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Abstract Parkinson’s disease (PD) is a degenerative,

central nervous system disorder. The diagnosis of PD is

difficult, as there is no standard diagnostic test and a par-

ticular system that gives accurate results. Therefore, auto-

mated diagnostic systems are required to assist the

neurologist. In this study, we have developed a new hybrid

diagnostic system for addressing the PD diagnosis prob-

lem. The main novelty of this paper lies in the proposed

approach that involves a combination of the k-means

clustering-based feature weighting (KMCFW) method and

a complex-valued artificial neural network (CVANN).

A Parkinson dataset comprising the features obtained from

speech and sound samples were used for the diagnosis of

PD. PD attributes are weighted through the use of the

KMCFW method. New features obtained are converted

into a complex number format. These feature values are

presented as an input to the CVANN. The efficiency and

effectiveness of the proposed system have been rigorously

evaluated against the PD dataset in terms of five different

evaluation methods. Experimental results have demon-

strated that the proposed hybrid system, entitled KMCFW–

CVANN, significantly outperforms the other methods

detailed in the literature and achieves the highest classifi-

cation results reported so far, with a classification accuracy

of 99.52 %. Therefore, the proposed system appears to be

promising in terms of a more accurate diagnosis of PD.

Also, the application confirms the conclusion that the

reliability of the classification ability of a complex-valued

algorithm with regard to a real-valued dataset is high.

Keywords Parkinson’s disease � Automated diagnostic

systems � K-means clustering-based feature weighting �
Complex-valued artificial neural network

1 Introduction

PD is a neurodegenerative disease of the central nervous

system that causes partial or complete loss of the motor

reflexes, speech, behavioral and mental processes, and other

vital functions [1, 2]. In this disease, loss of the neurons that

produce dopamine molecules in the brain is observed. It was

described and named in 1817 by Dr. James Parkinson [3]. In

a comprehensive study that has been carried out recently,

the incidence of the disease was given as 20/100,000 [4]. It

is known that there are more than one million patients with

PD in North America alone [5]. In addition, it is estimated

that currently 20 % of patients are not diagnosed correctly

[6]. PD affects a significant part of the population and

impacts on approximately 1 % of those over 50 years of age

[7]. This ratio is expected to increase as people live longer,

thus aging is an important risk factor in PD [8].

Some of the PD symptoms can be reduced with phar-

macological and/or surgical intervention, and the life span

of the patients can consequently be extended. Currently, no

specific method has been developed for PD diagnosis.

Specialists use many different measurement techniques

such as the Unified Parkinson’s Disease Rating Scale

(UPDRS), the Hoehn–Yahr Scale, the Schwab and England

Scale of Activities of Daily Living, the Parkinson’s Disease

Questionnaire 39, and the Parkinson’s Disease Quality of

Life Questionnaire for measuring the severity of PD. The
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UPDRS is the most commonly used technique [9]. These

scales are based on the history of the disease and usually

help to detect the existence and severity of symptoms.

However, these processes are known to be both time- and

effort-consuming [10, 11].

In recent years, computer-based solutions research has

considerably increased the support provided to medical

decision making. When these studies are reviewed, it

appears that the relationship between speech disorders and

PD is proved [12–14]. Also, many studies have indicated

the reduction in the use of speech as the disease progresses

[15, 16]. Therefore, speech samples of the patient are ideal

in terms of a decision support system that can be used to

perform a diagnosis. This is because it is a noninvasive

technique, and the speech data can be collected easily.

Speech samples have been used in several investigations

with regard to the diagnosis of PD [17–22].

Recent studies have proposed some machine learning

methods using audio recordings associated with PD. Little

et al. [23] aimed to analyze the stage of the disease by

measuring the dysphonia that occurs due to PD. In their

study, they made sound recordings of the constant ‘‘a’’

vowel of 31 subjects, including 23 patients with PD. Then,

the dysphonia criteria were removed from these sounds and

attempts were made to determine the level of the disease by

remote monitoring. Shahbaba et al. [24] presented a non-

linear model based on a Dirichlet mixture for diagnostic

purposes. Das [25] carried out a comparative analysis using

four different methods. Guo et al. [26] proposed a method

based on a genetic algorithm (GA) and expectation maxi-

mization (EM). Luukka [27] proposed a new method using

fuzzy entropy measures and similarity classifiers. Li et al.

