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ABSTRACT 

 
The prediction of a rainfall-runoff relationship 

includes complex processes in karstic aquifer sys-
tems. In this study, an artificial neural network 
(ANN) model is utilized in order to simulate the rain-
fall-runoff relationships of La Chartreux spring in 
the karstic region Cahors, Southern France. Since 
numerical models are thought to be insufficient, the 
present study will contribute to the improvement of 
rainfall-discharge prediction models by using ANNs 
in MATLAB software. The model has been con-
ducted with a feed forward and back propagation al-
gorithm. The model is improved by the Levenberg-
Marquardt algorithm in order to generalize the com-
plex and non-linear rainfall-runoff issues. The mete-
orological data was obtained from meteorological 
stations in the region including eight years of rainfall 
and discharge data between 1976 and 1983. Model 
performance has been evaluated with respect to sta-
tistical error measures (root mean square error 
(RMSE), and correlation coefficient square (R2). 
This study confirmed that artificial neural networks 
are capable of predicting rainfall-runoff relation-
ships depending on the data quality, neural network 
properties, and data variability. 
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INTRODUCTION 

 
Understanding the aquifer recharge character-

istics of karstic systems is an area of interest for 
many researchers [1-7]. Karstic systems have non-
linearities and complexities because of the fractures 
and conduits in them [8]. Thus, there exists some de-
ficiencies in modeling such systems with traditional 
analytical and numerical models. However, Artifi-
cial neural network models are thought more capable 
of understanding non-linear and complex processes 
and examining data by looking at spatial variability 
and stochastic properties [8-10]. ANNs have become 

a significant tool in hydrogeological modeling be-
cause of the capacity to learn complex systems by 
accepting the human brain neuron system as a base 
point [11]. 

Artificial neural networks (ANN), a method us-
ing artificial intelligence, are reliable tools for under-
standing complex hydrogeological and hydrological 
processes. The present study aims to make a contri-
bution to the modeling of rainfall-runoff relation-
ships, this will help with understanding the water 
supply for environments and communities flash 
flood control systems. In addition, rainfall predic-
tions requiring analyses of larger non-linear data 
have become increasingly important during these 
times of ongoing climate change and its impact. Pre-
diction of rainfall and runoff amounts in advance 
would increase the quality of flood control systems 
and ease the strain on available irrigation and potable 
water, both having notable effects on hydro-ecology 
and the environment. 
 
 
GENERAL  
CHARACTERISTICS OF STUDY AREA 

 
The study was held in the capital of the Quercy 

region, Cahors, located in the southwest of France. 
The rainfall and runoff data was gathered from one 
of the main springs in the region, La Chartreux. The 
source of the La Chartreux spring is sourced the Lot 
River. 

The main lithologies of the Quercy region de-
termine the hydrogeological conditions of the Ca-
hors region. Apart from the main rivers in the region 
(Dordogne River, Lot River) the stream flows are 
mainly subterraneous. The Chartreux, is one of those 
springs which causes karstic emergences [12]. It is 
an important source of potable water for Cahors, it is 
also the main outlet of the karstic system in the re-
gion which has a catchment area of approximately 
250 km2 located on the Limogne plateau [13]. In the 
study area and its nearby environs, Mesozoic and 
Cenozoic-age geological units can be observed. Ju-
rassic-age Limestone underlies the base of the strat-
igraphic section. Calcareous marls and Tithonian-
age limestones are covered unconformably by  
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FIGURE 1 

Geological map of the watershed area of the Chartreux spring. (modified from [13]) 

Cretaceous limestone (Figure 1). Finally, Tertiary 
and Quaternary-age alluviums unconformably cover 
all these units. There are two strike slip faults appar-
ent in the study area (Figure 1). 

The Chartreux reaches an average depth of 865 
mm per year as a result of rainfall received by water-
shed and the Lot River. The karstic systems which 
affect the Chartreux spring are dominated by karstic 
Jurassic Limestones and upper Kimmeridgian clays 
which have strong links to underground conduits 
causing a loss zone from the Lot River through the 
flow of the Chartreux spring [14]. 
 
