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Selected Reaction Monitoring (SRM) is a powerful tool for
targeted detection and quantification of peptides in com-
plex matrices. An important objective of SRM is to obtain
peptide quantifications that are (1) suitable for the inves-
tigation, and (2) reproducible across laboratories and
runs. The first objective is achieved by system suitability
tests (SST), which verify that mass spectrometric instru-
mentation performs as specified. The second objective is
achieved by quality control (QC), which provides in-proc-
ess quality assurance of the sample profile. A common
aspect of SST and QC is the longitudinal nature of the
data. Although SST and QC have received a lot of atten-
tion in the proteomic community, the currently used sta-
tistical methods are limited. This manuscript improves
upon the statistical methodology for SST and QC that is
currently used in proteomics. It adapts the modern meth-
ods of longitudinal statistical process control, such as
simultaneous and time weighted control charts and
change point analysis, to SST and QC of SRM experi-
ments, discusses their advantages, and provides practical
guidelines. Evaluations on simulated data sets, and on
data sets from the Clinical Proteomics Technology As-
sessment for Cancer (CPTAC) consortium, demonstrated
that these methods substantially improve our ability of
real time monitoring, early detection and prevention of
chromatographic and instrumental problems. We imple-
mented the methods in an open-source R-based software
package MSstatsQC and its web-based graphical user

interface. They are available for use stand-alone, or for
integration with automated pipelines. Although the exam-
ples focus on targeted proteomics, the statistical meth-
ods in this manuscript apply more generally to quantita-
tive proteomics. Molecular & Cellular Proteomics 16:
10.1074/mcp.M116.064774, 1335–1347, 2017.

Mass spectrometry-based Selected Reaction Monitoring
(SRM)1 is a powerful tool for targeted detection and quantifi-
cation of peptides in complex biological mixtures and matri-
ces (1–3). SRM assays can identify and quantify targeted
analytes with great specificity and accuracy. They are increas-
ingly adopted by the biomedical community, for applications
ranging from clinical diagnostic, to research and exploratory
studies.

An important objective of SRM assays is to produce pep-
tide quantifications that are (1) suitable for the investigation,
and (2) reproducible across laboratories and runs (4). As the
complexity of the experiments and of the instrumentation
grows, so does the need to characterize the accuracy and the
consistency of the results. To help achieve this, the United
States Pharmacopeia (USP) chapter ➜ introduced four com-
ponents of data quality: analytical instrument qualification,
analytical method validation, system suitability testing, and
quality control checks (5). Analytical instrument qualification
presents evidence that the instrument, its setup and calibra-
tion are suitable for the intended use. Analytical method val-
idation demonstrates that the assay performed on the instru-
ment can produce reliable results, and reports characteristics
such as accuracy, precision, specificity, detection limit, and
quantification limit (6, 7).

At the same time, the practical utility of SRM assays de-
pends not only on the general properties of the instrument
and of the assay, but also on whether their implementation
worked as intended in an experimental setting. A same SRM
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assay of a same biological material can produce variable
results, depending on conditions such as laboratories, instru-
ments, operators, or time of data acquisition (8). Substantial
reproducibility gains can be achieved by minimizing this un-
due variation (4, 8). To this end, system suitability tests (SST)
verify that a laboratory system satisfies the prespecified cri-
teria immediately before sample analysis. SST relies on a
series of reference materials and decision rules, designed to
separately test aspects of the system such as consistency of
the response, carryover, retention time stability, mass accu-
racy, or signal-to-noise (9, 10). If a component of the SST test
fails, the instrument is stopped to remedy the problem. In
contrast, quality control (QC) uses reference materials and/or
calibration standards, and decision rules, to provide an in-
process assurance during sample analysis. When reference
materials cannot be part of the biological sample, a separate
QC sample, e.g. a spiked protein mixture of known compo-
sition, or a cell lysate or other mixture that mimics the biolog-
ical material of interest, is interleaved between the biological
samples (10, 11). Because SST and QC can use different
reference materials, metrics, and decision rules, their results
do not necessarily agree. For example, when the system
passes SST but the experiment fails QC, the measurement
system does not need to be re-evaluated, and the problem
may lay elsewhere (e.g. in sample storage or processing).
Alternatively, an instrument may have unsuitable perform-
ance, but produce measurements with acceptable QC (12).

