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ABSTRACT

The use of machine learning techniques for medical diagnosis has become increasingly 
common in recent years because, most importantly, the computer-aided diagnostic 
systems developed for supporting the experts have provided effective results. The 
authors aim in this chapter to improve the performance of classification in computer-
aided medical diagnosis. Within the scope of the study, experiments have been 
performed on three different datasets, which include heart disease, hepatitis, and 
BUPA liver disorders datasets. First, all features obtained from these datasets were 
converted into complex-valued number format using phase encoding method. After 
complex-valued feature set was obtained, these features were then classified by an 
ensemble of complex-valued radial basis function (ECVRBF) method. In order to 
test the performance and the effectiveness of the medical diagnostic system, ROC 
analysis, classification accuracy, specificity, sensitivity, kappa statistic value, and 
f-measure were used. Experimental results show that the developed system gives 
better results compared to other methods described in the literature. The proposed 
method can then serve as a useful decision support system for medical diagnosis.
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A Support System Based on Complex-Valued Radial Basis Function Networks

INTRODUCTION

In medical diagnostics, diagnosis of a disease is performed with considering 
patient’s data. However, the increase in the data density and the excessive number of 
symptoms affecting the disease complicate diagnostic procedures. Amongst one of 
the most popular topics to emerge in recent years is the use of computers in medical 
diagnostic. Computer-aided medical diagnostic systems have been developed to help 
specialists, with such systems aiming to minimising the physician error. Computer-
aided classification systems can minimise the potential errors. In addition, these 
systems facilitate and accelerate in-depth examination of medical data (Cheung, 
2001; Das, 2010).

In order to test the effectiveness of newly developed computer-aided medical 
diagnostic systems, researchers are conducting experiments on datasets that are 
open to common use. The hybrid method proposed in this study has been tested 
with three datasets. Those are Statlog heart disease, BUPA liver disorders, and 
Hepatitis datasets, which are obtained from the UCI machine learning repository 
(Bache & Lichman, 2013). The common characteristic of these datasets is having 
a distribution which cannot be separated linearly. There is also a large amount of 
missing data on the Hepatitis dataset. Information about some of the earlier studies 
carried out on these datasets is given below.

In the literature, some studies performed on the Statlog heart disease dataset 
are as follows: Based on many attempts, Cheung (2001) has achieved the highest 
classification accuracy (81.48%) using the Naive Bayes algorithm among a number 
of other classification algorithms. Kahramanli and Allahverdi (2008) have achieved 
86.8% accuracy rate by using a fuzzy neural network algorithm. Das et al. (2009) 
have developed an ensemble algorithm which includes three neural networks and 
an 89.01% classification accuracy has been obtained with the proposed model. 
Subbulakshmi et al. (2012) have achieved an 87.50% classification accuracy by using 
the extreme learning machine (ELM) method. Karabulut and Ibrikci (2012) have 
developed a method based on a rotation forest algorithm, and a 91.20% classification 
accuracy has been obtained with the proposed method.

In the literature, some studies that have been carried out on the Hepatitis dataset 
are as follows: Javad et al. (2012) have developed a hybrid method (SVM-SA) which 
includes SVM and simulated annealing (SA) algorithms. They have obtained a 
96.25% accuracy rate. Shao et al. (2015) have proposed a weighted linear loss twin 
SVM for large-scale classification. They have obtained an 84.99% accuracy rate 
with the method. Aldape-Pérez et al. (2012) have developed a novel method referred 
to as an associative memory based classifier (AMBC) and an 85.16% classification 
accuracy has been obtained. Bashir et al. (2016) have developed an ensemble method 
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with multi-layer classification using optimized weighting and enhanced bagging, 
and an 87.04% classification accuracy has been obtained with the method which is 
entitled HM-BagMoov.

