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Numerical approach for solving linear Fredholm
integro-differential equation with piecewise intervals by
Bernoulli polynomials
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ABSTRACT
In this paper a numerical method is given for the solution of linear Fred-
holm integro-differential equation (FIDE) with piecewise intervals under
the mixed conditions using the Bernoulli polynomials. The aim of this arti-
cle is to present an efficient numerical procedure for solving linear FIDE
with piecewise intervals. Thismethod transforms linear FIDEwith piecewise
intervals and the given conditions into matrix equation which corresponds
to a systemof linear algebraic equation. Finally, someexperiments and their
numerical solutions are given. The results reveal that this method is reliable
and efficient.
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1. Introduction

In recent years, there has been a growing interest in the Fredholm integro-differential equations
(FIDEs). FIDEs are an equation that the unknown function appears under the sign of integration
and it also contains the derivatives functional arguments of the unknown function.

Many physical problems are modelled by integral or integro differential equations. Historically,
they have achieved great popularity among mathematicians and physicists in formulating bound-
ary value problems of gravitation, electrostatics, fluid dynamics, scattering, engineering, biology,
medicine [1,6,7,14,17–20,22,24,25], economics, potential theory and many others [9,12,13,15,26].
The some initial-value and boundary value problems can be transformed into a Fredholm integral
equations or FIDEs. Moreover, These type equations usually difficult to solve analytically, so we need
a reliable numerical method. By the given reasons, many scientists have been motivated that they
have been studied many numerical methods to solve FIDEs. Every methods have advantages or dis-
advantages but this did not stop scientists on the contrary it has led to the development of various
methods such as Wavelet-Galerkin method [5], Tau method [11], Spline method [8], reproducing
kernel algorithm [2,4], collocationmethods of different polynomials such as Chebyshev [3], Laguerre
[10], Taylor [21].

The technique that we used is the numerical solution method, which is based on numerical
solution of linear Fredholm differential equations with variable coefficients in terms of Bernoulli
polynomials.
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In this study, the basic ideas of the above studies are developed and applied to themth-order linear
FIDE with piecewise intervals with variable coefficients

m∑
k=0

Pk(x)y(k)(x) = g(x) +
J∑

j=0
λj

∫ bj

aj
Kj(x, t)y(t) dt, (1)

where a ≤ x, t ≤ b and a ≤ aj < bj ≤ b, under the mixed conditions, for i = 0, 1, 2, . . . ,m − 1

m−1∑
k=0

[aiky(k)(a) + biky(k)(b)] = μi (2)

and the solution is expressed in the form

y(x) =
N∑

n=0
anBn(x), (3)

which is a Bernoulli polynomial of degree N and an are unknown Bernoulli coefficients.

2. Bernoulli polynomials

The Bernoulli polynomials are defined by the generating function [16,23]

text

et − 1
=

∞∑
n=0

Bn(x)
n!

tn, |t| < 2π

or equivalently

BN(x) =
N∑
i=0

(
N
i

)
bNxN−i,

where bN are Bernoulli numbers.
The first a few Bernoulli polynomials are

B0(x) = 1, B1(x) = x − 1
2 , B2(x) = x2 − x + 1

6 , B3(x) = x3 − 3
2x

2 + 1
2x

B4(x) = x4 − 2x3 + x2 − 1
30 , B5(x) = x5 − 5

2x
4 + 5

3x
3 − 1

6x

using these Bernoulli polynomials, we can find the Bernoulli numbers which is define bN = BN =
BN(0). For example

b0 = B0 = B0(0) = 1, b1 = B1 = B1(0) = − 1
2 , b2 = B2 = B2(0) = 1

6 , b3 = B3 = B3(0) = 0,

b4 = B4 = B4(0) = − 1
30 , b5 = B5 = B5(0) = 0.



2102 G. G. BIÇER ET AL.

3. Fundamental matrix relations

Let us consider the mth-order FIDE with variable coefficients (1) and find the matrix forms of each
term of equation

m∑
k=0

Pk(x)y(k)(x) = g(x) +
J∑

j=0
λj

∫ bj

aj
Kj(x, t)y(t) dt, a ≤ x, t ≤ b, a ≤ aj < bj ≤ b

or shortly

m∑
k=0

Pk(x)y(k)(x) = g(x) +
J∑

j=0
λjIj(x), (4)

where

Ij(x) =
∫ bj

aj
Kj(x, t)y(t) dt. (5)

And then we write matrix form of y(x)

y(x) = B(x)A, (6)

where

B(x) = [B0(x) B1(x) · · · BN(x)], (7)

A = [a0 a1 · · · aN]T. (8)

By using the general representation of Bernoulli polynomials which is defined by

BN(x) =
N∑
i=0

(
N
i

)
bNxN−i.

