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ABSTRACT
In this paper, we propose modified spline estimators for nonparametric
regression models with right-censored data, especially when the
censored response observations are converted to synthetic data.
Efficient implementation of these estimators depends on the set of
knot points and an appropriate smoothing parameter. We use three
algorithms, the default selection method (DSM), myopic algorithm
(MA), and full search algorithm (FSA), to select the optimum set of
knots in a penalized spline method based on a smoothing parameter,
which is chosen based on different criteria, including the improved
version of the Akaike information criterion (AICc), generalized cross
validation (GCV), restricted maximum likelihood (REML), and Bayesian
information criterion (BIC). We also consider the smoothing spline (SS),
which uses all the data points as knots. The main goal of this study is to
compare the performance of the algorithm and criteria combinations in
the suggested penalized spline fits under censored data. A Monte Carlo
simulation study is performed and a real data example is presented to
illustrate the ideas in the paper. The results confirm that the FSA slightly
outperforms the other methods, especially for high censoring levels.

1. Introduction

In regression analysis, when the effect of a covariate on the response is unspecified para-
metrically, nonparametric regression methods are commonly used to explain the relation-
ship between the response and covariate. Formally, the above situation can be described by
the following nonparametric regression model. Let {(Xi,Yi), 1 ≤ i ≤ n} be a random sample
satisfying

Yi = f (Xi) + εi, a = X1 < · · · < Xn = b, (1)

where theYi’s are observations of the response variable, the Xi’s are the values of the covariate,
f is some unspecified smooth regression function and the εi’s are independent random error
terms with mean zero and variance σ 2

ε .
In the case of uncensored response observations, a number of statistical methods have

been developed to estimate model (1), for example, the studies by Eubank (1988), Hardle
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(1990), Wahba (1990), Ruppert (2002), Ruppert, Wand and Carroll (2003), and Eilers and
Marx (2010). In practice, theYi’s may be incompletely observed and right censored by a ran-
dom censoring variableCi. Therefore, instead of observing (Yi, Xi), one observes the dataset
{(Xi,Zi, δi), i = 1, 2, . . . , n} with

Zi = min (Yi,Ci) , δi = I (Yi ≤ Ci) = {
1 if (Yi ≤ Ci) and 0 otherwise

}
, (2)

where I( . ) is an indicator function, and Zi andCi are the failure times (or observed lifetimes)
and the censoring time, respectively, for the ith subject. In the presence of censoring, model
(1) reduces to the censored nonparametric regression model.

Ordinary statistical methods cannot be applied directly to censored observations, and
data transformation is required to explain the relationship between the response and
covariate. In this context, several authors have proposed different data transformations
when the regression function is linear (see Buckley & James, 1979; Koul et al., 1981; Leur-
gans, 1987). Furthermore, a data transformation exists when the form of the regression
function is unspecified, for example, the local average transformation of Fan and Gijbels
(1994) and the data transformation technique studied by El Ghouch and Van Keilegom
(2008). Additionally, the consistency of the weighted estimate of the unknown regression
function for nonparametric regression with right-censored data was studied by Kalbfle-
ich and Prentice (1980) and Wang (1996) discussed the convergence properties of the
weighted kernel estimate for nonparametric regression function; Yang (1999) examined
the weighted kernel estimators of a nonparametric regression function with censored data.
In addition to these authors, there are many studies in the literature on the estimation of
nonparametric regression models with randomly right-censored data. Examples of these
works include Zheng (1984), Cai and Betensky (2003), Dabrowska (1992), and Kim and
Truong (1998).

In this paper, we focus onmodel (1) when the response observations are subject to random
right censoring. For simplicity, we consider the transformed versions of the censored obser-
vations, called synthetic data, proposed by Koul et al. (1981). We apply a modified regression
spline estimator to the synthetic data to study the knot-selection algorithms in combination
with an appropriate smoothing parameter. The above estimator is a generalization of the
well-known penalized spline estimator for model (1). For more details on penalized splines,
see Eilers and Marx (1996), Ruppert et al. (2003), and Hall and Opsomer (2005). The main
difference in our study is that we consider a randomly right-censored nonparametric regres-
sion model that is estimated by using several knot selection algorithms under simulation and
real data settings. The basic idea is to find a useful selection algorithm that provides a good
approximation f̂ (X ) to the function f (X ) and then to compare the performance of these
algorithms by using different selection criteria. To the best of our knowledge, such a study
has not yet been conducted.

The rest of this paper is organized as follows. In Section 2, the preliminaries required to
understand the estimationmethod are expressed, and the regression splinemethod, synthetic
data transformation and derivation of the proposed estimator are illustrated. The variance
of the estimator and the relative efficiencies are obtained in Section 3. In Section 4, selection
methods for the smoothing parameter are expressed, and in Section 5, the knot selection
algorithms are illustrated. Then, a simulation experiment is conducted in Section 6, and
the estimation method is applied to a dataset of patients with colon cancer. Finally, in the
last section, conclusions and comments about the simulation and real data applications are
presented.
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2. The preliminaries andmethodology

We assume that Yi, Ci, and Zi have distribution functions F, G, and K, respectively, and that
(X, Y) and C are independent. These variables are assumed to be non-negative random with
distribution functions

F(t|X = x) = P(Yi ≤ t|X = x, (t ∈ R)), G(t|x) = P(Ci ≤ t|x), and K(t|x) = P(Zi ≤ t|x)
and corresponding survival functions

F̄(t|x) = 1 − F(t|x) = P(Yi > t|x), Ḡ(t|x) = 1 − G(t|x) = P(Ci > t|x), and (because
of the independence of Y and C)

K̄(t|x) = 1 − K(t|x) = (1 − (F(t|x) × G(t|x))) = P(Zi > t|x).
To ensure that the model is identifiable, we assume that

TF = sup
[
t : F̄(t|x) > 0

] ; TG = sup
[
t : Ḡ(t|x) > 0

] ;
TK = sup

[
t : K̄(t|x) > 0

] = min(TF ,TG) (3)

Throughout this paper, we also assume that TF < ∞, G is continuous, F and G have no
common jumps, andG(TF ) > 0. The assumptionG(TF ) > 0 implies that TF < TG; hence, it
is easily seen that TF = TK by definition of TK . Note that under assumption (3), an ordinary
estimate of f (.) can be defined by

f (x) =
∫ ∞

0
F(t|x)dt =

∫ TF

0
F(t|x)dt = E(Y |X = x). (4)

Because of the censoring, the traditionalmethods for estimating f (x) are inapplicable. One
reason for this restriction is that the censored observation Zi and the true random variable
Yi have different expectations. This difficulty can be overcome by using the synthetic data
method, as in censored linearmodels.We refer, for example, to the studies of Koul et al. (1981),
Lai and Ying (1992), and Zhou (1992) for more details. The synthetic data method enables us,
through some transformation, to modify the censored and uncensored observations, hence
ensuring that a transformed observation has the same expectation as the random variable Yi

in principle (see Lemma 1). In this context, we perform data transformation

ZiG = δiZi

1 − G(Zi)
= δiZi

Ḡ(Zi)
, (5)

whereG (.) is the common distribution of the censoring variableCi, asmentioned in the intro-
duction to this section. Thus, model (1) transforms to the following censored nonparametric
regression model