In the literature, some studies have been carried out on the BUPA liver disorder 
dataset for the identification of liver disorders as follows: Goncalves et al. (2006) have 
developed a new neuro-fuzzy method entitled the inverted hierarchical neuro-fuzzy 
BSP System (HNFB). A 73.33% classification accuracy has been obtained using 
this method. Jin et al. (2007) have proposed a genetic fuzzy feature transformation 
method for SVMs. They have achieved a 70.80% accuracy rate. Lee and Mangasarian 
(2001) have developed smooth SVMs (SSVM) and reduced SVMs (RSVM) classifier 
methods. Using these methods, they have achieved 70.3% and 74.8% accuracy 
rates, respectively. Chen et al. (2012) have developed a hybrid method in which the 
1-NN method and particle swarm optimization (PSO) are used together. A 68.99% 
classification accuracy has been obtained with the proposed hybrid method. Dehuri 
et al. (2012) have developed an enhanced PSO-based evolutionary functional link 
neural network (ISO-FLANN). A 76.8% classification accuracy has been achieved 
with the method. Shaoa and Deng (2012) have developed a coordinate descent margin 
based-twin SVM. They have obtained 73.67% classification accuracy with the method. 
Savitha et al. (2012) have developed a fully complex-valued radial basis function 
(FC-RBF) network. A 74.6% accuracy rate has been achieved with the proposed 
method. Mantas and Abellán(2014) have developed an algorithm entitled Credal-C4.5. 
A 64.53% classification accuracy has been achieved with the Credal-C4.5 method 
which involves a decision tree based on imprecise probabilities. López et al. (2014) 
have developed an SVM based method. In this method, a multivariate normalization 
algorithm was used to train the SVM algorithm. A 72.17% classification accuracy 
has been achieved with the method.

Recently, the use of complex-valued classifiers for real-valued classification 
problems is one of the most important research topics (Savitha, Suresh & Sundararajan, 
2012; Amin, Islam & Murase, 2009). Complex-valued classifiers have been utilised 
in the classification stage of many studies, since they provide good results (Peker, 
2016; Savitha, Suresh &Sundararajan, 2012; Amin & Murase, 2009; Amin, Islam & 
Murase, 2009; Li, Huang, Saratchandran & Sundararajan, 2006; Chen, Mclaughlin 
& Mulgrew, 1994). In this study, a new hybrid method, an ensemble version of a 
complex-valued radial basis function algorithm has been developed. Bagging and 
boosting methods have been used as an ensemble algorithm. We believe that the 
proposed method provides an important contribution to the literature relating to 
complex-valued classifiers.

The rest of the paper is organized as follows. In Section Materials and Methods, 
information is presented about the datasets and methods used in the study. The 
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experimental results and discussion section is given in Section Experimental Results 
and Discussions. In addition, a comparison with the existing methods in the literature 
have been carried out in this section. General information about the obtained results 
is presented in Section Conclusion.

MATERIALS AND METHODS

Data Description

Studies have been carried out on three different datasets in order to evaluate the 
success of the proposed method. The datasets have been taken from the UCI Machine 
Learning Repository (Bache & Lichman, 2013). These datasets are related to heart, 
Hepatitis, and liver disorders. The Statlog heart disease dataset relates to 270 people 
(Bache & Lichman, 2013). The data of 120 of these relate to healthy individuals and 
150 relate to patients. The features of this dataset have been presented in Table 1.

The Hepatitis disease dataset was donated by the Jozef Stefan Institute in Slovenia 
(Bache & Lichman, 2013). The dataset is used to estimate the existence or absence 
of Hepatitis, based on different medical tests carried out on a patient. The dataset 
is comprised of 155 samples with 19 features. Target features have been coded as 
1 for survivors (123) and 0 for the patients who died (32). Approximately 48.30% 
of the dataset contains missing value. Features in the dataset have been presented 
in Table 2.

The BUPA liver disorders dataset contains 345 samples with 6 features and two 
classes (Bache & Lichman, 2013). Samples are all unmarried men. 200 of these 

Table 1. The features of the Statlog heart dataset

ID Feature ID Feature

1 Age 8 Maximum heart rate achieved

2 Sex 9 Exercise induced angina

3 Chest pain type (four values) 10 Old peak = ST depression induced by exercise relative 
to rest

4 Resting blood pressure 11 The slope of the peak exercise ST segment

5 Serum cholesterol in mg/dl 12 Number of major vessels (0–3) colored by fluoroscopy

6 Fasting blood sugar >120 mg/dl 13 Thal: 3 = normal; 6 = fixed defect and 7 = reversible 
defect

7 Resting electrocardiographic results 
(values 0, 1 and 2)



26

A Support System Based on Complex-Valued Radial Basis Function Networks

data have been taken from healthy people with no liver disorder. The remaining 
145 samples have been obtained from individuals with liver disorder. Five features 
are blood test results and daily alcohol consumption. Features in the dataset are 
presented in Table 3.