In Equation (6) we can write for variable t

y(t) = B(t)A (9)

and using the Maclaurin expansion we obtain

Kj(x, t) = X(x)KtXT(t), Kt = [ktij], i, j = 0, 1, 2, . . . ,N (10)

and then using the Bernoulli expansion

Kj(x, t) = B(x)KfBT(t), Kf = [kfij], i, j = 0, 1, 2, . . . ,N (11)

and then

X(x)KtXT(t) = B(x)KfBT(t)

X(x)KtXT(t) = X(x)SKf STXT(t)

Kt = SKf ST

Kf = S−1Kt(ST)−1,



INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 2103

where

B(x) = X(x)S

X(x) = [1 x x2 x3 · · · xN]

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
0
0

)
b0

(
1
1

)
b1

(
2
2

)
b2

(
3
3

)
b3 · · ·

(
N
N

)
bN

0
(
1
0

)
b1

(
2
1

)
b2

(
3
2

)
b3 · · ·

(
N

N − 1

)
bN

0 0
(
2
0

)
b2

(
3
1

)
b3 · · ·

(
N

N − 2

)
bN

0 0 0
(
3
0

)
b3 · · ·

(
N

N − 3

)
bN

...
...

...
... · · · ...

0 0 0 0 · · ·
(
N
0

)
bN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Moreover, using this relation we can find

X(k)(x) = X(x)Mk,

y(k)(x) = X(x)MkSA, (12)

where

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1
0 0

0 0
2 0

· · · 0
· · · 0

0 0
...

...

0 3
...

...

· · · 0

· · · ...
0 0
0 0

0 0
0 0

· · · N
· · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

By substituting Equation (5) into Equations (9) and (11), we obtain

Ij =
∫ bj

aj
B(x)KfBT(t)A dt = B(x)KfQfA, (13)

where

Qj =
∫ bj

aj
BT(t)B(t) dt. (14)

We can write Equation (14) also

Qj =
∫ bj

aj
BT(t)B(t) dt =

∫ bj

aj
STXT(t)X(t)S dt = ST

[∫ bj

aj
XT(t)X(t) dt

]
︸ ︷︷ ︸

Hj

S, (15)

where

Hj = [hjkl(x)], hjkl(x) =
∫ bj

aj
XT(t)X(t) dt =

bk+l+1
j − ak+l+1

j

k + l + 1
, k, l = 0, 1, 2, . . . ,N. (16)
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By substituting Equation (15) into Equation (16) we obtain

Qj = STHjS.

It is known that by Equation (11)

B(x) = X(x)S

and using this relation we find

Ij(x) = X(x)SKfQjA (17)

so that, the matrix representation of

m∑
k=0

Pk(x)y(k)(x) = g(x) +
J∑

j=0
λj

∫ bj

aj
Kj(x, t)y(t) dt

can be given by

m∑
k=0

Pky(k) = G +
J∑

j=0
λjIj. (18)

3.1. Matrix representation of the conditions

Using the relation (12), the matrix form of the conditions given by Equation (2) can be written as

m−1∑
k=0

[aikX(a) + bikX(b)]MkSA = μi, i = 0, 1, 2, . . . ,m − 1. (19)

4. Method of solution

We are ready to construct the fundamental matrix equation corresponding to Equation (1). For this
purpose, firstly we write

m∑
k=0

Pk(x)y(k)(x) = g(x) +
J∑

j=0
λjIj(x)

and then we can write

x = xi = a + b − a
N

i, i = 0, 1, 2, . . . ,N

m∑
k=0

Pk(xi)y(k)(xi) = g(xi) +
J∑

j=0
λjIj(xi), i = 0, 1, 2, . . . ,N

and then the fundamental matrix equation is gained by

m∑
k=0

Pky(k) = G +
J∑

j=0
λjIj, (20)
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where

Pk =

⎡
⎢⎢⎢⎢⎢⎣
Pk(x0) 0 0 · · · 0

0 Pk(x1) 0 · · · 0
0 0 Pk(x2) · · · 0
...
0

...
0

...
0

· · ·
· · ·

0
Pk(xN)

⎤
⎥⎥⎥⎥⎥⎦ , G =

⎡
⎢⎢⎢⎢⎢⎣
g(x0)
g(x1)
g(x2)
...

g(xN)

⎤
⎥⎥⎥⎥⎥⎦ .