ZiG = f (Xi) + εiG, εiG = ZiG − f (Xi), 1 ≤ i ≤ n, (6)

where the εiG
′s are random variables for a givenG, and E(εiG) = 0 (see Appendix A4). There-

fore, there is a distinct probability distribution for ZiG at each point Xi; that is, (ZiG,Xi), i =
1, . . . , n is a sequence of random variables with the mean of distribution E(ZiG|X ) = f (Xi).
Additionally, the following Lemma 1 shows that ZiG and Yi have the same expected values,
and the unknown regression function f (X ) becomes a problem of estimating the expecta-
tion from censored data.
Lemma 1. If instead of Yi only {( Zi, δi) , 1 ≤ i ≤ n} are observed and the censoring dis-
tribution G is known, then the regression function f (X ) is a conditional expectation; that is,
E(ZiG|X ) = E(Yi|X ) = f (Xi).
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Proof. Lemma 1 can be easily verified by using the assumed independence of Y and C and the
properties of conditional expectation:

E(ZiG |X ) = E
[

δiZi

1 − G(Zi)
|X
]

= E
[

δiZi

Ḡ(Zi)
|X
]

= E
[
I(Yi ≤ Ci)min(Yi,Ci)

Ḡ [min(Yi,Ci)]
|X
]

= E
[
I(Yi ≤ Ci)

Yi

Ḡ(Zi)
|X
]

= E
[
E
[

Yi

Ḡ(Zi)
I(Yi ≤ Ci)|X,Y

]
|X
]

= E
[

Yi

Ḡ(Zi)
Ḡ(Zi)|X

]
= E(Yi|X ) = f (Xi)

In survival applications, the censoring distribution G is usually unknown. Therefore,
Lemma 1 for estimating f (·) cannot always be applied. To overcome this problem Koul et al.
(1981) proposed replacing G with its Kaplan–Meier estimator

ˆ̄G(t ) ≡ 1 − Ĝ(t ) =
n∏

i=1

(
n − i

n − i + 1

)I[Z(i)≤ t, δ(i)=0]

, (t ≥ 0), (7)

where (Z(i), δ(i)), i = 1, 2, . . . , n, are the pairs of observations (Z(i), δ(i)) ordered on the Z(i),
i.e., Z(1) ≤ Z(2) ≤ · · · ≤ Z(n). Note that if G is chosen arbitrarily, some Z(i) may be identical.
In this case, the ordering of Z1, . . . ,Zn into Z(1), . . . ,Z(n) is not unique. However, the Kaplan-
Meier estimator enables us to identify the ordering of Z uniquely. Additionally, Ĝ(t ) has jumps
only at the censored data points (see Peterson, 1977).

Based on (6), several estimates of f (X ) can be performed, such as the smoothing spline,
kernel smoothing and regression spline. For convenience, we use the regression splinemethod
to estimate the unknown regression function in model (6). This estimation procedure is
explained in the following section.

2.1. Derivation of the proposed estimator

Wenow consider the ideas described above to apply the regression spline (or penalized spline)
method to the case of randomly right-censored data. To approximate the function f (X )

in (6), we use a pth-degree penalized spline with truncated polynomial basis

f (X; β) = β0 + β1X + · · · + βpX p +
K∑

k=1

βp+k(X − κk)
p
+,

where β = (β0, β1, . . . , βp, βp+1, . . . , βp+K )′ is a vector of unknown coefficients to be
estimated, p ≥ 1 is an integer, (X − κk)

p
+ = (X − κk)

p if X > κk or zero otherwise and
{κ1, . . . , κK} is a set of fixed knots {min(Xi) ≤ κ1 <, . . . , < κK ≤ max(Xi)}(see Ruppert,
2002, for details about knot selection).

It follows from the above truncated polynomial that the censored regression model in (6)
can be rewritten as

ZiG =
(
f (Xi; β) = β0 + β1Xi + · · · + βpXi

p +
K∑

k=1

βp+k(Xi − κk)
p
+

)
+ εiG, 1 ≤ i ≤ n,

(8)
where the εiG’s error terms with mean zero and constant variance σ 2. In matrix and vector
notation, model (8) is defined by

ZG = Xβ + εG, (9)
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where X is the design matrix for the regression spline such that the ith row of matrix X is

Xi = [
1 Xi . . . Xp

i (Xi − κ1)
p
+ . . . (Xi − κK )

p
+
]
, 1 ≤ i ≤ n,

and ZG is a vector containing the values of the synthetic variable ZiG. Then, the regression
spline (or penalized spline) estimates of the coefficients vector β are obtained by minimizing
the penalized residual sum of squares (PRSS) criterion

PRSS(λ; β) =
n∑

i=1

(ZiG − f (Xi))
2 + λ

K∑
k=1

β2
p+k

= |ZG − Xβ‖2 + λβ′Dβ, (10)

where D = diag(0p+1, 1K ), that is, D is a diagonal matrix whose first (p + 1) elements are
0 and whose remaining elements are 1.

We note that λβ′Dβ in (10) is called a penalty term because it penalizes the curvature in
function f , thus yielding a smoother result. The amount of penalty is controlled by smoothing
parameterλ > 0. In general, large values ofλproduce smoother estimators, while small values
produce less smooth estimators. λ plays a key role in estimatingmodel (8). An additional task
is to select the optimal value of λ. This problem is discussed in Section 4.

In practice, however, since the censoring distribution G is unknown, criterion (10) cannot
be used directly. Therefore, we replaceGwith Kaplan andMeier (1958) estimator Ĝ in (7). By
introducing the Ĝ, the model (8) transforms to ZiĜ = f (Xi) + εiĜ. From the definition of ZiĜ
in (5) it can be seen that εiĜ (i = 1, . . . , n) form a sequence of identically distributed (but not
independent) random variables. Heuristically, E(εiĜ) ∼= 0 as n → ∞. So we can treat the syn-
thetic observation values (Xi,ZiĜ) (i = 1, . . . , n) if they come from a nonparametric regres-
sion model with errors εiĜ (i = 1, . . . , n). This heuristic argument will help us to determine
estimates for f(.) (see Qin and Jing (2000) for details).Thus with the estimates of G, penalized
criterion (10) can be modified as

PRSS(λ; β) =
n∑

i=1

(ZiĜ − f (Xi))
2 + λ

K∑
k=1

β2
p+k

= |ZĜ − Xβ|2 + λβ′Dβ, (11)

where ZiĜ = δiZi/1 − Ĝ(Zi) = δiZi/
ˆ̄G(Zi) is the estimate of the synthetic data (5), and ZĜ is

the matrix form of synthetic variable ZiĜ.
As indicated above, we want to find estimates of vector β that minimize criterion (11).

Theorem 1 gives these estimators and the regression spline fitted values for nonparametric
regression model (9).

Theorem 1. Let ZĜ = Xβ + εĜ where X is an n × h (where h = p+ K + 1) matrix, β is a
h × 1 vector of unknown regression coefficients and εĜ is an n × 1 vector of error terms with
constant variance. The weighted penalized least squares estimator for β is indicated by β̂ and is
defined as

β̂ = (X′X + λD)−1X′ZĜ (12)

The fitted values are

f̂λ = SλZĜ (13)

where Sλ=X(X′X+λD)−1X′ is a smoother matrix. The proof of Theorem 1 is given in Appendix
A1.
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2.2. Finite sample properties with λ fixed

It follows that (12) is also a ridge-type regression estimator that shrinks the penalized spline
towards the penalized least squares fit to a pth degree spline with a truncated polynomial.
When the estimator is calculated over a grid of values with fixed smoothing parameter λ, this
is very similar to linear ridge regression with a fixed design. Thus, as in ordinary ridge regres-
sion, we can approximate the variance matrix of β̂ using the following Sandwich formula

Cov(β̂) = σ 2n−1(X′X + λD)−1(X′X)(X′X + λD)−1. (14)

Similarly, the variance matrix of the fitted values in (13) is given by

Cov(f̂λ) = σ 2n−1(X(X′X + λD)
−1X′)(X(X′X + λD)

−1X′)′. (15)

Given a choice for λ, the only unknown in Eqs (14 and 15) is the variance σ 2, which can
be replaced by the nearly unbiased estimator discussed in (20).