 
MATERIALS AND METHODS 

 
ANNs mainly imitate the working principles of 

the human brain, they can learn solutions to complex 
problems and then introduce solutions for further 
problems by using the experience and knowledge 
gained. The network has the ability to learn, make 
decisions and make prediction [9]. It works with 
learning and prediction layers, having a certain num-
ber of nodes in each layer and forming connections 
between each element within the network. The net-
work is said to be a computational tool for the non-
linear complex input-output model [15]. As an arti-
ficial intelligence method, many water related stud-
ies have shown ANN is a very strong tool for solving 
problems about rainfall and runoff relationship with 
a nonlinear characteristic [16-20]. In general, ANN 
network structures have commonly several layers 
which are formed by nodes (neurons) connected to 
each other or other layers. These layers are input lay-
ers, hidden layer(s) and an output layer. The input 
and weighted connections are processed by an algo-
rithm to teach the network how to update weights. 
The activation function works on the sum of 

weighted input signals to pass the sum to the transfer 
function [21]. Here transfer functions play an im-
portant role in the network connection between the 
nodes and layers. In this study, a multi-layer feed for-
ward neural network was used with a log-sigmoidal 
transfer function. The neurons are organized in three 
different layer groups in which neurons are con-
nected to each other and the other layers. The input 
layer is organized to introduce the data to the net-
work; the hidden layer is used for adjusting output 
errors by using a sigmoidal activation function to sta-
bilize the network; and an output layer which takes 
the inputs from hidden layer and transforms them 
into an external output [22]. 

Neural network model structure. Model 
structure and model architecture indicate the func-
tional relationship between model input and output. 
To define proper network structure, the number of 
hidden nodes, number of hidden layers, type of trans-
fer function, the number of input and output varia-
bles must first be determined [23]. A network is 
composed of computational neurons which are con-
nected to each other and responsible for receiving an 
array of inputs and producing an output. The number 
of input and output variables can be adjusted accord-
ing to the nature of the problem. There can be multi-
ple input-output or multiple input single output mod-
els. Any output array can be an input array transmit-
ted by the neuron connections or the final network 
output [24]. Transformations of input or output ar-
rays are provided by mathematical transfer func-
tions. Sigmoidal transfer functions, such as log-sig-
moid transfer function, and the hyperbolic tangent 
sigmoid transfer function, are the most popular func-
tions [25-27]. In the case of the present study, a 
multi-layer feed-forward artificial neural network 
was utilized with multiple input single output data. 
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Moreover, the log-sigmoidal transfer function is 
used as a transfer function. The network is con-
structed with one input layer and one output layer 
which are responsible for presenting the input to the 
network and transmitting it to the other layer and rep-
resenting the external output of the network, respec-
tively. A generalized architecture of a multi-layer 
ANN is shown in Figure 2. 

 
Feed forward-back propagation learning al-

gorithm in ANN. For a multilayer feedforward net-
work, for instance, a multilayer neural network 
structure shown in Figure 2. Hagan et al. explains the 
integration of a back-propagation algorithm into ar-
tificial neural networks [28]. 

Levenberg - Marquardt Learning Algo-
rithm Modification. Most neural network models 
have utilized a back-propagation algorithm with the 
Levenberg - Marquardt learning algorithm [29]. The 
back-propagation algorithm is the steepest descent 
algorithm, while the Marquardt-Levenberg algo-

 
 
Calibration of the network model. The ANN 

model calibration is divided into three stages; train-
ing stage, testing stage and validation stage. For the 
training period back-propagation algorithm, pro-
vided by Rumelhart (1998), is utilized in the study. 
The back-propagation algorithm is thought by many 
researchers to be extremely capable when training 
ANN. The neural network is optimized using the Le-
venberg-Marquardt algorithm. In the training phase, 
the network is run to optimize network properties 
such as the number of hidden layers, and the number 
of iteration epochs, which is the time required to 
have passed in order to reach an optimized network 

during training as well as the number of preceding 
days. The number of preceding days is rather an im-
portant parameter for the network since rainfall  
runoff responses are hard to learn as well as non  
stationary issues. Thus, according to the number of 
days preceding the date, the input vector lets the net-
work include the information from the present day as 
well as the time passed [16]. Moreover, several 
transfer functions are also tested; the log sigmoid 
function, hyperbolic tangent sigmoid function, hard-
limit transfer function and triangular basis transfer 
function. After model trial-runs with different trans-
fer function options, the log sigmoidal function is 
seen as more efficient than others.  
 