A common aspect of SST and QC is the longitudinal nature
of the input data, and of data-driven decisions. An accurate,
reproducible and objective monitoring and decision-making
requires the use of statistical methodology. The same general
statistical methodology for summarizing longitudinal profiles
can be applied to SST and QC.

A state-of-the art approach for longitudinal profiling is Sta-
tistical Process Control (SPC). SPC is a collection of statistical
methods and graphical summaries that generate warning
flags when undesirable deviations occur, and help identify
and eliminate the root causes of these deviations (13–15). The
use of SPC in manufacturing, automotive industry, food, ser-
vice, and healthcare has demonstrated excellent performance
in reducing internal and external failure costs (16). Previous
reports cite striking results, such as saving millions of dollars
in expenses, reducing cycle times by half or more, and reduc-
tion of processing errors (16). SPC has been widely adopted
in clinical laboratories (17), and its applications in mass spec-
trometry-based proteomics increasingly appear. For example,
Bramwell (18) demonstrated the potential of SPC in a 2D DIGE
experiment. Other applications are presented in Bourmaud et
al. (19), Bereman et al. (20), and Bereman et al. (21). However,
the statistical methodology used in these applications is lim-
ited to control charts that monitor large changes in mean of a
metric, and do not match the sensitivity and the accuracy of
more modern, state-of-the-art methods.

The contribution of this manuscript is in adapting a broader
class of modern SPC methods, beyond what is currently used
in mass spectrometry-based proteomics, to the context of
SRM experiments. The methods include simultaneous moni-
toring mean of a metric in addition to its variability, time
weighted control charts, and change point analysis. We pro-
vide practical guidelines for using these methods, and for
making decisions from multivariate measurements, in the
context of both SST and QC. We demonstrated the advan-
tages of these methods using simulated longitudinal QC data
sets for single peptides, and using experimental longitudinal
SST data sets from the Clinical Proteomics Technology As-
sessment for Cancer (CPTAC) consortium evaluating multim-
etrics and multipeptide criteria of performance. We imple-
mented the methods in an open-source R-based (22)
software package MSstatsQC and its graphical user interface,
which can be used stand-alone, or integrated into larger and
more automated data analysis pipelines. We argue that this
statistical methodology should become part of the daily prac-
tice of SRM-based investigations. Although all the examples
in this manuscript focus on targeted proteomics, the statisti-
cal methods are general, and can be in principle applied to
other quantitative mass spectrometry-based workflows.

Related Work—Several noteworthy studies focused on QC
monitoring of large-scale label-free proteomic experiments
with data dependent acquisition (DDA). They considered two
aspects: which metrics to monitor, and how to monitor them.
An interlaboratory study by the Human Proteome Organiza-
tion (HUPO) revealed common reproducibility problems in
proteomic experiments, and raised awareness of quality con-
trol (23). The National Institute of Standards and Technology
(NIST) in collaboration with CPTAC identified 46 metrics, ob-
tained with the software pipeline NISTMSQC, for evaluating
the performance of LC-MS/MS DDA (24). This approach was
not widely adopted because of several drawbacks, including
applicability to only one vendor and search algorithm, com-
plexity of data extraction, and lack of visual representation for
less experienced users (20). Another tool for LC-MS/MS DDA,
QuaMeter (25), offered a more flexible way to generate met-
rics, but required manual evaluation.

An outcome of these studies was an extensive list of met-
rics, used to monitor chromatographic and electrospray sta-
bility, and mass spectrometer performance. LC performance
can be monitored by evaluating peak retention times and
intensities, peak widths, and total peak areas of peptides (20,
24, 26). Electrospray stability can be monitored by its impact
on MS1 and MS/MS ion injection times, and on number of
acquired MS1 and MS/MS scans (26). Mass accuracy is
commonly used to monitor mass spectrometer performance
(20, 21).