Table 2. The features of the Hepatitis disease dataset

Feature Number Feature Description Values

1 Age 10, 20, 30, 40, 50, 60, 70, 80

2 Sex Male, Female

3 Steroid No, Yes

4 Antivirals No, Yes

5 Fatigue No, Yes

6 Malaise No, Yes

7 Anorexia No, Yes

8 Liver Big No, Yes

9 Liver Firm No, Yes

10 Spleen Palpable No, Yes

11 Spiders No, Yes

12 Ascites No, Yes

13 Varices No, Yes

14 Bilirubin 0.39, 0.80, 1.20, 2.00, 3.00, 4.00

15 Alk Phosphate 33, 80, 120, 160, 200, 250

16 Sgot 13, 100, 200, 300, 400, 500

17 Albumin 2.1, 3.0, 3.8, 4.5, 5.0, 6.0

18 Protime 10, 20, 30, 40, 50, 60, 70, 80, 90

19 Histology No, Yes

Table 3. The features of the BUPA liver disorder dataset.

Feature Number Feature Description Values

1 MCV (mean corpuscular volume) Numeric value

2 Alkphos (alkaline phosphatase) Numeric value

3 SGPT (alanine aminotransferase) Numeric value

4 SGOT (aspartate aminotransferase) Numeric value

5 Gamma GT (gamma-glutamyltranspeptidase) Numeric value

6 Drinks (number of half-pint equivalents of alcoholic beverages drunk 
per day) Numeric value
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Complex-Valued Radial Basis Function Networks (CVRBF)

CVRBF was first proposed by Chen et al. (1994). Initially, it was applied to a non-
linear signal processing, which includes complex signals. After this, it was used in 
different classification problems which have complex and real-valued input features 
(Chen et al., 2008; Babu, Suresh & Savitha, 2012; Savitha, Suresh & Sundararajan, 
2012). CVRBF is the complex-valued version of the real-valued RBF neural network. 
It is structurally similar to the RBF neural network except that the parameters are 
complex-valued here. The CVRBF sample with a single hidden layer is given in 
Figure 1.

A complex-valued input data can be represented as shown in Equation (1). Here, 
the input value is composed of real and imaginary values.

x x ixC
R I

= + 	 (1)

where i = −1 . xC is the complex input value, x
R

 is the real value and x
l
 is the 

imaginary value. Real-valued feature values in the input layer are normalized between 
the range of [0, 1] at the initial phase. Normalisation formula has been given in 
Equation (2).

Figure 1. Structure of the CVRBF classifier 

Input layer 
Output layer 

Hidden layer 
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where x
i
 is the input value. x

min( )  is the minimum and x
max( )  is the maximum value. 

At this stage, as can be seen in the attached small picture in Figure 1, normalised 
values are converted to complex space with phase encoding [0, π] by using the 
equation ‘exp i xπ( ) ’. The phase encoding method, which assures the conversion of 
real-valued input values to complex valued number format, has been given in 
Equation (3).

a exp i x
i
C

i
C= ( )π 	 (3)

where x
i
C  is the real-valued input feature normalised between the range of [0, 1]. 

a
i
C is the complex-valued input feature calculated based on x

i
C .

The example has been given in Figure 1 is a hidden layer with CVRBF structure. 
The CVRBF has ‘ j ’ hidden neurons. These hidden neurons in the hidden layer 
have a real radially symmetric response around the node centre. The centres of 
hidden nodes are some of the complex vectors in the input domain. The non-linearity 
of hidden node is a real function. Equation (4) is used to determine the response of 
each hidden node.
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
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where σ j  is the width of Gaussian function. ai
C  represents i th complex-valued 

input vector. c j
C is the complex-valued centre of gravity of jth Gaussian CVRBF. 

• •
*

( ) = ( )




H T
operator is the Hermitian operation. •( )T indicates vector or matrix 

transpose, while •
*( )  indicates complex conjugate.