By substituting Equation (20) into Equations (12) and (17), we obtain

m∑
k=0

PkXMkSA = G +
J∑

j=0
λj(XSKjQjA),

⎛
⎝ m∑

k=0

PkXMkS −
J∑

j=0
λjXSKjQj

⎞
⎠

︸ ︷︷ ︸
Wf

A = G. (21)

The fundamental matrix equation (21) for Equation (1) corresponds to a system of (N + 1)
algebraic equation for the (N + 1) unknown coefficients . Briefly, we can write Equation (21)

WfA = G or [Wf ;G] (22)

and the matrix form for conditions (2) is,

UiA = [μi] or [Ui;μi], i = 0, 1, 2, . . . ,m − 1, (23)

where

Ui =
m∑
k=0

[aikX(a) + bikX(b)]MkS = [ui0 ui1 · · · uiN].

To obtain the solution of Equation (1) under the conditions (2), by replacing the rows matrices (23)
by the last m rows of the matrix (22), we have the required augmented matrix

[W∗
f ;G

∗] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w00 w01 w02 · · · w0N ; g(x0)
w10 w11 w12 · · · w1N ; g(x1)
...

...
... · · · ... ;

...
w(N−m)0 w(N−m)1 w(N−m)2 · · · w(N−m)N ; g(xN−m)

u00 u01 u02 · · · u0N ; μ0
u10 u11 u12 · · · u1N ; μ1
...

...
... · · · ... ;

...
u(m−1)0 u(m−1)1 u(m−1)2 · · · u(m−1)N ; μm−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

or corresponding matrix equation

W∗
f A = G∗. (24)

If rank(W∗
f ) = rank[W∗

f ;G
∗] = N + 1, then we can write

A = (W∗
f )

−1G∗. (25)

Thus the coefficients ai, i = 0, 1, 2, . . . ,N are uniquely determined by Equation (25). Also Equation
(1) with conditions Equation (2) has a unique solution. This solution is given by truncated Bernoulli
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series equation (3). We can easily check the accuracy of the suggested method. Since the truncated
Bernoulli series (3) is an approximate solution of Equation (1), when the solution yN(x) and its deriva-
tives are substituted in Equation (1) the resulting equation must be satisfied approximately, that is for
x = xq ∈ [0, 1], q = 0, 1, 2, . . .

E(xq) =
∣∣∣∣∣∣
m∑
k=0

Pk(x)y(k)(x) − g(x) −
J∑

j=0
λj

∫ bj

aj
Kj(x, t)y(t) dt

∣∣∣∣∣∣ ∼= 0 (26)

and E(xq) ≤ 10−kq (kq positive integer). If max 10−kq = 10−k(k positive integer) is prescribed, then
the truncation limit N is increased until the difference E(xq) at each of the points becomes smaller
than the prescribed 10−k. On the other hand, the error can be estimated by the function

EN(x) =
m∑
k=0

Pk(x)y(k)(x) − g(x) −
J∑

j=0
λj

∫ bj

aj
Kj(x, t)y(t) dt (27)

if EN(x) → 0 when N is sufficiently large enough then the error decreases.

5. Illustrative examples

In this section, several numerical examples are given to illustrate the accuracy and effectiveness prop-
erties of method and all of them performed on the computer using a program written in Maple17.
The absolute errors in tables are the values of |y(x) − yN(x)| at selected points.

Example 5.1: Let us consider the linear FIDE with piecewise intervals,

y′′(x) + xy′(x) + y + 6
∫ 0

−1
xty(t) dt − 6

∫ 1

0
y(t) dt = 6x2 + x − 3 (28)

with initial conditions,

y(0) = 0, y′(0) = 1. (29)

Then, P0(x) = 1, P1(x) = x, P2(x) = 1, g(x) = 6x2 + 4x − 3, K1(x, t) = xt, K2(x, t) = 1, λ1 = −6
and λ2 = 6 for N = 3 collocation points are {x0 = 0, x1 = 1

3 , x2 = 2
3 , x3 = 1} and the funda-

mental matrix equation of the problem is,⎛
⎝ m∑

k=0

PkXMkS −
J∑

j=0
λjXSKjQj

⎞
⎠

︸ ︷︷ ︸
Wf

A = G, (30)

where,

P0 =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , P1 =

⎡
⎢⎢⎣
0 0 0 0
0 1/3 0 0
0 0 2/3 0
0 0 0 1

⎤
⎥⎥⎦ , P2 =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

X =

⎡
⎢⎢⎣
1 0 0 0
1 1/3 1/9 1/27
1 2/3 4/9 8/27
1 1 1 1

⎤
⎥⎥⎦ , M =

⎡
⎢⎢⎣
0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

⎤
⎥⎥⎦ , S =

⎡
⎢⎢⎣
1 −1/2 1/6 0
0 1 −1 1/2
0 0 1 −3/2
0 0 0 1

⎤
⎥⎥⎦
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K1 =

⎡
⎢⎢⎣
1/4 1/2 0 0
1/2 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , K2 =