[28] used a fuzzy-based nonlinear transformation approach

with a support vector machine (SVM) with regard to a PD

dataset. Ozcift et al. [29] submitted a new classification

scheme based on SVM selected attributes to train rotation

forest (RF) ensemble classifiers in order to improve the

diagnosis of PD. Spadoto et al. [30] have proposed an

evolutionary-based method involving an optimum-path

forest (OPF) classifier for the diagnosis of PD. Polat [31]

applied a fuzzy c-means clustering feature weighting

(FCMFW) method with a k-nearest neighbor (KNN) clas-

sifier. Zuo et al. [32] used a new diagnostic model based on

particle swarm optimization (PSO) for the diagnosis of PD.

Sakar and Kursun [33] applied a common knowledge-

based feature selection with permutation tests to determine

the validity and statistical significance of the relationship

between features of the illness with UPDRS scores and

created a classification model by giving selected features to

the SVM classifier. Chen et al. [34] proposed a detection

system using a fuzzy k-nearest neighbor approach with

principal component analysis (PCA). Ma et al. [35]

obtained high accuracy rates with a kernel-based extreme

learning machine followed by a subtractive clustering

features weighting. Comparative information about previ-

ously performed studies of the diagnosis of PD is given

before conclusion section.

In this study, a PD dataset comprising the features

obtained from speech samples is used for the diagnosis of

PD. As a method, a feature weighting and complex-valued

classifier-based new hybrid model is proposed. Feature

weighting is used to increase the classification perfor-

mance. In this study, the KMCFW method is preferred as

the weighting method. The aims of KMCFW are (i) to

transform the nonlinearly separable dataset into a linearly

separable dataset and (ii) to gather similar data points. New

features were obtained after the weighting process was

converted into a complex number format. In the final stage,

these feature values were presented as complex-valued

neural network (CVANN) input.

The outline of the study is as follows: General infor-

mation about the dataset and the methods used in this study

are presented in Sect. 2. In Sect. 3, the experimental results

are presented. Finally, the outcome of the paper is given in

Sect. 4.

2 Materials and methods

2.1 Data

The PD dataset used in this study, comprising speech

samples, was created by Max Little with the cooperation of

the National Voice and Speech Centre of the University of

Colorado and the University of Oxford. It was obtained

from the UCI (Machine Learning Repository) [36]. The

dataset consists of 195 biomedical sound measurements

taken from 31 people consisting of 8 healthy subjects and

23 with PD.

The features of the PD dataset used in this study are as

follows: mean, maximum and minimum sound funda-

mental frequency, irregularity measures in terms of fun-

damental frequency, amplitude irregularity measurements,

measurements of harmonics and the noise ratio, nonlinear

dynamic complexity measurements, nonlinear fundamental

frequency change measurements, and fractional exponent

signal. Also, the PD dataset includes a status column

defined as 0 for healthy and 1 for PD patients. Table 1

presents the statistical values of the features of the PD

dataset with their definitions [37, 38].

2.2 K-means clustering-based feature weighting

(KMCFW): Data preprocessing

The clustering method is a process of dividing the data into

groups according to the similarity or uniqueness criteria
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between data points. Clustering algorithms are not only

used for classification but are also used for data compres-

sion, feature weighting, and data reduction. The most

commonly preferred clustering methods in terms of fre-

quency of use are k-means clustering [39], fuzzy c-means

clustering [40], mountain clustering [41], and subtractive

clustering [42]. In this study, a data weighting process has

been carried out using the k-means clustering (KMC)

algorithm which is the most widely preferred in the

literature.

In KMCFW, initially, the clusters of each feature are

found using KMC. The distance between its cluster and

the mean value of that feature is calculated. Features

are weighted in accordance with the calculated distance

[43].