Now, we present results on the strong consistency and asymptotic normality for penalized
least squares estimators of nonparametric regression models (see, Claeskens et al., 2007). The
ideas are explained by the large sample properties of the estimator β̂ in the next section.

2.3. Large sample properties with λn → 0

Denote λ by λn to imply that the value of λ depends on the sample size. When n → ∞, the
variance of β̂ goes to zero and λn tends to zero. However, if λn → 0 as n → ∞, then the bias
of the estimator goes to zero, and asymptotic normality and consistency can be established in
the following two theorems. The assumptions of these theorems are given in the Appendix.
The proofs are similar to those in Yu and Ruppert (2002) and are not presented here to save
space. These theorems are given follows.

Theorem 2. (Yu and Ruppert, 2002) under assumption A1 given in the Appendix, let {β̂n, λn}
be a sequence of penalized least squares estimators minimizing criterion (10). If the smoothing
parameter λn = o(1), then β̂n is a strongly consistent estimator of the true parameter β0.

Theorem 3. (Yu and Ruppert, 2002) Under assumptions A1 and A2 given in the Appendix,
let {β̂n,λn} be a sequence of penalized least squares estimators minimizing criterion (10). If the
smoothing parameter λn = o(n−1/2), then

√
n
(
β̂n,λn−β0

)
D−→ N

(
0, σ 2�−1(β0)

)
, (16)

where �(β0) = limn(X′X/n), i.e., �(β0) is the almost certain limit of n−1(X′X).

In the case of large samples, we can obtain the “Sandwich formula”, which is similar to
(14), for the asymptotic variance matrix of β̂. Furthermore, as λ → 0, Var(β̂) converges to
n−1σ 2(X′X)−1.

3. Estimating the variance, risk, and efficiencymeasures

We are now interested in a class of linear estimators for f , B(H) = [ fλ : λ ∈ H|λ > 0], with
H denoting any index set. The index parameter λ may be any scalar or vector. The main goal
is to select an appropriate estimator of f from the elements [ fλ : λ ∈ H]. To obtain such an
estimator, we need to select an optimum value of λ. This value is obtained by minimizing the
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selection methods given in Section 4. According to B(H), an n × n smoother matrix Sλ can
be obtained by each optimum parameter λ. Accordingly, for each selection criterion, Eq. (13)
can be rewritten as

f̂λ = ( fλ(X1), . . . , fλ(Xn))
′ = SλZĜ (17)

There are some widely used and accepted performance measures that are used to deter-
mine the optimum estimator. One of these measures, the so-called P2 risk, can be obtained as
average value of the residual sum of squares n−1RSS(λ)

RSS(λ) =
n∑

i=1

(
( f̂λ)i − ZiĜ

)2
= (f̂λ − ZĜ)′(f̂λ − ZĜ) = Z′

Ĝ(I − Sλ)
2ZĜ, (18)

where f̂λ is defined as in (17). The expected value of the squared residuals given in (18) is also
known as the mean square error (MSE) of prediction and is given by

MSE (λ) = E‖ZĜ − f̂λ‖2 = E
∥∥(I−Sλ)ZĜ

∥∥2 = f ′
λ(I − Sλ)

2fλ + σ 2 [n − 2 (Sλ) + (Sλ
′Sλ)

]
.

(19)
Details on the derivation of Eq. (19) can be found in Appendix A2.
In practice, if σ 2 is known,MSE(λ) can be used directly to assess the performance of the

regression function fλ. However, σ 2 is generally unknown. In this case, an estimator for σ 2

can be developed based on the residual sum of squares (18).
As a result, σ 2 can be estimated as

σ̂ 2
ε = RSS(λ)

n − p
= Z′

Ĝ(I − Sλ)
2ZĜ

tr(I − Sλ)
2 = Z′

Ĝ(I − Sλ)
2ZĜ

DFRES
, (20)

where

DFRES = tr(I − Sλ)
2 = n − 2tr(Sλ) + tr(Sλ

′Sλ) (21)

is called the residual degrees of freedom (DFRES) for the pre-chosen λwith any selection crite-
ria given in Section 4. Similar to the comment by Rupert et al. (2003), assuming that the bias
term fλ′(I − Sλ)

2fλ in (19) is negligible, it follows that σ̂ 2
ε = E(RSS(λ)/DFRES is an asymptot-

ically unbiased estimate of σ 2
ε .

Another performance measure is the R2 risk, which measures the expected loss of a vec-
tor f̂λ. The R2 risk is given in Definition 3.1. Our application of the results of the simulation
experiments is to approximate the risk in nonparametric regression models. Such approxi-
mations have the advantage of being simple to optimize the practical selection of smoothing
parameters. For convenience, we work with the scalar-valued mean dispersion error.

Definition 3.1. The R2 risk is closely related to the matrix-valued mean dispersion error
(MDE) of an estimator f̂λ of f . The scalar-valued version of the MDE matrix is specified as

SMDE(f̂λ, f) = E(f̂λ − f )′(f̂λ − f ) = tr(MDE(f̂λ, f)) (22)

Lemma 3.1. Consider different estimators f̂λ. The mean dispersion error (MDE) of these esti-
mators is the sum of the covariance matrix and the squared bias vector

SMDE(f̂λ) = E
n∑
i=1

( fi(X ) − f̂λi(X ))
2 = E‖f − f̂λ‖2 = ‖(I − Sλ ) f‖2 + σ 2

ε tr[Sλ
′Sλ]. (23)

See Appendix A3 for the proof of Lemma 3.1.
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As shown in Lemma 3.1, the SMDE matrix decomposes into a sum of the squared bias
and variance of the estimator; hence, we can compare the quality of two estimators based on
the ratio of their SMDE in (23). This ratio leads to the following definition concerning the
superiority of any two estimators.

Definition 3.2. The relative efficiency of an estimator f̂E1(λ) compared to another estimator
f̂E2(λ) is defined by

RE = R(f̂E2(λ), f)

R(f̂E1 (λ) , f)
= SMDE(f̂E2 (λ))

SMDE(f̂E1(λ))
, (24)

where R(.) denotes the scalar risk, which is equivalent to Eq. (23). f̂E2 (λ) is said to be more
efficient than f̂E1 (λ) if RE < 1.

Equation (24) is used to evaluate the efficiency of the obtained estimators. In this paper,
the optimum values of λ are determined by the four election criteria, while the number and
positions of the knots are based on three selection algorithms, which are presented Sections 4
and 5.

4. Selecting the smoothing parameter

Penalized spline is a linear estimator because it can be written in the form f̂λ = SλZĜ with the
smoother matrix Sλ in (13) being symmetric and positive definite, depending on λ but not on
ZĜ. Our task in this section is to select the optimum value of λ. The optimum λ is the value
minimizes the averageMSE. TheMSE average is denoted by T(λ) and is given by

E(T(λ)) = E
(
1
n
∥∥(I−Sλ)ZĜ

∥∥2) = 1
n
∥∥(I−Sλ)ZĜ

∥∥2 + σ 2

n
tr(Sλ

′Sλ). (25)

The minimizer of Eq. (25) can be taken as a good value of λ; however, as shown by this
equation, this is not practical since it depends on the unknown σ 2. Therefore, we only need
to find a good estimate of the minimizer of (25) based on our dataset. In practice, this esti-
mate can be achieved by using the smoothing parameter selection criteria. A reasonable value
of λ can be chosen to minimize the selection methods. Examples of the most widely used
automatic selection procedures are summarized as follows.

