

directions are fixed along the applied field. At T > TB, MZFC 
begins to decrease with increasing temper ature and the parti-
cles are called in superparamagnetic regime in which single-
domain moments fluctuate about their easy axis [34]. As can 
be seen from figures 5(a)–(c), TB > 400 K for the CoFe2O4, 
MnFe2O4 and NiFe2O4 nanoparticles.

The broadening of the MZFC of NiFe2O4 nanoparticles is 
due to the wide particle size distribution and/or interparticle 
interactions [35]. The presence of clusters in the NiFe2O4 nan-
oparticles can couple the magnetizations of the neighbouring 
particles with increasing correlation lengths and thus increase 
the TB of these nanoparticles.

A maximum at Tmax in the ZFC magnetization is related 
to blocking effects which is not observed in the ZFC mag-
netization of CoFe2O4 and MnFe2O4 nanoparticles, indicating 
that NiFe2O4 is having a lower average energy barrier than 
the CoFe2O4 and MnFe2O4 [8]. As shown in the figure 5(a), 
the temperature dependence of the magnetization of CoFe2O4 
nanoparticles exhibit a cusp around  ∼320 K in the ZFC mag-
netization. It can be attributed to the freezing of particles with 
smaller size which can lead to spin-glass like phase formation 
[36]. Different from CoFe2O4 nanoparticles, the magnetization 
of MnFe2O4 and NiFe2O4 nanoparticles in ZFC with warming 
decreases below TB and no saturation is observed even down 
to 10 K. It can be attributed to lower anisotropy energy bar-
rier of MnFe2O4 and NiFe2O4 compared to CoFe2O4 nanopar-
ticles. Below TB, the decreasing characteristic of MZFC with 
warming is related to random orientation of magnetization 
along the easy axes at low temperatures without applied field 
due to anisotropy [37].

The magnetization in FC with cooling slightly increases 
as the temperature decreases down to  ∼100 K for CoFe2O4 
and NiFe2O4 and  ∼320 K for MnFe2O4 nanoparticles. At 
the temper atures below  ∼100 K for CoFe2O4 and NiFe2O4, 
∼50 K for MnFe2O4 nanoparticles the magnetization in FC 
with cooling exhibits nearly flat characteristic which indicates 
the existence of interparticle interactions [37]. The observed 
cusp near  ∼310 K in the MFC plot with cooling of MnFe2O4 
nanoparticles is indicative of the presence of strong interpar-
ticle interactions which is in agreement with Monte Carlo 
simulations [38]. Similar behaviour has been reported for 
MnFe2O4 nanoparticles with mean crystallite size of  ∼2 nm 
and Co particles embedded in Mn matrix with  ∼5% volume 
fraction which have strong dipolar and long-range interpar-
ticle interactions, respectively [39]. The collective behaviour 
of particles through the strong interparticle interactions shows 
similarities with the spin-glass systems [40], such as the 
existence of a maximum in MFC plot. Since the interparticle 
interaction energy is much larger than the individual particle 
anisotropy energy in the presence of strong interparticle inter-
actions the magnetic properties of a system can be character-
ized by a collective blocking of the particle moments [39]. 
It is clearly seen from the behaviour of MZFC and MFC plot, 
the magnetic properties of our particles are more likely due 
to non-negligible interparticle interactions with formation of 
some clusters.

To investigate the blocking process in our systems the 
difference in the (MFC − MZFC) plots are plotted against the 

Figure 5. Temperature dependence of the ZFC and FC 
magnetization of (a) CoFe2O4, (b) MnFe2O4, and (c) NiFe2O4 
nanoparticles. The insets show the high temperature regions.
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temperature as shown in figure  6. No clear coincidence of 
MZFC and MFC was seen below  ∼400 K for all samples as 
seen from the inset of figure 6. NiFe2O4 nanoparticles have 
larger irreversibility (MFC − MZFC) which originates from the 
energy barriers of magnetic anisotropy [41], below  ∼180 K 
compared to CoFe2O4 and MnFe2O4 nanoparticles. But at 
higher temperatures (above  ∼180 K) the higher irreversibility 
of CoFe2O4 and MnFe2O4 compared to NiFe2O4 nanoparti-
cles indicated that there are more amount of blocked parti-
cles in the samples [42] sign to a higher TB for CoFe2O4 and 
MnFe2O4 compared to NiFe2O4 nanoparticles.