The output value of each output neuron is computed as the linear total of weights 
from the hidden layer to the output layer and the response of each hidden layer 
neuron. In the study, weights are real-valued in the CVRBF neural network. The 
response of output neurons is also real-valued. Equation (5) is used for the response 
of the output neuron.
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where w
kj

 is linkage value between k th output neuron and j th hidden neuron. φ
j
C

is the radial basis function of the j th hidden node.
The error function is given in Equation (6) for CVRBF.

e e ie y y
R I

t t= + = − ˆ 	 (6)

where e
R

 and e
I
 are respectively real and complex components of complex-valued 

error value e , ŷt  is the calculated output value and yt  is the real output value. In 
this study, the mean squared error has been used as the error function. The error 
function is defined as Equation (7).
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whereH  denotes the complex Hermitian operator. To minimise the deviations of 
the mean squared error, a gradient descent-based learning algorithm has been used. 
Updating rules based on this learning algorithm are as follows.
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where µ
v
,µ

c
 and µσ  are, respectively, the learning rate parameters for weight, 

centre and width of Gaussian function. v
kj
R andv

kj
I  are, respectively, the real and 

imaginary components of vkj  weight value.
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Ensemble of CVRBF

When ensemble learning methods are used, a single decision is made for the ensemble 
by gathering the results revealed by multiple classifiers. These methods put the class 
estimations made by the many different classifiers through voting. As a result of this 
voting, the best rated class is then presented as class estimation of the ensemble.

Ensemble learning methods increase the accuracy rate of predictions revealed 
by basic or singular learning algorithms and, for this reason, they are usually more 
successful than singular/individual learning methods. Bagging and Boosting are the 
most known and studied ensemble learning algorithms amongst them (Breiman, 
1996; Freund & Schapire, 1997). In this study, these two methods are used for the 
ensemble version of CVRBF algorithm. The ensemble of CVRBF is named as 
ECVRBF.

Bagging is basically a bootstrap ensemble algorithm (Das & Sengur, 2010). The 
bootstrap element ensures separation during training using copies of a dataset. In 
other words, it means extracting and using data subsets of the dataset by relocation. 
Each data subset is used in the training of CVRBF. The trained CVRBFs compose 
an ensemble. The real result is obtained based on an absolute majority of the results 
of the algorithm. Bagging is simple but powerful ensemble method recommended 
for improving the stability and accuracy of learning algorithms (Das, Turkoglu 
& Sengur, 2009). The pseudo-code for the CVRBF ensemble with the Bagging 
algorithm is given in Figure 2.

In Boosting, as in Bagging, each CVRBF is trained on a different bootstrap 
sample. However, in Boosting, the existing CVRBF focuses more on previously 
misclassified data points. A typical application of the Boosting method is the 
AdaBoost method (Freund & Schapire, 1997). In the AdaBoost method, classification 
is usually performed by aggregating CVRBFs via weighted voting with the weight 

Figure 2. The bagging algorithm for ECVRBF

Input 

Process 

Output 

Training dataset 
Base learning model 
Number of iterations 

For t= 1,2, ... , T ; 

D = {x,,y,}f'=1, Y;E{-1,1}; 
CVRBF; 
T; 

Dt = Bootstrap(D)~ % Generate a bootstrap sample from D 
ht = CVRBF(D<); % Train a base learner htfrom the bootstrap sample 

End 
Compute H(x) = ar gmaxyeY ~ = 1 (y = ht(x) ); % Majority voting 
H(x) 
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in the formula. The pseudo-code for the CVRBF ensemble with Boosting algorithm 
is given in Figure 3.

The Proposed Method

In the initial step, features were converted into a complex number format using the 
phase encoding method. The features obtained have been classified by the ensemble 
of the CVRBF algorithm. The block diagrams of the proposed method based on 
Bagging and Boosting ensemble learning algorithm are given in Figures 4 and 5, 
respectively.

EXPERIMENTAL RESULTS AND DISCUSSIONS

All experiments were performed under MATLAB environment using a computer 
with an Intel(R) Core™ i7-2670QM (2.2 GHz) processor and 8 GB RAM. 10-fold 
cross-validation method was used for training and testing data. The experiments have 
been repeated 5 times for the reliability of the results and the averages of obtained 
results have been reported.