⎡
⎢⎢⎣
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , G =

⎡
⎢⎢⎣

−3
−2
1/3
4

⎤
⎥⎥⎦

Q1 =

⎡
⎢⎢⎣

1 −1 1 −1
−1 13/12 −7/6 149/120
1 −7/6 241/180 −3/2

−1 149/120 −3/2 1471/840

⎤
⎥⎥⎦ , Q2 =

⎡
⎢⎢⎣
1 0 0 0
0 1/12 0 −1/120
0 0 1/180 0
0 −1/120 0 1/840

⎤
⎥⎥⎦

and conditions matrices are[
U0 ; λ0
U1 ; λ1

]
=

[
1 −1/2 1/6 0 ; 0
0 1 −1 1/2 ; 1

]
.

If these matrix are substituted in Equation (30), it is obtained linear algebraic system. We obtained
the approximate solution of the problem for N = 3

y(x) = a0B0(x) + a1B1(x) + a2B2(x) + a3B3(x)

y(x) = (−0.3 · 10−14) + (0.99999999999999)x + (2.00000000000019)x2

+ (0.666666666666732 · 10−14)x3.

The exact solution of this problem is y(x) = 2x2 + x (see Table 1). Figure 1 shows the compar-
ison between the exact solution and different for the N Bernoulli collocation method solutions
of the system in Equation (30). It seems that solutions almost identical. One can obtain a better
approximation to the numerical solutions by adding new terms to the series in Equation (3). On
the other hand, Figure 1 shows that the comparison between the errors functions for various N. It
seems that accuracy increases as the N increased. From Table 1, the results we obtained have shown
speedy convergence. It is of interest to note that the method discussed above works effectively for
linear models.

Example 5.2: Consider the second-order linear FIDE with piecewise intervals,

x2y′′(x) + xy′(x) + y(x) +
∫ 1/2

−1/2
xty(t) dt −

∫ 1

1/2
y(t) dt = g(x), (31)

where g(x) = ex + xex + x2ex + 0.085435354218885x − 1.06956055775892 with conditions

y(0) = 1, y′(0) = 1 (32)

Table 1. Numerical and error results of Example 5.1 for different N.

x Exact solution N = 3 Ne = 3 N = 5 Ne = 5 N = 8 Ne = 8

0.0 0.000000 0.000000 0.30E−14 0.000000 0.11E−14 0.000000 0.23E−15
0.1 0.120000 0.119999 0.20E−14 0.119999 0.30E−14 0.119999 0.40E−14
0.2 0.280000 0.280000 0.30E−14 0.279999 0.80E−14 0.279999 0.16E−13
0.3 0.480000 0.480000 0.11E−13 0.479999 0.18E−13 0.479999 0.36E−13
0.4 0.720000 0.720000 0.23E−13 0.719999 0.31E−13 0.719999 0.65E−13
0.5 1.000000 1.000000 0.40E−13 0.999999 0.47E−13 0.999999 0.10E−12
0.6 1.320000 1.320000 0.60E−13 1.319999 0.70E−13 1.319999 0.14E−12
0.7 1.680000 1.680000 0.80E−13 1.679999 0.90E−13 1.679999 0.19E−12
0.8 2.080000 2.080000 0.11E−12 2.079999 0.12E−12 2.079999 0.25E−12
0.9 2.520000 2.520000 0.14E−12 2.519999 0.13E−12 2.519999 0.31E−12
1.0 3.000000 3.000000 0.19E−12 2.999999 0.17E−12 2.999999 0.37E−12
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and the exact solution is y(x) = ex. Figure 2 shows that the comparison between the errors func-
tions for various N. It seems that accuracy increases as the N increased. From Table 2, the results we
obtained have shown speedy convergence. It is of interest to note that the method discussed above
works effectively for linear models.

Figure 1. Numerical results of Example 5.1 for various N.

Figure 2. Numerical results of Example 5.2 for various N.