The aim of the feature weighting method is to map the

features according to their distributions in a dataset and

also to transform them from nonlinearly separable data-

sets to linearly separable ones [43]. The feature weight-

ing method works upon the principle that it decreases the

variance in features forming the dataset. By means of

this, data displaying the same features are gathered

together, and the differentiation ability of the classifier is

increased.

The k-means algorithm determines the cluster centers,

based on minimizing the squared error-based cost function.

The purpose of this algorithm is to locate the cluster centers

as far away as possible from each other and to associate

each data point with the nearest cluster center [44].

Euclidean distance is often used as a measure of

Table 1 Statistical values and definitions of the features in PD dataset

Feature label Definition Minimum

value

Maximum

value

Average

value

SD

(Vocal fundamental frequencies)

MDVP: Fo (Hz) Average vocal fundamental frequency 88.33 260.105 154.22 41.39

MDVP: Fhi (Hz) High vocal fundamental frequency 102.14 592.03 197.10 91.491

MDVP: Flo (Hz) Low vocal fundamental frequency 65.476 239.17 116.32 43.521

(Variations in fundamental frequency)

MDVP: jitter (%) Jitter percent 0.00168 0.03316 0.00622 0.0048

MDVP: jitter (Abs) Absolute jitter 7 9 10-6 0.00026 4.39 9 10-5 3.48 9 10-5

MDVP: RAP Relative average perturbation 0.00068 0.02144 0.0033 0.00296

MDVP: PPQ Period perturbation quotient 0.00092 0.01958 0.0034 0.00275

Jitter: DDP Difference of differences of periods 0.00204 0.06433 0.0099 0.00890

(Variations in amplitude)

MDVP: shimmer Shimmer percent 0.00954 0.11908 0.0297 0.01885

MDVP: shimmer (dB) Shimmer in dB 0.085 1.302 0.2822 0.19487

Shimmer: APQ 3 Amplitude perturbation quotient 0.0045 0.0564 0.0156 0.01015

Shimmer: APQ 5 Quotient of amplitude perturbation in 3-point. 0.0057 0.0794 0.0178 0.01202

MDVP: APQ Quotient of amplitude perturbation in 5-point. 0.00719 0.1377 0.0240 0.01694

Shimmer: DDA Mean absolute difference between

consecutive amplitude differences

of consecutive periods.

0.01364 0.1694 0.0469 0.03045

(Ratio of noise to harmonics in the voice)

NHR Noise-to-harmonics ratio 0.00065 0.3148 0.0248 0.04041

HNR Harmonics-to-noise ratio 8.441 33.047 21.885 4.4257

(Nonlinear dynamical complexity measures)

RPDE Recurrence period density entropy 0.2565 0.6851 0.49853 0.10394

D2 Correlation dimension 0.57428 0.825 0.7180 0.05533

(Fractional exponent signal)

DFA Detrended fluctuation analysis -7.9649 -2.434 -5.684 1.0902

(Nonlinear measures of fundamental frequency variation)

Spread 1 Quantifications the fundamental

frequency in variation

0.00627 0.4504 0.2265 0.0834

Spread 2 1.423 3.6711 2.3818 0.3827

PPE Pitch period entropy 0.04453 0.5273 0.2065 0.0901
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uniqueness in a KMC algorithm. The Euclidean distance

(J) is defined as in Eq. 1:

J ¼
XK

i¼1

X

k

kxk � cik2

 !
ð1Þ

where k indicates the number of clusters, ci indicates the

center of the clusters, and xk indicates the kth pattern in the

ith cluster. This pattern is a member of the closest cluster

center, and accordingly, the elements of binary member-

ship matrix (u) are defined as in Eq. 2:

uij ¼ 1; kxj � cik2 �kxj � ctk2; 8t 6¼ i

0; others

� �
ð2Þ

where uij indicates whether or not the jth pattern belongs to

the ith cluster. Each cluster center minimizing the cost

function ci is defined as in Eq. 3:

ci ¼
PN

j¼1 uijxjPN
j¼1 uij

ð3Þ

where N indicates the number of patterns.

The working of the KMC algorithm can be summarized

as follows:

1. k units are selected randomly as initial cluster centers.