The required parameter values to obtain high efficiency from CVRBF algorithm 
were found by experimentally. Accordingly, the optimal multi-layer network structures 

Figure 3. The boosting algorithm for ECVRBF

Input 

Process 

Output 

Training dataset 
Base learning model 
Number ofiterations 

D = {x,,y;};';,1,y,E{-1,1}; 
CVRBF; 
T; 

D1 (i) = 1/ N; % Initialize the weight distribution 
For t = 1,2, ... ,T; 

hr = CVRBF(D, D,); % Train a base learner h, from D using Dt 

Er = Pr,~o; [hr(X; =t= y;)]; % Measure the error of h, 

Ur=! ln t -,,; % Determine the weight of hr 
2 Et 

D () - Dr(i) {exp(-ar) i f h,(x;) = Yi 
<+1 t - z, x exp(a,) if h/x;) =;= y, % Update the distribution, where 

D,(i)exp( -a,y,h,(x1)) % Z, is a normalization factor which enables D,(i) to 
; % be a distribution 

End 
Compute H(x) = sign(f(x)) = signI;;=t a,h.(x); % Weighted majority voting 
H(x) 
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(the number of input-hidden and output neurons) have been determined as 11-10-1, 
9-5-1 and 7-10-1 for heart disease, Hepatitis and BUPA liver disorder datasets, 
respectively. The learning rate during training process has been determined as 0.25, 
0.5 and 0.15, respectively. The maximum number of iterations is set to 1000 for all 

Figure 4.ECVRBF method with bagging

Figure 5. ECVRBF method with boosting
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datasets. The real and imaginary parts of the complex-valued weights have been 
initiated with the random numbers taken from a uniform distribution U −( )( )0 5 0 5. , . . 

A gauss activation function was used. In the ensemble of CVRBF to select data 
subsets, a 75% random sample has been selected with a replacement of the original 
training dataset. That is, if a training dataset consists of 1000 parts, 750 parts will 
be drawn randomly with a replacement to create a subset.

The success of the ECVRBF method has been tested using six different performance 
evaluation criterions. These are accuracy, specificity, sensitivity, f-measure, the area 
under an ROC curve (AUC), and kappa statistic values. In order to see the effect of 
the classifiers, comparative analysis has been performed. The results obtained for 
each dataset are given in Table 4.

Table 4. The comparative analysis of ERBF and ECVRBF ensembles with bagging 
and boosting

Dataset Performance 
Metrics

ERBF ECVRBF

Bagging Boosting Bagging Boosting

Heart

ACC 83.33 ± 9.56 80.37 ± 11.45 90.92 ± 4.36 91.11 ± 5.66

Sensitivity 84.76 ± 9.10 83.44 ± 8.32 91.94 ± 5.52 90.90 ± 4.97

Specificity 81.51 ± 10.25 89.95 ± 5.20 89.25 ± 5.85 91.37 ± 5.60

f-measure 0.8203 0.6475 0.9163 0.9210

Kappa 0.6622 0.6041 0.8128 0.8195

AUC 0.8810 0.8610 0.9160 0.9670

Hepatitis

ACC 86.45 ± 7.95 87.74 ± 6.35 96.12 ± 3.85 96.77 ± 3.18

Sensitivity 70.37 ± 12.44 74.07 ± 11.86 96.42 ± 3.25 99.88 ± 0.11

Specificity 89.84 ± 4.87 90.62 ± 4.22 96.06 ± 3.72 96.09 ± 3.65

f-measure 0.6440 0.6779 0.9002 0.9152

Kappa 0.5611 0.6029 0.9364 0.9471

AUC 0.8610 0.8440 0.9490 0.9500

BUPA liver 
disorder

ACC 66.08 ± 11.54 65.79 ± 9.23 87.82 ± 6.15 86.95 ± 7.98

Sensitivity 64.28 ± 14.85 60.46 ± 13.95 88.72 ± 5.87 87.31 ± 6.95

Specificity 66.80 ± 10.44 68.98 ± 12.76 87.26 ± 6.55 86.72 ± 7.16

f-measure 0.5185 0.5693 0.8489 0.8387

Kappa 0.2716 0.2873 0.7473 0.7295

AUC 0.6790 0.6800 0.9440 0.9430
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When the results in Table 4 are examined, we may observe that the ECVRBF 
methods give better results in terms of accuracy, sensitivity and specificity values 
than the ERBF methods for all three datasets. ECVRBF method also gives better 
results in f-measure, AUC, and kappa statistic values, as well. The superiority of the 
Bagging to the Boosting method can also vary in the ERBF methods. The standard 
deviations of ECVRBF methods are lower than the ERBF methods, demonstrating 
that the proposed method is more robust and reliable. In addition, the same results 
are given graphically in Figures 6-8.