GCVCriterion: The generalized cross validation (GCV) score is specified as theminimizer
of (29), defined by (see Craven and Wahba 1979)

GCV (λ) = n−1
∥∥(I−Sλ)ZĜ

∥∥2/ [n−1tr(I − Sλ)
]2

,

where Sλ, as is defined in (13), is a smoother matrix based on λ.
AICc: Note that the classic Akaike information criterion tends to overfit when the sample

size is relatively small; therefore, Hurvich et al. (1998) suggested an improved version, called
AICc, which is defined by

AICc(λ) = 1 + log
[∥∥(Sλ − I)ZĜ

∥∥2/n]+ [{2tr(Sλ) + 1}/n − tr(Sλ) − 2] .

BIC: Schwarz (1978) improved the Bayesian information criterion (BIC) by using Bayes
estimators. Thus, the BIC is also called as Schwarz information criterion (SIC). The criterion
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is expressed as

BIC(λ) = 1/n
∥∥(I − Sλ)ZĜ

∥∥2 + (log(n)/n)tr(Sλ)

REML Criterion: The restricted maximum likelihood (REML) criterion treats λ as a vari-
ance parameter. The REML andGCV have a similar form and provide identical values. More-
over, the derivatives of both the REML andGCVwith respect to λ can be determined naturally
in a common form (see Reis and Ogden, 2009).

The REML score can be specified as

REML(λ) = |(I − Sλ)ZĜ |2/ n − tr(Sλ).

The selection criteria in this paper fall into two main groups. The first group attempts to
minimize the model prediction error by optimizing the model selection-based criteria (or
selectors) and includes AICc, GCV, and BIC. The second group treats smooth functions as
random effects so that the smoothing parameter is a variance parameter that is estimated
by a likelihood-based selector, such as REML (Wood, 2011). In smoothing parameter selec-
tion, although model-based selectors have better asymptotic results, likelihood-based meth-
ods converge faster to optimal values of the smoothing parameter (Hardle et al., 1988). For
more details, see Wood (2011). Additionally, the BIC is closely related to the AICc. Although
the prediction error can be decreased by adding parameters, excessive parameter can result
in overfitting. To overcome this issue, the BIC includes penalty term, as do the selectorsAICc,
GCV and REML. The BIC penalty is larger than that of the AICc. Note that Hurvich et al.
(1998) illustrated that AICc performs well for small sample sizes. For details of the compari-
son of the AICc and BIC, see Burnham and Anderson (2004).

These selection criteria balance the complexity of an estimate of f against how well the
model fits the data. When using an adequate number of knots, the value of the smoothing
parameter controls the influence of the penalty in (11).

5. Selecting the number of knots

A spline model with a basis function has knot points. The number of knots, K, is usually
unknown and must be estimated. The key idea is to choose enough knot points to estimate
the regression function with a penalized spline based on a truncated power basis. There are
many studies in the statistical literature on selecting knot points (for example, see Ruppert,
2002; Ruppert et al., 2003; Ke and Wang, 2001).

As stated above, one important step in fitting penalized splines is selecting the number and
locations of the knots.We use the three selection algorithms examined in Ruppert et al. (2003)
to select the number of knots.

5.1. Default selectionmethod (DSM)

The key idea is to choose enough knots to resolve the basic structure in the nonparametric
regression model with censored data (1). The default knot location is defined as

κk =
(
k + 1
K + 2

)
th sample quantile o f the unique Xi for k = 1, 2, . . . ,K, (26)
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and a simple default selection of K is

K = min
(
1
4

× number o f unique Xi, 35
)

. (27)

5.2. Myopic algorithm (MA)

A myopic algorithm is an iterative process based on a smoothing parameter selection crite-
rion. The algorithm explores a sequence of candidate values of knots and stops when there
is no improvement in the selection criterion. Suppose that we have a sequence of candidate
values of K{(K1, . . . ,K6) = (5, 10, 20, 40, 80, 120)} for sample size n ≤ 120. Additionally,
assume that λ = (λ1, . . . , λm) is a vector of values of the smoothing parameters. As in Rup-
pert et al. (2003), we use GCV as the selection criterion in the knot selection procedure. For
Kj, j = 1, . . . , 6 the algorithm works as follows:

(1) The penalized spline fit is computed by using λ1, which is chosen tominimizeGCV (λ)

for K1 = 5.
(2) The penalized spline fit is calculated based on λ2, which is chosen tominimizeGCV (λ)

for K2 = 10.
(3) If GCV(λ2) > 0.98GCV(λ1), then stop and use the number of knots corresponding to

min (GCV(λ1),GCV(λ2)). Otherwise, ifGCV(λ2)≤ 0.98GCV(λ1), repeat steps 1–3 for
j = 2, . . . , 6 until the stopping rule in step 3 is satisfied. For example, if the process is
completed at K6 = 120, then K6 is considered to produce the best fit.

5.3. Full-search algorithm (FSA)

This algorithm is similar to the MA expressed in the previous section, but the full-search
algorithm searches the entire sequence of possible knots and uses the value that minimizes
the selection criterion. For Kj, j = 1, . . . , 6, the algorithm proceed as follows:

1. The penalized spline fits are performed using the smoothing parameter λ j, which is
chosen by GCV for the knots Kj, j = 1, . . . , 6.

2. The value of Kj that minimizes the GCV(λ j) criterion for j = 1, . . . , 6 is selected.
We use the GCV criterion in the MA and FSA; however, any of the selection criteria

described in the Section 4 can be used in the knot selection algorithms. Ruppert (2002) and
Ruppert et al. (2003) provide more details about the knot selection methods.

6. Simulation experiment

In this section, we perform a simulation experiment to compare the knot selection algo-
rithms when considering equally spaced knots for selecting λ and the number of knots
(K). As indicated in Section 4, λ is selected by the GCV, AICc, BIC, and REML methods.
We also use each of these parameter selection methods combined with each of the knot
selection algorithms (DSM, MA, and FSA) in the presence of right censoring. Furthermore,
we consider SS, which has a knot at each data point. The purpose of the simulation is to
compare the relative efficiency and performance of the knot selection algorithms based on
four smoothing parameter selection methods and to illustrate how well a selection approach
works under different censoring conditions.
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True survival times are generated by the following nonparametric regression model in
generic form

Yi = f (Xi) + εi = 2 sin(Xi) + 1.2 log(X2
i + 1) + εi, i = 1, . . . , n, (28)

where εi ∼ N(0, σ 2 = 0.5) and Xi = 15[(i − 0.5)/n]. The censoring time variable C is sim-
ulated using different normal distribution functions. For each simulation, we generate 1000
random samples of size n = 50, 100, and 200 based on the following conditions

Condition 1: P(C) = |0.85 + 0.15ϕ|, if ϕ <= 1 else P(C) = 0.90
Condition 2: P(C) = |0.65 + 0.15ϕ|, if ϕ <= 1 else P(C) = 0.70
Condition 3: P(C) = |0.45 + 0.15ϕ|, if ϕ <= 1 else P(C) = 0.30

where ϕi = |Xi − 15|. The censoring levels (CLs) corresponding to the preceding three con-
ditions are approximately 10%, 30%, and 50%. Finally, based on themodel with censored data
in (28), we observe the simulated data (Zi, δi) for i = 1, . . . , n, where

Zi = min (Yi, Ci) and δi = I (Yi ≤ Ci) .