Determination of input vector. Although neu-
ral networks have been utilized to make forecasts in 
many studies of different principles of time series 
prediction, most of them have used a low frequency 
of input data [31]. The low-frequency time series is 
said to be a series of annual, monthly or weekly ob-
servations. This low frequency of time series data 
also affects the accuracy of the prediction in neural 
network models, likewise the parameters of the net-
work (number of hidden layers, neurons and preced-
ing days, transfer and activation function etc.) In the 
case of this study, the use of daily rainfall and daily 
discharge data makes it one of the stronger sides of 
the research. Distribution of daily rainfall and daily 
discharge data are given (Figure 3). On the other 
hand, the rainfall and the discharge data have been 
chosen as raw data sets without any assumption or 
formulation. In order to avoid the complexities and 
uncertainties in the network by using two raw input 
variables lead the network to see purely the quality 
of estimation for the rainfall-discharge relationship. 
[32-33].  

 
 

 
FIGURE 2 

General architecture of an ANN. n: number of days preceding the simulated (t+1)th day 
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FIGURE 3 

Daily rainfall and discharge data over 8 years 
 

TABLE 1 
Data splitting for the three phases of Artificial Neural Network-I 

ANN phase 
Beginning  

Date 
Ending  

Date 
Number of 

days 
Number of 

years 
Training 01.01.1976 31.12.1981 2190 6 
Validation 01.01.1982 31.12.1982 365 1 
Prediction 01.01.1983 31.12.1983 365 1 

 
TABLE 2 

Data splitting for the three phases of Artificial Neural Network-II 

ANN phase 
Beginning  

Date 
Ending  

Date 
Number of 

days 
Number of 

years 
Training 01.01.1976 31.12.1980 2190 5 
Validation 01.01.1981 31.12.1982 730 2 
Prediction 01.01.1983 31.12.1983 365 1 

Data Splitting. The available 8 years of daily 
rainfall and daily discharge data collected from the 
study area is divided into three groups; training, test-
ing, and validation. The training set is utilized to es-
timate connection weights; the testing set tries to de-
cide the optimal time for training to avoid overfit-
ting, and the validation set is for judging the ability 
to generalize of the model. By following a trial-error 
approach the percentage of datasets was determined 
and two main dataset subdivision patterns accepted 
for the present study [24]. Data splitting models are 
shown in tables 1 and 2.  

RESULTS OF NEURAL NETWORK MODEL  
 
To understand that a neural network model pro-

cesses properly, there are certain functions which de-
termine the quality of the estimations produced. For 
instance, in successful models, coefficient of deter-
mination must converge to 1 and root mean square 
error must converge to 0. 

 
Calibration period for la Chartreux Spring. 

In order to determine the essential parameters of 
ANN, preliminary tests are needed conserving an 
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iterative trial and error approach. These parameters 
are; number of preceding days, number of hidden 
layers and optimum number of iterations required for 
optimization of the model. After each preliminary 
test, determination coefficients and mean square er-
ror values are calculated to observe whether the neu-
ral network model is trained well. In karstic systems, 
the response of discharge to rainfall could have a 
time lag because of aquifer parameters, soil proper-
ties, and topography. So, the neural model network 
must have information from recent days experienc-
ing rainfall which may influence the discharge. For 
this purpose, the number of preceding days is deter-
mined. The number of iterations is another important 
parameter which helps the model optimize itself. The 
number of iterations and the number of hidden layers 
are also tested by keeping the number of preceding 
days and number of iterations constant and assuring 
a trial and error approach. Neural network model pa-
rameters and their calculation domains are listed in 
the Table 3.  