Table 2. Numerical and error results of Example 5.2 for different N.

x Exact solution N = 5 Ne = 5 N = 8 Ne = 8 N = 11 Ne = 11

0.0 1.000000 1.000000 0.000000 1.000000 0.80E−14 1.000000 0.000000
0.1 1.105171 1.105132 0.385E−4 1.105171 0.30E−11 1.105171 0.10E−14
0.2 1.221403 1.221309 0.939E−4 1.221403 0.229E−9 1.221403 0.20E−13
0.3 1.349859 1.349733 0.125E−3 1.349859 0.590E−9 1.349859 0.30E−13
0.4 1.491825 1.491689 0.136E−3 1.491825 0.940E−9 1.491825 0.40E−13
0.5 1.648721 1.648577 0.144E−3 1.648721 0.130E−8 1.648721 0.50E−13
0.6 1.822119 1.821954 0.165E−3 1.822119 0.164E−8 1.822119 0.60E−13
0.7 2.013753 2.013574 0.179E−3 2.013753 0.197E−8 2.013753 0.70E−13
0.8 2.225541 2.225426 0.115E−3 2.225541 0.236E−8 2.225541 0.70E−13
0.9 2.459603 2.459771 0.168E−3 2.459603 0.324E−9 2.459603 0.60E−13
1.0 2.718282 2.719186 0.905E−3 2.718282 0.215E−7 2.718282 0.10E−11
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6. Steps of solutions

In this section Algorithms 6.1 and 6.2 have been given for calculations of Examples 5.1 and 5.2,
respectively. Also, the algorithms can be applied any computer program.

Algorithm 6.1:
Step 1

(a) Input the number of truncated Bernoulli polynomial limit N (N ∈ N)

(b) Determine the a, b, P0(x),P1(x), . . . , Pm(x), g(x), Kj(x, t), λj and the mixed conditions.
(c) The mixed conditions put in Equation (2)

Step 2

(a) Set the collocation points xi, i = 0, 1, . . . ,N. There are x0 = a and xN = b.

Step 3

(a) Construct the matrices Pk, X,Mk, S, Kj,Qj. Equations (6)–(18)
(b) ComputeWf and Gmatrices.
(c) Construct the conditionalm rows matrices equation (19)

Step 4

(a) Construct augmented matrix [W∗
f ;G

∗] from Equation (24)

Step 5

(a) If rank (W∗
f ) = rank [W∗

f ;G
∗] = N + 1 then, to solve the (or solve the system by using Gauss

elimination method).

Step 6

(a) Substituting all elements of the Bernoulli coefficients matrix solution as, respectively, into
Equation (3). Finally, this will be our solution.

Algorithm 6.2:
Step 1

(a) Input the number of truncated Bernoulli polynomial limit N (N ∈ N).
(b) Determine the a, b, P0(x),P1(x), . . . , Pm(x), g(x), Kj(x, t),λj and the mixed conditions.
(c) The mixed conditions put in Equation (2)

Step 2

(a) Set the collocation points xi, i = 0, 1, . . . ,N. There are x0 = a and xN = b.

Step 3

(a) Construct the matrices Pk, X,Mk, S, Kj,Qj. Equations (6)–(18)
(b) ComputeWf and Gmatrices
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(c) Construct the conditionalm rows matrices equation (19)

Step 4

(a) Construct augmented matrix [W∗
f ;G

∗] from Equation (24)

Step 5

(a) If rank (W∗
f ) = rank [W∗

f ;G
∗] = N + 1 then, to solve the (or solve the system by using Gauss

elimination method).

Step 6

(a) Substituting all elements of the Bernoulli coefficients matrix solution as, respectively, into
Equation (3). Finally, this will be our solution.

7. Conclusion

In recent years, the studies of high-order linear FIDEwith piecewise intervals have attracted the atten-
tion of many mathematicians and physicists. The Bernoulli collocation method has been presented
to solve linear FIDE with piecewise intervals. One of the advantages of this method is that numer-
ical solution of the integro-differential equations can be converted into system of linear algebraic
equations. Another considerable advantage of this method is to obtain the analytical solutions if the
equation has an exact solution that is a polynomial function as in Example 1. Application of the given
method allows the creation of more effective and faster algorithms than the ordinary ones. Moreover,
another considerable advantage of thismethod is the Bernoulli polynomial coefficients of the solution
are found very easily, shorter computation times are so low such as 1.1 sn for Example 2 (CPU Core2
Duo 2.13Ghz, RAM 2Gb) and lower operation count results in reduction of cumulative truncation
errors and improvement of overall accuracy.

Illustrative examples are included to demonstrate validity and applicability of the technique and
performed on the computer using a program written in Maple 17. The method can also extended to
the system of linear FIDEs with variable coefficients, but some modifications are required.
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