Because of the censoring, the ordinary methods are not applied to estimate f (X ); there-
fore, we consider transformed response (or synthetic) data points, as described section in (2).
Since these synthetic observation points depend on the unknown distribution of the censor-
ing variable C, they are estimated by using the Kaplan and Meier (1958) estimator in (7). The
estimate for the nonparametric regression model with censored data can then be obtained by
minimizing criterion (11). In this step, theorem 1 serves as the basis for computing the fitted
values, given by f̂λ = SλZĜ in (13).

6.1. Evaluation of the empirical findings

In this simulation study, many configurations are implemented to provide perspective of the
adequacy of the above methods and approximations. Because 36 different configurations are
analyzed, it is not possible to display the details of each configuration. Therefore, a selection
of the simulation results, performed under varying conditions, is given in following tables and
figures.

For each simulated dataset used in the experiments, we use theMSE values, whichmeasure
how close the predicted observations are to the real observations. Suppose we have a sample
size of n;MSE can then be estimated as

MSE = 1
n

n∑
i=1

f (Xi) − f̂λ(Xi)
2
. (29)

We choose regression models with small MSE, and boxplots of the replications of these
MSEs are illustrated in Figure 1.

As shown in Figure 1, as the sample size n gets large, the range of penalized spline esti-
mates decreases. The estimates from medium and large samples are more stable than those
from small samples. On the other hand, although the values of the MSE replications differ
for different algorithms, the general trend shows that as the censoring level increases, the
range of the MSEs increases. Hence, censoring levels are far more efficient on large sample
sizes.

Generally, censoring tends to increase the variance of the estimators. The precision
decreases as the censorship level increases. In addition, the precision is improved as the sam-
ple size increases. To examine this case, the MSEs expressed in Eq. (29) are calculated from
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Figure . Boxplots of the MSEs from  runs under different simulation scenarios. Upper panel: For each
sample size A, A, and A, the boxplots of the replications of the MSEs when penalized spline estimates
basedon theAICc criterion are constructedusing the knot points determinedbyDMS for the three censoring
levels of %, %, and %. In a similar fashion, G, G, andG represent the boxplots of theMSE replications
based on the GCV, R, R, and R represent REML and B, B, and B denote the BIC. From top to bottom, the
remaining panels are the same as the first panel but are for MA, FSA, and SS.

the penalized spline fits for each knot selection algorithm, criterion, sample, and censoring
level. The outcomes from the simulation study are illustrated in Table 1.

The values inTable 1 are themeans of theMSEs over 1000 simulation runs, with the average
number of knots in parentheses. Furthermore, sinceDSM choosesK= 12, 25 and 50 knots for
n= 50, 100 and 200, respectively, the number of knots fromDSM is not given. As indicated in
the introduction to Section 6, SS sets the number of knots equal to the sample size n; therefore,
this information is not included in Table 1.

According to the results in Table 1, for all censoring levels with small sample sizes, the MA
has better empirical performance than the other methods. However, the MA chooses 5 or
6 knot points in most of the simulation examples. MAwith 5 knots is no better than FSA with
the same number of knots, especially for medium and large sample sizes. The K provided
by MA remains approximately unchanged as the sample size increases because the MA
stops the node selection process prematurely. These findings are in accordance with those
of Ruppert et al. (2003), who compared similar knot selection algorithms for uncensored
data.
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Table . MSE values and the number of knots chosen by the knot selection algorithms based on the criteria
discussed in Section .

n=  n=  n= 

CLs % % % % % % % % %

DSM AIC , , , , , , , , ,
GCV , , , , , , , , ,
REML , , , , , , , , ,
BIC , , , , , , , , ,

MA AIC , , , , , , , , ,
() () () () () () () () ()

GCV , , , , , , , , ,
(,) (,) (,) (,) (,) (,) (,) (,) (,)

REML , , , , , , , , ,
(,) (,) (,) (,) (,) (,) (,) (,) (,)

BIC , , , , , , , , ,
(,) (,) (,) (,) (,) (,) (,) (,) (,)

FSA AIC , , , , , , , , ,
() () () () () () () () ()

GCV , , , , , , , , ,
(,) (,) (,) (,) (,) () () (,) (,)

REML , , , , , , , , ,
(,) (,) (,) (,) () (,) (,) (,) (,)

BIC , , , , , , , , ,
(,) (,) (,) (,) (,) (,) (,) (,) (,)

SS AIC , , , , , , , , ,
GCV , , , , , , , , ,
REML , , , , , , , , ,
BIC , , , , , , , , ,

By comparing the FSA to SS, we see that FSA has good performance, especially for sam-
ple sizes of 100 and 200. The FSA also provides a lower MSE than that of SS for almost all
censoring levels. Additionally, the FSA has the advantage that it usually requires a shorter
computation time than that of SS. In other words, it is extremely fast, especially for a cen-
soring level of 50%, because an optimum estimate of f (X ) in (13) is achieved with a small
number of nodes selected via FSA when λ is chosen based on the AICc.

Table 1 reveals that applying FSA to the observations with a censorship rate of 50% yields
superior estimates to those obtained for censoring levels of 10% and 30% for all simulation
examples. The FSA slightly outperforms the other node selection algorithms in terms ofMSE.
On the other hand, despite the differences in the number of knots, MA and DSM perform
similarly. However, at high censoring levels, the FSA is faster.

As indicated in the introduction to this section, we use the MSEs to assess the quality of
the regression functions. Additionally, we use pairedWilcoxon tests to determine whether the
difference between the median of the MSEs of any two knot selection methods is statistically
significant at a significance level of 5%. If the medianMSE value of a method is significantly
less than those of the remaining four methods, it is assigned a rank of 1. If the median MSE
value of a method is significantly larger than one but less than those of the other three, it is
assigned a rank of 2, and analogously for ranks 3-4. Methods with non-significantly differ-
ent median values share the same averaged rank. The key idea is to specify which criteria
(smoothing parameter selection methods) are most appropriate for the knot selection algo-
rithms. We focus on only a selection of the simulation configurations related to FSA and SS
due to a lack of space. Several examples of such configurations are shown in Figures 2 and 3.
The numbers below the boxplots in Figure 2 graphically display the results from the summary
in Table 2 for select simulation scenarios related to FSA and SS. Furthermore, the results of
all 36 simulation experiments are given in Tables 2 and 3.
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Figure . Top left panel shows the observations, true regression function, and four estimated curves from
AICc, GCV, REML, and BIC for the knot points determined by FSA with CL = % and n = . The top right
panel shows boxplots of the MSEs for these fitted curves. The numbers below the boxplots are the paired
Wilcoxon test rankings. The bottom panels are similar to the upper panels but for n= .

The left panels of Figure 2 show four penalized spline fits of the simulated data for different
values of λ and with knot points determined by the FSA. Each panel presents a single realiza-
tion of simulated data and hence different fitted curves. The left panels show boxplots of the
MSE replications of the obtained fitted values based on the different λ values chosen by the
four criteria. The numbers under the boxplots indicate the Wilcoxon test rankings based on
themedian of theMSEs. FromFigure 2, we see that all four penalized spline fits follow approx-
imately the same pattern and are quite satisfactory. The four criteria (AICc, GCV, REML, and
BIC) share the same performance orderings for medium and large sample sizes under a cen-
soring level of 50%; therefore, the criteria for selecting λ have approximately equivalent per-
formance in terms of MSEs when using knots of the FSA.