The number of years of training, validation, and 
the testing phases are a deterministic point for having 
well-calibrated models. The neural network deter-
mines the relationship between the input variables 
and predicted variables by determining connection 
weights during the training phase, during the valida-
tion phase the network tries to arrange connection 
weights between neurons by diminishing the errors. 
After many trials of the stages of ANN periods, it can 
be observed that the neural network model gives 
more reliable results when it is assigned 5-6 years of 
training and 1-2 years of validation. After calibration 
runs were performed, the best calibrated model 

parameters have been listed in Tables 4 and 5 with 
corresponding determination coefficients and mean 
square error variables. The 6 best calibrated models 
and related properties are listed in Table 4. It can be 
observed that R2 values are always more than 0.95 
for the training and validation phases which implies 
the learning phase was performed successfully.  

It can be observed in table 5 that the determina-
tion coefficient values are higher than 0,94, indicat-
ing that the network has been well trained. However, 
when compared with the model trained for 6 years it 
is clear that R2 values have slightly decreased. Thus, 
it can be interpreted that ANN models are statisti-
cally more reliable with a longer period of training.  

 
Prediction period. For the testing period, the 

parameters obtained from the learning phase of the 
neural network model were used to predict daily dis-
charge values for 1983. According to the results, the 
best-calibrated model is Model 5-I which underwent 
6 years of training and 1 year of validation phases 
and has 7 preceding days and 8 hidden layers. For 
that model 1100 iterations were seen as optimal. 
When the neural network model has been trained for 
5 years and undergone 2 years of validation period, 
the model 5-II reaches better calibration when the 
number of preceding days is 5, and the number of 
hidden layers is 10 with iterations of 700. In figure 
4, a related scatter plot of the best-calibrated model 
shows daily observed discharge versus daily pre-
dicted discharge. Figure 5 shows observed and pre-
dicted daily discharge values and their related daily 
rainfall values. Tables 6 and 7 illustrate the main sta-
tistical results of those two calibrated models. 

 
TABLE 3 

Artificial neural network calibration parameters domain 
Training year Validation year Testing year 

5-6 1-2 1 
Preceding days Number of iterations Number of hidden layers 

2-10 10,100,300,700,900,1100 4,6,8,10,12,14 
 

TABLE 4 
The artificial neural network model parameters of best-calibrated models with 6 years of  

training and 1 year of validation 
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Nit 300 700 300 300 1100 700 
Np 6 4 3 6 7 9 
Nh 12 10 14 6 8 7 

*Nit: number of iteration, Np: number of preceding days, Nh: number of hidden layers 

TABLE 5 
The artificial neural network model parameters of best-calibrated models with 5 years of  

training and 2 years of validation 
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Nit 1100 700 100 100 700 300 
Np 10 8 8 6 5 6 
Nh 8 12 8 6 10 12 

     *Nit: number of iteration, Np: number of preceding days, Nh: number of hidden layers 
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TABLE 6 
Statistical results of the Neural Network Model 

m3/s 
Model 5-I Model 5-II 

Q observed Q predicted Q observed Q predicted 
Minimum 0,99 2,57 0,99 1,61 
Maximum 20,4 16,6 20,4 17,8 
Mean 4,55 6,41 4,59 5,11 
Standard deviation 3,54 3,45 3,61 2,99 
Variation coefficient 0,78 0,54 0,79 0,59 

TABLE 7 
Statistical comparison between observed and predicted values of calibrated ANN models 

m3/s Model 5-I Model 5-II 
R2 

prediction 0,6826 0,651 
RMSE prediction 0,0921 0,0662 

 
FIGURE 4 

Scatter plot of ANN model 5-I with a 6-year training period (A), scatter plot of ANN model 5-II  
with a 5-year training period (B) 
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(A) 

(B) 

 
FIGURE 5 

Observed versus predicted daily discharge values for La Chartreux spring and rainfall hydrograph.  
Best calibrated model with 6 years of training and a 1-year validation phase (a), Best calibrated model with 5 years of training 
and a 2-year validation (b) 