Figures 9-11 shows ROC curves with different methods were incorporated in the 
evaluation for heart disease dataset, Hepatitis disease dataset and BUPA liver disorder 
dataset, respectively. In this phase, the number of algorithms for the comparisons 
are also increased. These methods are: typical CVRBF; ECVRBF with Bagging; 
ECVRBF with Boosting; original dataset + SVM; original dataset + RBF; and 
original dataset + Decision Tree. When these graphics are examined, we have seen 
that the best results have been obtained with ECVRBF method for three different 
datasets. We have also seen that, with the ECVRBF algorithm, in some cases better 
results were obtained with Bagging, while in some cases better results were obtained 

Figure 6. The results for the heart disease dataset
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Figure 7. The results for the Hepatitis disease dataset

Figure 8. The results for the BUPA liver disorder dataset
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Figure 9. ROC curves for the Statlog heart disease dataset

Figure 10. ROC curves for the Hepatitis disease dataset

 *For a more accurate representation see the electronic version.

 *For a more accurate representation see the electronic version.
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with Boosting. Better results have been obtained with complex valued classifiers, 
compared to real-valued classifiers. Considering the real-valued classifiers, we have 
seen that the RBF algorithm is more effective for three datasets.

The performance analysis of the proposed method was then compared with the 
previous studies from the literature, as listed in Tables 5 to 7. In Table 5, the analysis 
for the heart disease dataset is given. When the table is examined, we may observe 
that accuracy values in the range of 80-88% have generally been achieved by other 
researchers. A 91.11% accuracy rate has been obtained with the developed method 
for the dataset. In Table 6, the comparative analysis carried out with previous studies 
for the Hepatitis disease dataset is given. As seen in the table, accuracy values, 
generally in the range of 79-96%, have been obtained by other researchers. Compared 
to the other studies, the proposed method has yielded a better result with a 96.77% 
accuracy value. In Table 7, the comparative analysis for the BUPA liver disorder 
dataset is given. When we examine the table, we see that an 87.82% classification 
accuracy has been obtained in this study, while accuracy values in the 60-85% range 
have generally been obtained by other researchers. In general, the proposed method 
has provided better results compared to the existing methods from the literature.

 *For a more accurate representation see the electronic version.

Figure 11. ROC curves for the BUPA liver disorder dataset
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CONCLUSION

In this study, ensembles of complex-valued radial basis function networks have 
been proposed. To investigate the effect of the proposed method, three benchmark 
medical datasets were used. The common characteristics of these datasets are having 
a distribution, which cannot be separated linearly and a large amount of missing data. 
In turn, 91.11%, 96.77% and 87.82% accuracy values were achieved respectively 
for Statlog heart disease, Hepatitis disease and BUPA liver disorder datasets using 

Table 5. Performance comparison for the Statlog heart disease dataset

Study Method Classification 
Accuracy (%)

Kahramanli and Allahverdi 
(2008) Hybrid system using ANN and FNN (10-fold CV) 86.80

Subbulakshmi et al. (2012) Extreme learning machine (70-30% training-testing) 87.50

Shao and Deng (2015) Coordinate descent margin based-twin SVM (10 fold 
CV) 84.44

Mantas and Abellán (2014)
Decision tree based on imprecise probabilities (Credal 
C4.5) 
(10 fold CV)

80.33

Duch et al. (2001)

k-NN, k=28, 7 features (10-fold CV) 
k-NN, k=28, Manhattan (10-fold CV) 
FSM, 27 fuzzy rules 
SSV, 3 rules

84.60–85.60 
82.20–83.40 
82 
80.20–83.40

Tian et al. (2009)
Cooperative coevolutionary algorithm - elliptical basis 
function neural network (50-25-25% training-validation-
testing)

82.45

Ahmad et al. (2013) Improved hybrid genetic algorithm-multilayer perceptron 
network (75- 25% training-testing) 86.30

Torun and Tohumoglu (2011) Simulated annealing and subtractive clustering based 
fuzzy classifier (10 fold CV) 81.11

Al-Obeidat et al. (2011) Particle swarm optimization for PROAFT (10 fold CV) 84.27

Jaganathan and Kuppuchamy 
(2013) Neural network threshold selection (10 fold CV) 85.19