As shown in Figure 3, as the sample sizes get large, the penalized spline estimates approach
the real regression function stated in (28). However, the boxplots of the MSE values in the
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Table . Wilcoxon test rankings related to the criteria and algorithms.

n=  n=  n= 

CLs % % % % % % % % % Overall

DSM AICc , , , , , , , , , ,∗
GCV , , , , , , , , , ,
REML , , , , , , , , , ,
BIC , , , , , , , , , ,

MA AICc , , , , , , , , , ,∗
GCV , , , , , , , , , ,
REML , , , , , , , , , ,
BIC , , , , , , , , , ,

FSA AICc , , , , , , , , , ,∗
GCV , , , , , , , , , ,
REML , , , , , , , , , ,
BIC , , , , , , , , , ,

SS AICc , , , , , , , , , ,
GCV , , , , , , , , , ,
REML , , , , , , , , , ,
BIC , , , , , , , , , ,∗

(∗):Under each algorithm, indicates the optimum selection criteria having the best rankings.

top right panel of Figure 3 show that BIC provides the best fitted values, especially for small
sample sizes. The bottom right boxplot indicates thatAICc and BIC have approximately equal
performance due to the effect of the simulation replications.

An important step in this stage is to determine which criteria to use for the knot selection
algorithms. Table 2 is constructed based on the rankings of the median values of the MSEs
(see the right panels of Figs. 2 and 3) under each censoring level and sample size. According
to Table 2, when 10% of the data are censored, the criteria perform equally, especially for the
MA and FSA. As the sample size and censoring level increase, these criteria are also more
stable for the MA and FSA than for the other two algorithms. The criteria are not stationary
for DSM and SS when the simulated datasets are censored at rates of 30% and 50%.

In summary, according to the overall Wilcoxon test rankings in Table 2, the AICc provides
the desired smoothing parameter λ for the DSM, MA and FSA. For the remaining algorithm
(SS), the optimum value of λ is chosen by the BIC. Thus, the AICc and BIC are the optimum
selection criteria. In Table 2, these criteria are indicated with an asterisk for each algorithm.

From the information given above, by employing the AICc, we obtain the penalized spline
fits at the knot points determined by the DSM, MA and FSA. Additionally, to obtain fitted
values at all data points (that is, for SS), the smoothing parameter is obtained by the BIC. The
spline fits for some of the simulation scenarios are displayed in Figure 4. Furthermore, the fits
for n = 50 are similar to those for n = 100 and are not given here. The goal is to compare the

Table . Wilcoxon test scores obtained according to the knot selection methods.

n CLs DSM MA FSA SS

 % , , , ,
% , , , ,
% , , , ,

 % , , , ,
% , , , ,
% , , , ,

 % , , , ,
% , , , ,
% , , , ,

Average Scores , , , ,
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Figure . For medium and large sample sizes with CL= % and %, each panel shows the observations,
real regression function, and fitted curves based on the optimum criteria for the DSM, MA, FSA, and SS.

fitted values from the algorithms for various censoring levels and samples sizes. The results
appear to be quite reasonable for large sample sizes with high censoring levels; however, as
noted previously, the estimated curves are not good for small sample sizes.

For each sample size and censoring level, we compute the penalized spline fits based on the
optimum criteria for the DSM, MA, FSA, and SS. The DSM, MA and FSA are compared to
the estimates from SS using the optimum criteria (AICc and BIC). To this end, the MSEs of
these algorithms are calculated, and the Wilcoxon test rankings of the median values of the
MSEs are presented in Table 3.

According to the results in Table 3, the FSA is superior for all sample sizes and censoring
levels. The DSM shows similar behavior to the FSA. As the sample size increases, the results
become increasingly similar. In general, the MA method has the worst performance, and the
average scores show that the FSA is the best knot selection algorithm in this simulation study.

6.2. Efficiency comparisons

To make inferences regarding the change in efficiency of the estimators due to the different
algorithm and criterion combinations, we use the scalar-valued SMDEs in (23). As described
in Definition 3.2, the relative efficiencies (REs) are constructed based on the SMDE ratios for
datasets with different censoring levels. The key idea is to track the changes in the efficiencies
of the combined estimators for different sample sizes. The obtained RE ratios are illustrated
in Figures 5 and 6, and they are analyzed in terms of both the knot selection algorithms and
the smoothing parameter selection criteria.

Figure 5 shows the overall relative efficiencies of the algorithms (DSM, MA, FSA, and SS).
The DSM,MA, and FSA are used to select the optimumK knots in the penalized spline based
on a smoothing parameter that is selected based on theAICc,GCV, REML, orBIC. Both panels
of Figure 5 show that efficiencies of the DSM, MA and FSA are higher than those of the SS
for samples with CL = 10%, but the efficiency of SS increases more rapidly as the sample size
increases, especially for a censoring level of 50%.

Figure 6 shows the overall relative efficiency of each criterion within each knot selection
algorithm in terms of the SMDE. The left panel of Figure 6 shows that theAICc dominates the
other criteria for all sample sizes with CL= 10%. Additionally, the efficiency of the BIC shows
similar behavior to that of the AICc. The right panel of Figure 6 reveals that for CL = 50%,
the AICc remains superior; therefore, for censored data, the AICc has the best performance,
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Figure . Overall relative efficiencies of the algorithms for different sample sizes with the censoring levels
of % and %.

making it the ideal selection method for nonparametric regression using the penalized spline
method. The simulated relative efficiencies of GCV are not good, especially for small sample
sizes with CL = 10%. In a similar fashion, the relative efficiency of the BIC is not good for
small sample sizes with CL = 50%.

The graphical results indicate a very good relative efficiency for the FSA for all censored
datasets. Therefore, the FSA is an efficient knot selection algorithm, but it is not efficient on
samples smaller than n = 30.

7. Real data example

We now present a real data example to compare the knot selection methods numerically. The
data in panel (a) of Figure 7 are the survival time and albumin (i.e., the most common pro-
tein found in the blood) values of patients with colon cancer admitted to a hospital in Izmir,
Turkey. In this example, the logarithm of the survival time is considered as the response vari-
able (SurvTime), while the albumin value is used as an explanatory variable (Albumn). The
key idea is to explain the relationship between these two variables using the model

log(SurvTimei) = f (Albumni) + εi, i = 1, . . . , 97. (30)

Figure . Overall relative efficiencies of the criteria for different sample sizes with censoring levels of %
and %.
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Figure . Colon cancer data: (a) Scatterplot of the log (survival times) against albumin values: Censored
patients are denoted by “+”, and the failure times (or observed lifetimes) are indicated by “ • ”. (b) Scatterplot
of the synthetic data versus albumin values. The same symbols are used for the synthetic data. (c) Residuals
from the regression of survival times on albumin togetherwith the scatterplot smooth. (d) Real observations
and fitted curves.

The 97 patients with complete records are used for the analysis. Of these 97 patients 32 are
right censored for various reasons, including sudden death or withdrawal from the experi-
ment, and the remaining 65 patients are dead, i.e., uncensored. The censoring rate is 32.99%.

The comparative outcomes of model (30) with the censored colon cancer data are summa-
rized in the following Figures and Tables.