The field dependent magnetization of the nanoparticles 
were measured from 10 to 400 K under  ±50 kOe applied 
fields. Typical hysteresis loops at 10 and 300 K are shown 
in figures  7(a)–(c). Hysteresis measurements indicated that 
CoFe2O4 nanoparticles become superparamagnetic with a 
blocking  >400 K and higher than MnFe2O4 and NiFe2O4 with 
a blocking at  ∼300 K with zero coercivity and remanance at 
these temperatures. The presence of small coercivities even 
at  ∼400 K for CoFe2O4 show that the extra energy barrier 
arising from the interparticle interaction can inhibit spin flip-
ping [43].

Saturation magnetization, Ms(T) and the coercivity (Hc(T)) 
values of the nanoparticles were determined from the hyster-
esis loops by subtracting the diamagnetic contribution due to 
GE varnish, and known sample masses. Ms(T), shown in fig-
ures 8(a)–(c) reflects the thermal behaviour of the nanoparti-
cle’s magnetization that is related to presence of spin waves, 
described by Bloch-like law [44] that incorporates finite size 
effects,

M(T) = M(0)[1 − BT2] (1)

where B is a spin-wave constant. Fitting Ms(T) according 
to the equation  (1) resulted in Ms(0) = 95.18 ± 0.33 emu 
g−1 and B = (1.46 ± 0.03)× 10−6 K−2 for CoFe2O4, 
Ms(0) = 75.91 ± 0.09 emu g−1 and B = (1.33 ± 0.01)× 10−6 
K−2 for MnFe2O4, Ms(0) = 69.93 ± 0.03 emu g−1 and 
B = (1.27 ± 0.01)× 10−6 K−2 for NiFe2O4 nanoparticles. 

The obtained values of B are comparable with values of fer-
rites reported previously [45]. Ms(T) with T2 dependence is an 
indication that there is an energy gap in the magnon fluctua-
tion spectrum due to the finite-size effects [44]. Ms(T) of the 
CoFe2O4 nanoparticles does not track well with equation (1); 
Ms(T)  ∼88 emu g−1 below  ∼200 K. This behaviour may be 
explained by the magnetization of some of the bigger particles 
not rotating along with the magnetic field, causes a decrease 
in the magnetization at low temperatures. The saturation mag-
netization values are found to be Ms(300 K)  ∼83 emu g−1 for 
CoFe2O4, ∼67 emu g−1 for MnFe2O4 and  ∼62 emu g−1 for 
NiFe2O4. Considering a typical density of  ∼5.3 g cm−3 [46] 
in the bulk forms of these ferrites, the Ms(300 K) values of 
the CoFe2O4, MnFe2O4 and NiFe2O4 are determined as 439.9, 
355.1 and 328.6 emu cm−3, respectively, which are compa-
rable with values reported in [47].

These values represent a  ∼20% decrease, and  ∼2% 
and  ∼10% increase compared to their bulk values at room 
temperature, for CoFe2O4, MnFe2O4 and NiFe2O4 respec-
tively. Ms is governed by the distribution of cations in their 
respective sublattices [8, 48], and in nanoparticle systems, this 
is especially relevant as the nanoparticle core degree of inver-
sion, x, and potential contribution of disordered spin structures 
from the surface (determined by the surface/volume ratio of 
the nanoparticles [48–50]) are competing effects.

Figure 6. Temperature dependence of (MFC − MZFC) of CoFe2O4 
( ), MnFe2O4 ( ), and NiFe2O4 ( ) nanoparticles. The inset shows 
the high temperature region.

Figure 7. Hysteresis loops of (a) CoFe2O4, (b) MnFe2O4, and (c) 
NiFe2O4 at 10 (�) and 300 K ( ).
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To clarify these different effects on Ms, the contribution 
from the cation distributions to the magnetism via net magnet-
ization per formula unit (nnet) were calculated using the Néel’s 
sub-two-lattice model [51] with the relation, nnet = MB − MA, 
where MB is the net magnetization of octahedral sites, and MA 
is the net magnetization of tetrahedral sites in µB [52]. From 
the Mössbauer fit results the net magnetization per formula 
unit is found to be 3.04µB for CoFe2O4, 4.00µB for MnFe2O4 
and 2.21µB for NiFe2O4 nanoparticles. Generalizing that the 
net magnetization per unit formula of any ferrite with inverse 
spinel structure is simply the moment on the divalent ion 
which corresponds to values of magnetization of 3µB, 5µB 
and 2µB for CoFe2O4, MnFe2O4 and NiFe2O4 [6], one can 
clearly see that the calculated values of magnetization using 
Mössbauer spectra results are in good agreement with the 
observed  ∼20% decrease, and  ∼2% and  ∼10% increase of 
net magnetization compared to bulk for CoFe2O4, MnFe2O4 
and NiFe2O4 nanoparticles. We conclude that migration 
of  ∼2% of Co2+ ions, ∼25% of Mn2+ ions and  ∼32% of Ni2+ 
ions from octahedral sites to tetrahedral sites with the distribu-
tion of  ∼9%, ∼8% and  ∼7% of Fe2+ ions on the surface are 
responsible for altered magnetization in CoFe2O4, MnFe2O4 
and NiFe2O4 nanoparticles, respectively.