Lim and Chan (2015)
Bandlerkohout-interval-valued fuzzy sets (BK-IVFS 
weighted) 
(5 fold CV)

85.56

Yang et al. (2013) Fuzzy class – label SVM (y
i

 - SVM) and Fuzzy SVM 
(F-SVM)

85.19

Our study CVRBF ensemble with Bagging 90.92

Our study CVRBF ensemble with Boosting 91.11
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Table 6. Performance comparison for the Hepatitis dataset

Study Method Classification 
Accuracy (%)

Shao et al. (2015) Weighted linear loss twin support vector machine – 10 fold CV 84.39

Mantas and Abellán (2014) Decision tree based on imprecise probabilities (Credal C4.5) 
(10 fold CV) 79.99

Yang et al. (2013) Fuzzy class – label SVM (y
i

 - SVM) and Fuzzy SVM (F-SVM) 85.19

De Bock et al. (2010) Generalized additive models (GAM) ensemble classifiers – 2 fold CV 89.20

Bascil and Oztekin (2012) Probabilistic Neural Network – 10 fold CV 91.25

Bascil and Temurtas (2011) Multilayer Neural Network with Levenberg Marquardt 
Training Algorithm - 10 fold CV 91.87

Moradi and Rostami (2015) Integration of graph clustering with ant colony optimization (GCACO) 
and SVM - training set (2/3 of dataset) and test set (1/3 of dataset). 84.52

Pan et al. (2015) K-nearest neighbor based structural twin support vector machine (KNN-
STSVM) – 5 fold CV 87.54

Zhang et al. (2015) Sparse-response backpropagation algorithm (SRBP) – 10 fold CV 84.25

Our study CVRBF ensemble with Bagging 96.12

Our study CVRBF ensemble with Boosting 96.77

Table 7. Performance comparison for the BUPA liver disorder dataset

Study Method Classification 
Accuracy (%)

Goncalves et al. (2006) Inverted hierarchical neuro-fuzzy binary space partitioning system 73.33

Lee and Mangasarian (2001) Reduced SVMs (10-fold CV) 74.90

Dehuri et al. (2012) Improved swarm optimized functional link artificial neural network 
(10-fold CV) 76.80

Shao and Deng (2012) Coordinate descent margin based-twin SVM (10-fold CV) 72.80

Savitha et al. (2012) Fully complex valued RBF (10 fold CV) 74.60

Mantas and Abellán(2014) Decision tree based on imprecise probabilities (Credal C4.5) 64.53

López et al. (2014) Mahalanobis SVM 72.17

Torun and Tohumoglu 
(2011)

Simulated annealing and subtractive clustering based fuzzy classifier 
(10 fold CV) 74.13

Al-Obeidat et al. (2011) Particle swarm optimization for PROAFT (10 fold CV) 69.31

Yang et al. (2013) Fuzzy class – label SVM (y
i

 - SVM) and fuzzy SVM (F-SVM) 74.78

Van Gestel et al. (2002) SVM with GP (10-fold CV) 69.70

Wang et al. (2014) Spiking neural networks (SNNs) 56.60

Li et al. (2011) A fuzzy-based nonlinear transformation method + SVM 70.85

Our study CVRBF ensemble with Bagging 87.82

Our study CVRBF ensemble with Boosting 86.95
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the ECVRBF algorithm. The received results in this study are higher than the results 
obtained in many studies, carried out for the same data in the literature. In an important 
issue such as medical diagnosis, even a slight increase in classification accuracies is 
very important. Hence, the method proposed here will contribute significantly to the 
medical diagnostics. In conclusion, the system can also be used as computer-aided 
medical diagnosis system to help doctors.
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KEY TERMS AND DEFINITIONS

Classification: It is a kind of supervised machine learning in which an algorithm 
“learns” to classify novel observations from samples of labeled data.

Complex-Valued Neural Network: It is a variety of neural network and its 
parameters such as input, output, weight, and bias values consist of complex numbers.
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Decision Support System: It is a computer-based information system that 
supports organizational or business decision-making activities.

Ensemble Methods: It is a set of classifiers whose individual decisions are 
integrated in some way to classify novel examples.

Machine Learning: It is the notion that a computer program can learn and adapt 
to novel data without human interference.

Medical Diagnosis: It is a classification operation including the decision-making 
process based on available medical data.

ROC Curve: It is a graphical method which assess the success of a binary 
classifier system.