The scatterplot of SurvTime versus Albumn is shown in panel (a) of Figure 7. Panel (b) is
similar to panel (a), showing the scatterplot of SurvTimeĜ againstAlbumn. Censored observa-
tions are denoted by “+”, while uncensored data points are indicated by “ • ”. Additionally, the
residuals are plotted against Albumn in panel (c) of Figure 7 to see the shape of the functional
relationship between SurvTime and Albumn. The residuals are obtained from the results of
the censored least squares regression fits to the data (see Qin and Jing, 2001). When a curve
is added to the scatterplot smooth, it is clear that there is nonlinearity between the two vari-
ables, indicating that nonparametric regression will give more reasonable results. Finally, the
penalized spline fits for theDSM,MA, FSA, and SS, based on the optimum criteria from the in
simulation section, are depicted in panel (d). These fits show that the effect of albumin on the
survival time depends on the value of albumin. In other words, themarginal effect of albumin
is non-constant.

Figure 8 shows four curves fitted to the colon cancer data obtained by using (17) with
smoothing parameter λ selected by the AICc, GCV, REML, and BIC under each knot selec-
tion algorithm. Each fit depends on the set of knot points and the smoothing parameter λ.
Figure 8 shows that the fitted curves from the FSA, MA, and DSM are smoother than those
obtained by SS, which uses all knot points. Although the knot points cover the range of
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Figure . Penalized spline regression fits to the colon cancer data with different smoothing parameters for
each algorithm.

Albumin values reasonably well, they do not have a substantial effect on the fitted curves.
However, the smoothing parameter λ has a very strong effect, as shown in the bottom right
panel of Figure 8, where the fits from the colon cancer data are shown for the values of λ

chosen by the four criteria with the all knot points used.
Figure 8 also compares the knot selection algorithms with the smoothing parameter selec-

tion criteria on the censored colon cancer data. The estimatesmadewhen using all knot points
are not good. In this context, the number of knots and the SMDEs from the fits for each algo-
rithm and criterion are given in Table 4. As defined in Eq. (23), these SMDE values decompose
into a sum of the squared bias and variance of the estimator. These variance and bias values
are also presented in Table 5.

Table . The SMDE values and number of knots (K).

DSM K MA K FSA K SS K

AIC ,  ,  ,  , 
GCV ,  ,  ,  , 
REML ,  ,  ,  , 
BIC ,  ,  ,  , 
Means , , 1,193 ,

Table . The variance and biases of the algorithms.

DSM MA FSA SS

Variance Bias Variance Bias Variance Bias Variance Bias

AIC , , , , , , , ,
GCV , , , , , , , ,
REML , , , , , , , ,
BIC , , , , , , , ,



2606 D. AYDIN AND E. YILMAZ

For K = 97 knots, the SMDE of the SS is substantially higher than those of the other
algorithms, which is not surprising because the SS considers all values of K. Table 4 shows
that the SMDE values from FSA are equal for the AICc and BIC. Moreover, using the AICc
or BIC to select a smoothing parameter produces smoother fits than using GCV and REML.
Specifically, if the smoothing parameter is chosen via the AICc, one can obtain a fit with K =
5 knots selected by the FSA (see Table 4). This case indicates that the FSA is extremely fast.
Additionally, according to the means given in Table 4, the FSA provides a better approxima-
tion than the other algorithms. As shown in Table 5, this means that the fitted values from
the FSA using the BIC have more variance and less bias than those associated with GCV
and REML; however, the fitted values will be approximately equally accurate in terms of the
SMDE (see the means in Table 4).

8. Conclusions and recommendations

The simulation and real data results are satisfactory in general. As the sample size increases,
the right-censored nonparametric model produces a closer fit to the real observations. The
estimates from medium and large sample sizes are more stable than those from small sample
sizes. Furthermore, as the censoring level increases, the range of MSEs of the fitted values
becomes large; hence, the censoring levels are far more efficient on sample sizes.

The overall Wilcoxon test rankings show that the AICc gives the optimum smoothing
parameter λ for the penalized spline fits based on knot points selected by the DSM, MA,
and FSA, while the BIC provides the optimum λ for the SS. For penalized spline fits based
on a smoothing parameter chosen by the AICc, the FSA slightly outperforms the other
knot-selection algorithms in terms of SMDEs. Additionally, the fitted curves of the FSA, MA,
and DSM are smoother than those of the SS, which uses all the knot points. Moreover, the
smoothing parameter λ has a substantial effect in obtaining these smooth curves, but the
knot points do not have a substantial effect.

The fitted curves using GCV and REML do not yield good performance in the estimation
of the nonparametric regression model. Furthermore, the penalized spline fits based on these
criteria give similar results.

Finally, based on the simulation and real data results, the following suggestions should be
considered:

� Under response observations with right censoring, the AICc is recommended as the
selection criterion for penalized spline regression fits, especially for knot points deter-
mined by the FSA.

� For SS, which considers all the data points, the BIC criteria is most appropriate.
� Although DSM works well in most of the censored data experiments, it does not use
any information from the data except the sample size. Therefore, an algorithm that
considers the data to select the number of knots should be used instead of the DSM.

� Since the knot selection process in the MA is based on an early stopping strategy, using
the FSA, which selects the optimum number of knots and provides a much better fit,
instead of the DSM, would be beneficial.

A. Appendix: Supplemental technical materials

The following assumption is required for the proof of strong consistency.

Assumption A1. The parameter space
 is compact. For givenG, the mean lifetime of the ith
observation should be E(ZiG|Xi) = Xiβ = μi(β). It is also noted that thismean functionμ(.)
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is continuous on
, (1/n)
∑n

i=1 {μi(β) − μi(β̃)}2converges uniformly to some limit inβ, β̃ ∈

 and PRSS(λ; β) = lim(1/n)

∑n
i=1 {μi(β0) − μi(β)}2 exists and has a unique minimum at

β = β0.
Asymptotic normality can be established under the following additional assumption.

Assumption A2. The true parameter vector β0 is an interior point of 
, the mean func-
tion μ(.) is twice continuously differentiable in a neighborhood of β0, and �(β0) =
lim( 1

n )
∑n

i=1 ((∂μi(β)/∂β)|β0 )((∂μi(β)/∂β)|β0 )′ = limn(1/n)X′X exists and is nonsingular
and converges uniformly in β in an open neighborhood of β0.

A1. Proof of Theorem 1

Let’s consider the model ZĜ = Xβ + εĜ. The vector of ordinary least squares residuals can be written
as εĜ = (ZĜ − Xβ) and hence

εĜ
′εĜ = (

ZĜ − Xβ
)′ (ZĜ − Xβ

)
The ordinary least squares regression fits can be described as

ẐĜ = Xβ̂ where β̂ minimizes (ZĜ − Xβ)′(ZĜ − Xβ)

and β = (β0, β1, ..., βp, βp+1, ..., βp+K )′, with βp+k the coefficient of the kth knot. As known, unre-
stricted estimation of the βp+k leads to a wiggly fit. We assume that constraint on βp+k the coeffi-
cient is

∑
β2
p+k < C, where C > 0. Also, let Sλ be a positive definite and symmetric matrix, and D

be a (K + 2) × (K + 2) diagonal penalty matrix whose first (p + 1) elements are 0, and the remaining
elements are 1. Then, the criterion function (11) relating the model (9) can be written as

minimizes
(
ZĜ − Xβ

)′ (ZĜ − Xβ
)
subject to λβ′Dβ ≤ C.