2. Units without cluster centers are assigned in accor-

dance with the defined distance measure to the clusters

that the initial cluster centers belong to.

3. New cluster centers are created by averaging the

variables in k initial sets that were created.

4. Units are assigned to the closest clusters which are the

newly created cluster centers. Distances are calculated.

5. The distances to the previous cluster centers are

compared with the distances to the newly created

cluster centers.

6. If the distances reduce reasonably, return to step 4.

7. If a fundamental change is not in question, the iteration

is finalized and the algorithm is ended.

Briefly, the KMC feature weighting works as follows

[43]: At first, the cluster centers are calculated using the

KMC method. After calculating the centers of features, the

ratios of means of these features to their center are calcu-

lated, and these ratios are multiplied by the data point of

each feature. Figure 1 shows the flowchart of KMCFW.

Figure 2 shows the pseudo-code of the feature weighting.

2.3 Complex-valued artificial neural network

(CVANN)

In a complex-valued neural network algorithm, input sig-

nals, weights, threshold values, and output signals are

all complex numbers (Fig. 3). Recently, the use of

complex-valued classifiers has increased for the solution of

different classification problems [45–49].

There are many studies in the literature emphasizing the

advantages of complex-valued ANNs compared to real-

valued ANNs [45–47, 50]. These advantages are high-level

functionality, better plasticity, and greater flexibility.

Additionally, they learn faster and arrive at better gener-

alizations [51]. Neurons in a complex-valued neural net-

work have the ability to learn without generating higher

degree inputs and progress to a higher-dimensional space.

In addition, the study by Nitta et al. [50] can be examined

to see the advantages of CVANN more clearly. This study

shows that the XOR problem, which cannot be solved by

using two-layered real-valued neural networks, can be

easily solved using two-layered CVANN.

2.3.1 The mathematical model of the CVANN algorithm

The mathematical model of complex-valued neural net-

works is as presented below [52, 53]. The active value of

the n neuron Yn can be defined as follows:

Yn ¼
X

m

WnmIm þ hn ð4Þ

In Eq. 4, Wnm is a complex-valued connection weight

between the n neuron and the m neuron. Im is a complex-

valued input signal of the m neuron, and hn is a complex-

valued threshold value of the n neuron. To obtain the

complex-valued output signal Yn, the active value is con-

verted into two components in the form of real and imag-

inary parts as shown below:

Yn ¼ xþ iy ¼ z ð5Þ

Here, i stands for the value of
ffiffiffiffiffiffiffi
�1

p
. Considering the var-

ious output functions of each neuron, the output function

can be defined using the following equation:

fc zð Þ ¼ fR xð Þ þ i:fR yð Þ ð6Þ

fR(x) and fR(y) are expressed as the activation function of

the neural network. Suppose that the sigmoid function is

selected as the activation function. In this case, fR uð Þ ¼
1= 1 þ exp �uð Þð Þ; u 2 R (R specifies the set of real

Fig. 1 Flowchart of KMCFW
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numbers), the real and imaginary parts of an output of a

neuron mean the sigmoid functions of the real part x and

the imaginary part y of the net input z to the neuron,

respectively.

Figure 3 presents the three-layered (input, hidden, and

output) CVANN structure used in the study. Wml is the

weight between the input layer neuron l and the hidden layer

neuron m; Vnm is the weight between the hidden layer

neuron m and the output layer neuron n; hm indicates the

threshold value for the hidden layer neuron m; and cn
indicates the threshold value for the output layer neuron

n. Il, Hm, and On indicate the input layer neuron l, the hidden

layer neuron m, and the output layer neuron n, respectively.

Similarly, Um and Sn indicate the active values of the hidden

layer neuron m and the output layer neuron n, respectively.

Um ¼
X

l

WlmIl þ hm ð7Þ

Hm ¼ fc Umð Þ ð8Þ

Sn ¼
X

m

VmnHm þ kn ð9Þ

On ¼ fc Snð Þ ð10Þ

In this study, the square error function was preferred. It

is expressed as shown in Eq. 11 for p pattern:

Ep ¼ 1=2ð Þ
XN

n¼1

Tn � Onj j2¼ 1=2ð Þ
XN

n¼1

dnj j2 ð11Þ

where N is the number of neurons in the output layer.