 
Table 6 and 7 summarize the statistics of ob-

served and predicted daily discharge values of the 
two best calibrated models. Model 5-I and model 5-
II have almost equivalent average values. Standard 
deviation values, however, are slightly more ac-
ceptable for model 5-I than for model 5-II. The cor-
relation coefficients of variation show the diffusion 
of average values, which are almost identical for 
both models at almost the same degree. Accordingly, 
maximum values of the observed discharge are 
higher than the predicted discharge for both models, 
while the minimum amount of observed discharge is 
lower than that of the predicted discharge. The cor-
relation plots of calibrated ANN models (Figure 4) 
indicate that more than an average of the predicted 
and observed discharge values are clustered on the 

x=y line. However extreme values are located far 
from that line which means the present ANN model 
could not estimate these extreme values with enough 
accuracy. As shown in Figure 5, ANN was mostly 
able to predict the daily discharge as it was compat-
ible with daily rainfall and observed discharge. How-
ever, ANN could not always reasonably estimate the 
daily discharge values which might correspond to a 
sudden increase or decrease in rainfall. As a result of 
the time lag between rainfall and discharge re-
sponses, inconsistent discharge values were ob-
served. While observed discharge is not affected by 
a particular rainfall, it was observed that the ANN 
model can respond to rainfall input with a discharge 
output more effectively. 
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DISCUSSION 
 
The daily rainfall and runoff relationship were 

conducted by using artificial neural network meth-
ods for La Chartreux spring. The feed forward - back 
propagation algorithm was chosen as the artificial 
neural network algorithm. Since the Levenberg - 
Marquardt algorithm gives better solutions with feed 
forward  back propagation algorithm, it was chosen 
as the learning algorithm. For the most part the pre-
dicted daily runoff matches the observed runoff val-
ues on rainfall and discharge hydrographs. Scatter 
plots also indicate that there is a conformal relation-
ship between observed and predicted discharge val-
ues. For all model runs, the determination coefficient 
for training and validation periods was never less 
than 0,94, and the mean square error has always been 
less than 0,1, indicating the network model has the 
capability of making realistic simulations. However, 
inefficacious values were observed when discharge 
reaches peaks and bottoms. Although the learning al-
gorithm of the neural network can respond to rainfall 
input with appropriate discharge output, real rainfall 
does not always affect the real discharge values as 
much as expected. Since it is out of the scope of this 
study, possible reasons for having lower discharge 
values than estimated by the neural network is a po-
tential area for further study. 

 
 

CONCLUSION

Construction of rainfall - runoff relationships 
for a river system in the karstic region is thought to 
be an interesting though composite subject. Karstic 
systems are known for their complex nature as they 
have a non-homogeneous structure and non-linear 
flow features. Quick differentiation of flow lines in 
karstic systems, the non-isotropic nature, heteroge-
neous disperse of hydraulic conductivity would so-
lidify numerical and conceptual hydrogeological 
models to estimate the discharge response to rainfall 
or any other water input. This study aimed to create 
an artificial neural network model with the ability to 
predict runoff by introducing two input variables 
(rainfall, runoff). According to the results of this 
study, the artificial neural network model can be 
evaluated as capable of predicting a rainfall-runoff 
relationship. Rainfall  runoff hydrographs (Figure 
5) prove that the Ann model could estimate runoff 
response to particular daily rainfall input in most 
cases. In contrast to the incompatibilities between 
observed and estimated discharges, statistical analy-
sis showed that the study can be considered efficient 
because determination of the coefficient values taken 
from the scatter plots of observed versus predicted 
discharge, which are 0.682, 0.651 and RMSE values 
of 0.0921 and 0.0662 for the models 5-I and 5-II, re-
spectively, proved that there is a consistency in the 
prediction period. By considering all the details 

given above, it can be concluded that ANNs are ca-
pable of identifying rainfall  runoff relationships, 
even in complex hydrogelogical systems at uncertain 
degrees of performance efficiency depending on the 
quality of input variables, duration of the learning 
period of the neural network, the mathematical algo-
rithm used for learning, and considered or not con-
sidered hydrogeological properties of the study area. 
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