Using a Lagrange multiplier argument this expression is also equivalent to the criterion (11). As
previously stated, this criterion is

PRSS(λ; β) = (
ZĜ − Xβ

) ′ (ZĜ − Xβ
)+ λβ′Dβ (A1.1)

Simplifying

PRSS(λ; β) = (
ZĜ − Xβ

)′ (ZĜ − Xβ
)+ λβ′Dβ

= Z′ZĜ − Z′Xβ−β′X′ZĜ + β′X′Xβ + λβ′Dβ

Since β′X′ZĜis 1 × 1, β′X′ZĜ = (β′X′ZĜ)′ = Z′
Ĝ
Xβ. By substitution,

PRSS(λ; β) = Z′
Ĝ
ZĜ − 2Z′

Ĝ
Xβ + β′ (X′X

)
β + λβ′Dβ

= Z′
ĜZĜ − 2

(
X′ZĜ

) ′β + β′ (X′X
)
β + λβ′Dβ

(A1.2)

In order to minimize (A1.1), we could differentiate (A1.2) with respect to β and set the derivative
equal to zero:

∂ PRSS(λ; β)

∂β
= − 2X′ZĜ + 2β

(
X′X

)+ 2λβD = 0 (A1.3)

Setting (A1.3) equal to zero and replacing β by β̂, we see that the penalized least squares normal
equations are obtained as (

X′X+λD
)
β̂ =X′ZĜ (A1.4)
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To solve for β̂, multiply each side of the equation (A1.4) by (X′X+λD)−1 to obtain the penalized
least squares estimator

β̂ = (
X′X+λD

)−1X′ZĜ

Thus, fitted values are given by

ẐĜ = X
(
X′X+λD

)−1X′ZĜ = SλZĜ = f̂λ

as claimed.

A2. Derivation of the equation (19)

We begin by considering the general definition of quadratic form, Theorem and Lemmas for
proof of the equation (19)

Definition A1.1: Let Sλ=[si j] be a positive semi-definite and symmetrical n × n matrix
depending on the λ; and ε =(ε1, ..., εn)

′ be n × 1 vector of random variables. Then

q =
n∑

i=1

n∑
j=1

si jεiε j = ε′Sλε (A1.5)

is a called a quadratic form in ε and Sλ is a called the matrix of a quadratic form.

Theorem A1.1: If E(ε′ε) = Cov(ε) = ∑ =(σi j), and E(ε) = 0, then

E
(
ε′Sλε

) =
n∑

i=1

n∑
j=1

si j σi j = tr
(
Sλ

∑)

where tr(A) denotes trace of the matrix (A)
Proof

E
[
(ε − E(ε))′Sλ (ε − E(ε))

] = E

[
n∑

i=1

n∑
j=1

si j
(
εi − E(ε j)

)′ (
εi − E(ε j)

)]

=
n∑
i=1

n∑
j=1

si jE
[(

εi − E(ε j)
)′ (

εi − E(ε j)
)] =

n∑
i=1

n∑
j=1

si jCov
(
εi, ε j

) = tr
(
Sλ

∑)
as claimed. �

Theorem A1.2: Let ε be an n × 1 random vector with E(ε) = μ and Cov(ε) = ∑ = (σi j).
Let Sλ be a n × n constant matrix. Then, the expected value of the equation (A1.5) is

E(ε′Sλε) = μ′Sλ μ + tr
(
Sλ

∑)
(A1.6)

Proof. It is well known that for i = j,

σi j = E
(
εiε j

)− μiμ j

and that for i = j,

σi j = σii = E
(
ε2i
)− μ2

i = σ 2
i

According to (A1.6), the expected value of the quadratic form ε′Sλε in expanded form is

E
(
q
) = E

⎛
⎝ n∑

i=1

n∑
j=1

si jεiε j

⎞
⎠ =

n∑
i=1

n∑
j=1

E
(
si jεiε j

)
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Since σi j = E(εiε j) − μiμ j, we obtain E(εiε j) = σi j + μiμ j

Substituting,

E
(
q
) =

n∑
i=1

n∑
j=1

si jE
(
εiε j

) =
n∑

i=1

n∑
j=1

si j
(
σi j + μiμ j

) =
n∑

i=1

n∑
j=1

si j σi j +
n∑

i=1

n∑
j=1

si j μiμ j

(A1.7)

Note also that the terms σi j are the elements of the variance-covariance matrix
∑

. This
matrix is a symmetric matrix whose ith element is the variance of εi and whose (ij)th off-
diagonal element is the covariance between εi and ε j.

It follows from (A1.6), and theorem 1 that the equation (A1.7) is equivalent to

E
(
ε′Sλε

) = tr
(
Sλ

∑)
+ μ′Sλ μ

This completes the proof of theorem A1.2.
Again, let’s consider equation (13)

RSS (λ) =
(
f̂λ − ZĜ

)′ (
f̂λ − ZĜ

)
=ZĜ (I − Sλ)

2 ZĜ

Thus, from Theorems A1-A2 connected with quadratic form, the expected value of the
RSS(h) is stated as

E [RSS(λ)] = MSE(λ) = E
∥∥∥f̂λ − ZĜ

∥∥∥2 = E
∥∥(I − Sλ)ZĜ

∥∥2
= E

∥∥ZĜ(I − Sλ)(I − Sλ)ZĜ

∥∥ = f ′
λ(I − Sλ)

2fλ + σ 2
(
tr(I − Sλ)

2)
= f ′

λ(I − Sλ)
2 fλ + nσ − 2σ 2tr(Sλ) + σ 2tr(S′

λSλ)

= f ′
λ(I − Sλ)

2 fλ + σ 2
[
n − 2tr(Sλ) + tr(S′

λSλ)
]

as defined in the equation (19). �

A3. Proof of the Lemma 3.1

SMDE = E‖f − f̂λ‖, where f̂λ = SλZĜ Then the scalar valued version of theMDEmatrix can
be specified as

SMDE
(
f̂λ
)

=
n∑

i=1

[(
fi(X ) − E

(
f̂λi(X )

))]2
+Cov

[
f̂λi(X )

]
=

n∑
i=1

[
fi(X ) − E

(
SλZĜ

)
i

]2 +Cov
[(
SλZĜ

)
i

]
=

n∑
i=1

[
fi(X ) − E

(
SλZĜ

)
i

]2 +Cov
[(
SλZĜ

)]
ii

= ‖(I − Sλ ) f ‖ 2 + tr
[
Cov

(
SλZĜ

)]
= ‖(I − Sλ ) f ‖ 2 + tr

[
SλCov

(
ZĜ

)
S′

λ

]
Assume thatCov(ZĜ) = σ 2

ε In yields

SMDE
(
f̂λ
)

= ‖(I − Sλ ) f ‖ 2 + σ 2
ε tr

[
Sλ

′Sλ

]

A4. Derivation of the E(εiG) = 0

In view of Lemma, wemaywrite E(ZiG|Xi) = f (Xi). Note thatG is the cumulative distribution function
of the censoring variableCi, as pointed out before.WhenG is known, the expectation of the error terms
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ε1G, ..., εnG are obtained by

E(εiG) = E [ZiG − E (ZiG|Xi)]
= E(ZiG) − E (E(ZiG|Xi)) = 0

as claimed. Thus, the data set (ZiG, Xi) can be considered as observations drawn from a nonparametric
model with errors εiG. This argument helps us calculate the estimate of f (X ).

When G is unknown, a natural solution is to replace G by its Kaplan-Meier (1958) estimator Ĝ. It is
obvious that errors occur caused by this estimation procedure. In this case, we cannot expect that the
expected value of the errors will also obtain zero. Heuristically, however, they should converge to zero
for a sample size tending to infinity.
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