(dn = Tn - On) is the error between On, obtained by the

n output layer neuron, and Tn, the target output. The square

error can also be rewritten as:

Ep ¼ 1=2ð Þ
XN

n¼1

Re Tnð Þ �Re Onð Þj j2þ Im Tnð Þ � Im Onð Þj j2
n o

ð12Þ

In order to minimize the square error Ep, the learning rule

for the complex-valued back-propagation model is descri-

bed below [54]. Configuration of weights and threshold

values is done according to the following equations (where

g[ 0, g is a small learning constant):

DVnm ¼ �g:
oEp

oRe Vnm½ � � i:g
oEp

oIm Vnm½ � ð13Þ

Dkn ¼ �g:
oEp

oRe kn½ � � i:g
oEp

oIm kn½ � ð14Þ

DWml ¼ �g:
oEp

oRe Wml½ � � i:g
oEp

oIm Wml½ � ð15Þ

Dhm ¼ �g:
oEp

oRe hm½ � � i:g
oEp

oIm hm½ � ð16Þ

Expressions given from Eqs. 13 to 16 can be rewritten

as follows:

DVnm ¼ HmDkn ð17Þ
Dkn ¼ g Re dn½ � 1 � Re On½ �ð ÞRe On½ � þ i:Im dn½ � 1 � Im On½ �ð ÞIm On½ �ð Þ

ð18Þ

DWml ¼ IlDhm ð19Þ

Fig. 2 Pseudo-code of the

feature weighting

Fig. 3 A three-layer complex-valued neural network [47]. It com-

prises input, output, and hidden layers. Each circle represents a single

neuron. IN ;Wlm; hm;On; z and fc(z) are all complex numbers
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Dhm ¼ g

1 � Re Hm½ �ð ÞRe Hm½ �

x
P
n

Re dn½ � 1 � Re On½ �ð Þ
Re On½ �Re Vnm½ �

þIm dn½ � 1 � Im On½ �ð Þ
Im On½ �Im Vnm½ �Þ

0
BBB@

1
CCCA

2
6666664

3
7777775

� ig

1 � Im Hm½ �ð ÞIm Hm½ �

x
P
n

Re dn½ � 1 � Re On½ �ð Þ
Re On½ �Im Vnm½ �

�Im dn½ � 1 � Im On½ �ð Þ
Im On½ �Re Vnm½ �

0
BBB@

1
CCCA

2
6666664

3
7777775

ð20Þ

2.3.2 Summary of the CVANN algorithm

• Initialization: Assign all weight and threshold values as

numbers.

• Submission of inputs and outputs (the target): Providing

complex-valued input vectors I1, I2, I3, …, IN and

corresponding complex-valued output (target) vectors

T1, T2, T3, …, TN to the network. N is the number of

patterns to be used in training.

• Calculation of actual output: Calculate the actual

output (Yn). Actual output is calculated using Eq. 10.

• Determining the error value: Calculating the error value

depends on the obtained output and the target output

value according to Eq. 11.

• Changing the weight and threshold values: Update the

weight and threshold values using the formulas in

Eqs. 17–20. Continue this process until the error is

minimized.

2.4 Application and experimental results

In this study, a new hybrid model is proposed for PD

diagnosis. As shown in Fig. 4, the proposed method con-

sists of two steps: In the first step, features in the PD

dataset were weighted using the KMCFW method. The aim

of this method is to map the features according to their

distributions in a dataset and to transform from linearly

non-separable space to linearly separable space. Using this

method, similar data in the same feature are gathered

together. This will substantially help to improve the dif-

ferentiation ability of the classifiers [31, 43]. In the next

step, an input set was created by obtaining a complex value

from two real values for CVANN input. For example, the

first feature value is X1 and the second one is X2. These two

feature values are converted into the complex number

format as X1 ? iX2.