To characterize the magnetic anisotropy that is a 
measure of distribution of energy barriers in the system the 

measurement of squareness (Mr/Ms) determined from the 
hysteresis measurements, is shown in figure 9. For randomly 
oriented particles with uniaxial anisotropy Mr/Ms = 0.5 is 
the expected (theoretical) value of the squareness at 0 K when 
nanoparticles are blocked [42]. The maximum squarenesses 
were found to be Mr/Ms (10 K)  ∼0.9, ∼0.3, and  ∼0.2 for 
the CoFe2O4, MnFe2O4 and NiFe2O4 nanoparticles, respec-
tively. The reduced (compared to 0.5) squarenesses of the 
MnFe2O4 and NiFe2O4 nanoparticles are in good agreement 
with previous studies [53] that indicated in general that the 
Mr/Ms of nanoparticulate systems will fall below the theor-
etical value—attributed to the frustration of the surface spins 
[53], noncoherent rotational magnetization processes, distri-
bution of anisotropy fields and interparticle interactions [42]. 
Mr/Ms > 0.5 for the CoFe2O4 nanoparticles compared to 
theor etical maximum value (0.83–0.87) [54] of squareness 
indicates that the system is completely blocked with the ten-
dency toward cubic magnetic anisotropy of particles [8, 49]. 
The cubic anisotropy of CoFe2O4 nanoparticles leads to a 
reduced energy barrier (∆E(µ0H) ≈ KV/4) to reversal com-
pared to the uniaxial anisotropy systems (∆E(µ0H) ≈ KV ) 
[55]. This will alter Hc(T), as discussed below.

The coercive fields of the CoFe2O4, MnFe2O4 and NiFe2O4 
nanoparticles at different temperatures determined from the 
hysteresis loops, are shown in figures 10(a)–(c). We observed 
that the coercivity increases with decreasing temperature for 
all samples. The coercivity versus temperature plots of the 
nanoparticles can be fitted using the following equation [56] 
by incorporating the temperature dependence of Ms(T) from 
equation (1).

Hc(T) =
2K

Ms(T)
[1 − (T/TB)

1/2]. (2)

The fitted values of M(0) and B obtained from equation (1) 
were used to determine the values of K and TB of the indi-
vidual ferrite systems. From the fits, the K and TB values were 
found to be  ∼(2.96 ± 0.03)× 106 ergs cm−3 and 300 ± 1 
K for the CoFe2O4 nanoparticles, ∼(0.07 ± 0.01)× 106 
ergs cm−3 and 90 ± 3 K for the NiFe2O4 nanoparticles, 

Figure 8. Temperature dependence of saturation magnetization 
(Ms) of (a) CoFe2O4, (b) MnFe2O4, and (c) NiFe2O4 nanoparticles. 
The red lines show the fits using equation (1).

Figure 9. Squareness ratio, Mr/Ms as a function of temperature for 
the CoFe2O4 ( ), MnFe2O4 ( ), and NiFe2O4 nanoparticles ( ).
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and  ∼(0.04 ± 0.01)× 106 ergs cm−3 and 210 ± 6 K for the 
MnFe2O4 nanoparticles. According to the TB values from the 
fits of the temperature dependence of coercivity, it is expected 
that when the temperature is  ∼300 K for CoFe2O4, ∼210 K 
for MnFe2O4 and  ∼90 K for NiFe2O4 nanoparticles, the 
energy barrier would be overcome by the thermal energy, and 
the coercivity will be zero if neglecting the interparticle inter-
actions. These estimated values of TB are lower than estimated 
from ZFC-FC measurements for all samples. The anisotropy 
constants determined from the fit of temperature dependence 
coercivity are found to be comparable with the bulk values 
[57, 58] for CoFe2O4 and NiFe2O4 nanoparticles, but higher 
(almost twice) for MnFe2O4 nanoparticles [59].