In this way, 11 complex-valued features were obtained

from 22 feature values. The feature values obtained in

the last step are classified using the CVANN algorithm.

The block diagram of the proposed system is shown in

Fig. 4.

Figure 5 shows a box graph representation of the orig-

inal and weighted PD dataset with all 22 features. Figures 6

and 7 show the 3D distribution of two classes of the

original and weighted 195 samples formed by the best three

principal components obtained using the PCA algorithm.

From Figs. 5, 6, and 7, it can be seen that the differentia-

tion ability of the original PD dataset has been improved

substantially using the KMCFW approach. After the data

preprocessing step, the classification algorithm has been

used and has differentiated the weighted PD dataset.

In the classification stage, the CVANN algorithm was

preferred. The neural network architecture gives the high-

est accuracy rate, and its parameters were found empiri-

cally. Accordingly, the optimal network structure (input–

hidden–output) has been identified as 11-10-1. The learn-

ing coefficient was determined as 0.9, and the maximum

number of iterations was determined as 1000. Complex

sigmoid was selected as the activation function.

The prediction performance of the KMCFW–CVANN

method was tested using five different performance eval-

uation criteria, the formulations of which are given below.

These criteria are accuracy, sensitivity, specificity, mea-

sure, and kappa statistic value, respectively.

Fig. 4 Block diagram of the proposed system for the diagnosis of PD
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Accuracy ¼ TP þ TN

TP þ FP þ FN þ TN
� 100% ð21Þ

Sensitivity ¼ TP

TP þ FN
� 100% ð22Þ

Specificity ¼ TN

FP þ TN
� 100% ð23Þ

Precision ¼ TP

TP þ FP
ð24Þ

Recall ¼ TP

TP þ FN
ð25Þ

f-measure ¼ 2 � Precision � Recall

Precision þ Recall
ð26Þ

where the f-measure is composed of precision and recall

values. TP is the number of true positives, which represents

the fact that some cases within the PD class are correctly

classified as having PD. FN is the number of false nega-

tives, which represents that some cases within the PD class

are classified as being healthy. TN is the number of true

negatives, which represents that some cases within the

healthy class are correctly classified as healthy, and FP is

the number of false positives, which represents that some

cases within the healthy class are classified as PD.

Kappa statistics is an alternative way for evaluating the

accuracy of classifiers. Initially, it was introduced as a

measure for measuring the degree of consistency between

two observers [55]. Since then, it has been used in a variety

of disciplines. In the field of machine learning, this mea-

sure is used to compare the accuracy of a classifier with the

accuracy of a random classifier which estimates by chance.

This measure is defined as:

KS ¼ P0 � Pc

1 � Pc

ð27Þ

P0 is the accuracy of the classifier, while Pc is the accuracy

obtained by random guessing with regard to the same

dataset. The Kappa statistic values can be between -1 and

1. -1 indicates complete inconsistency (completely wrong

classification), while 1 indicates perfect consistency

(completely correct classification). The results obtained

according to the said performance evaluation criteria are

presented in Table 2. In addition, the results obtained by

the application of the ANN method to the same feature

values are added to the table. To make an equal comparison

with the results obtained by different researchers, both

k-fold cross-validation and 50–50 % holdout methods are

preferred as data distribution methods. The experiment was

repeated 10 times to determine the reliability and stability

of the results, and the average values of the obtained values

were selected. When we analyze Table 2, it can be seen

that the CVANN method gives much better results com-

pared to the real-valued ANN.

The comparative analysis of the diagnosis of PD per-

formed in this study in terms of previously performed

Fig. 5 Original and weighted PD dataset

Fig. 6 3D distribution of two classes in the original feature space

Fig. 7 3D distribution of two classes in the weighted feature space
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studies is given in Table 3. As shown, our proposed

method obtains better classification results than all the

methods proposed in previous studies. The accuracy rates

obtained by other researchers vary between 85 and 97 %.

The proposed method gives better result with an accuracy

of 99.52 %. In an important issue such as medical diag-

nostics and diagnostic systems, even a 0.1 % increase can

be very important. Consequently, the proposed method is

expected to make an important contribution to this field.

There is no significant difference between the proposed

method and the methods presented in Table 3 in terms of

simplicity and computational load, the proposed method

having two steps combining feature obtaining and classi-

fication. Using CVANN in the classification stage does not

lead to an additional computational load. When analyzing

the computation time, it can be seen from Table 3 that a

complex-valued classifier allows faster classification com-

pared to a real-valued classifier. As a result, the proposed

method is fast and with a light computational load.

3 Conclusion

The paper presents an automated diagnostic system sup-

porting the neurologist in the diagnosis of PD. The main

novelty of this paper lies in the proposed system, which is

entitled KMCFW–CVANN, that integrates an effective

clustering features weighting method and a fast classifier. It

allows the diagnosis of PD in an efficient and fast manner.

In this study, a Parkinson’s dataset comprising the fea-

tures obtained from speech and sound samples was used. In

the proposed method, KMCFW was used as a data

Table 2 Results obtained

according to the performance

evaluation criteria

Method Performance metrics Tenfold cross-validation 50–50 % holdout method

Mean SD Max Min Mean SD Max Min

ANN ACC 95.85 4.26 98.66 88.05 94.98 4.79 97.96 86.79

Sensitivity 96.03 3.85 98.55 90.59 95.97 4.18 98.15 88.65

Specificity 95.41 4.05 97.99 89.85 95.34 3.08 96.09 91.80

f-Measure 0.9549 0.9479

Kappa 0.8896 0.8705

CVANN ACC 99.52 0.24 100 98.05 99.39 0.45 100 97.95

Sensitivity 100 0 100 100 100 0 100 100

Specificity 99.47 0.27 100 98.02 99.42 0.39 100 98.01

f-Measure 0.9978 0.9917

Kappa 0.9899 0.9885

Table 3 Comparison of the results with the literature

Study Method Data selection method Accuracy (%)

Shahbaba and Neal [25] Dirichlet process mixtures (Fivefold CV) 87.70

Das [26] ANN (Holdout) 92.90

Sakar and Kursun [35] Mutual information ? SVM (Bootstrap with 50 replicates) 92.75

Guo et al. [27] GA-EM (Tenfold CV) 93.10

Luukka [7] Fuzzy entropy measures ? similarity (Holdout) 85.03

Li et al. [28] Fuzzy-based nonlinear transformation ? SVM (Holdout) 93.47

Ozcift et al. [30] Correlation-based feature selection-rotation forest (Tenfold CV) 87.10

Spadoto et al. [31] PSO ? OPF harmony search ? OPF gravitational search ? OPF (Holdout) 84.01

Daliri et al. [33] SVM with Chi-square distance kernel (50–50 % Training–testing) 91.20

Astrom and Koker [56] Parallel ANN (Holdout) 91.20

Polat et al. [32] FCMFW ? KNN (50–50 % Training–testing) 97.93

Chen et al. [57] PCA-fuzzy k-nearest neighbor (Average tenfold CV) 96.07

Zuo et al. [34] PSO-fuzzy k-nearest neighbor (Tenfold CV) 97.47

Proposed method KMCFW–CVANN (Tenfold CV) 99.52

Proposed method KMCFW–CVANN (50–50 % training–testing) 99.39
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preprocessing tool, with the aim of decreasing the variance

in features of the PD dataset in order to further improve the

diagnostic accuracy of the CVANN classifier.

It can be seen from the experiments that the complex-

valued ANN method gives a much better result compared

to real-valued ANN. The prediction performance of the

KMCFW–CVANN hybrid method was tested with five

different performance evaluation criteria. These are accu-

racy, sensitivity, specificity, f-measure, and kappa statistic

value. The proposed method gave better results with an

accuracy value of 99.52 %. With this value, it is clear that

the proposed system outperforms other methods proposed

in the literature.

All of this points to the fact that the proposed system

using complex-valued classifiers can be shown to have a

positive impact in terms of providing an accurate and rapid

diagnosis of PD. It is projected that such high accuracy

rates with regard to prediction can also be obtained in

different medical diagnosis situations.
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