The 300 K Hc values for the CoFe2O4, MnFe2O4 and 
NiFe2O4 nanoparticles were found to be  ∼0.78 kOe, ∼0.02 
kOe and  ∼0.01 kOe, respectively. The Hc of CoFe2O4 
nanoparticles is found to be in the range of bulk coercivity 

(∼0.75–0.98 kOe) [60]. The Hc of MnFe2O4 nanoparticles 
has been found to be higher, while the NiFe2O4 nanoparticles 
has a lower one compared to bulk values [61, 62]. In general, 
nanoparticles are expected to have a smaller Hc than the bulk 
(∼100 nm or smaller are single domain particles) [60]. But 
the observation of a wide range of coercivity of any material 
can be related to magnetic anisotropy, defects, strain, nature 
of the surface, interface, interparticle interactions [60], differ-
ence in the composition and grain size of the sample [63]. 
The obtained values of coercivities are consistent with the 
value of effective magnetic anisotropies determined from 
the temperature dependence of coercivity for MnFe2O4 and 
NiFe2O4 nanoparticles. One can clearly see from the descrip-
tion of the anisotropy field with cubic symmetry crystals [64] 
that a decrease and an increase of saturation magnetization 
compared to bulk counterparts due to cation distributions 
(as shown before) for MnFe2O4 and NiFe2O4 nanoparticles 
lead to an increase and a decrease of coercivities of parti-
cles, respectively. We concluded from this that the Hc values 
of the MnFe2O4 and NiFe2O4 nanoparticles are solely due to 
their effective magnetic anisotropies that reflect their intrinsic 
magn etic hardness [65].

4. Summary and conclusion

Nanoparticles of CoFe2O4, MnFe2O4 and NiFe2O4 with com-
parable sizes (∼20 nm) and interparticle spacings (∼20 nm) 
were synthesized using a method modified from the conven-
tional organic phase process. The cation distributions of tet-
rahedral and octaheral sites of the particles were determined 
by Mössbauer spectroscopy. We found a high degree of inver-
sion of  ∼0.98 for CoFe2O4, ∼0.80 for MnFe2O4 and NiFe2O4 
nanoparticles. The excellent fits of the Mössbauer spectra with 
more than two sextets are attributed to the presence of surface 
spins. We estimated a negligible surface to core spin popu-
lation ratio of  ∼0.1 for all samples using Mössbauer results. 
A broadening of the MZFC plot with warming of NiFe2O4 
nanoparticles is attributed to wide particle size distribu-
tion and/or interparticle interactions in the system. A small 
cusp around  ∼320 K in ZFC magnetization with warming of 
CoFe2O4 nanoparticles indicated spin-glass like phase for-
mation. The non-negligible interparticle interactions for all 
samples are clearly reflected in ZFC-FC measurements of the 
particles. No clear coincidence of MZFC and MFC was seen 
below  ∼400 K for all samples. Hysteresis measurements indi-
cated that CoFe2O4 nanoparticles become superparamagn-
etic with a blocking  >400 K and higher than MnFe2O4 and 
NiFe2O4 with a blocking at  ∼300 K. The magnetization at 
room temperature increases by  ∼2% for CoFe2O4, ∼10% for 
NiFe2O4, but decreases by  ∼20% for MnFe2O4 nanoparticles 
compared to their bulk counterparts. An increasing behaviour 
of coercive field with decreasing temperature interpreted as 
thermal activation of the particle moments are due to aniso-
tropy barrier according to equation (2). The effective magn-
etic anisotropies of the particles estimated from temper ature 
dependence of coercivity were found to be comparable to bulk 
counterparts. The consistency between the effective magnetic 

Figure 10. Temperature dependence of the coercivity for (a) 
CoFe2O4, (b) MnFe2O4, and (c) NiFe2O4 nanoparticles. The red 
lines show the fit according to equation (2) in the text.
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anisotropy and coercivity of MnFe2O4 and NiFe2O4 indicated 
that the coercivity of the particles is due to effective magnetic 
anisotropy which is the intrinsic hardness of the system. But 
the inconsistency between the effective magnetic anisotropy 
and coercivity of CoFe2O4 nanoparticles indicated that the 
anisotropy of the system may be governed by extrinsic factors. 
A comparison between three typical ferrite systems with com-
parable sizes and comparable interparticle spacings is useful 
to understand the effect of distribution of cations in tetrahedral 
and octahedral sites on the overall magnetism.
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