In addition to choosing informative metrics, an equally im-
portant concern is the choice of statistical methodology to
monitor their values in time. SIMPATIQCO (26) proposed run
charts with green (safe), yellow (warning), and red (out-of-
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control) regions, which used median absolute deviation of
metrics to detect abrupt changes in QC. Likewise, bean plots
and run charts were used to monitor QC metrics with Met-
riculator (27), however, the tool did not implement thresholds
for distinguishing undesirable system variation from noise.
Bennett et al. (28) analyzed multisite DDA experiments with
QuaMeter and NISTMSQC. The authors used principle com-
ponent analysis and control charts to highlight patterns of
between-laboratory variation, however the longitudinal aspect
of the study was limited to only nine time points.

More recently, research interest shifted to QC of targeted
SRM experiments. Statistical Process Control in Proteomics
(SProCoP) (20) and Panorama AutoQC (21) implemented sta-
tistical methods from the SPC toolbox. SProCop is an open-
source R-based plug-in to the Skyline software (29) and a
Skyline external tool (30). It takes as input metrics such as
retention time, total peak area, full peak width at half maxi-
mum (FWHM) or peak asymmetry. It implements control
charts (called Z charts) to monitor standardized outputs for
each peptide, and applies constant decision thresholds. Like-
wise, Panorama AutoQC is an open-source interface between
Skyline and Panorama server (31), which uses similar input
metrics, and implements control charts for nonstandardized
outputs, where decision thresholds can depend on a metric
and on a peptide. Variation of each metric is assumed to be
stable over time.

Although a lot of method development in proteomics has
already been devoted to QC, fewer publications discuss stan-
dardizing and monitoring system suitability testing of SRM
assays. Although SST guidelines for clinical laboratories are
available (9), metrics and acceptance criteria for multiplexed
discovery and validation SRM assays (called tier 2 and 3 in (4))
are mostly empirically established (12). A notable example is a
comprehensive study conducted by Abbatiello et al. (8, 32)
as part of CPTAC, to design SST for nanoHPLC-MRM-MS
peptide-based assays. The study contributed an adaptable
plan and acceptance criteria for metrics such peak area and
retention time, derived from benchmarks on a wide range
of instruments, vendors, and laboratories. This protocol,
setup, and metrics to monitor are available for use by other
laboratories.

This manuscript contributes to the proteomic community
additional statistical SPC methods for longitudinal monitoring
of both SST and QC. These methods are frequently used in
other areas of industry and research, but have not yet made
their way to targeted proteomics. The methods include simul-
taneous monitoring of mean and variation of a metric (XmR
and ZmR charts), time weighted control charts to detect small
changes (CUSUMmand CUSUMvcharts), change point analy-
sis for identifying time of a change, and maps for high-dimen-
sional decision making. For SRM experiments, the methods
take as input quantitative metrics such as retention time, total
peak area, and peak asymmetry, or any other quantitative
metric of the experimentalist’s choice. They help make deci-

sions according to user defined criteria, or according to de-
viations from an example good quality guide set.

The manuscript illustrates the value of these methods for
longitudinal QC monitoring using simulated data sets, where
the true source of undesirable deviations is known, to illus-
trate cases with (1) isolated outlier QC measurements, (2)
sustained step shifts of metric mean and variation, and (3)
slow linear drifts of metric mean. Furthermore, the manuscript
illustrates the performance of the methods for SST monitoring
using data sets from a large-scale, multisite CPTAC study 9.1
to illustrate the importance of (1) monitoring multiple peptides,
(2) monitoring multiple metrics, and (3) empirically derived
limits in detecting suboptimal performance. Finally, we use
CPTAC study 9.1 to illustrate a case to illustrate the effect of
a poor-quality guide set on decision making. We implemented
these methods in an open-source R-based software
MSstatsQC, and in a web-based Shiny (30) user interface. The
implementation, as well as its support documentation, such
as a vignette for step-by-step explanation of the workflows,
and a cheat-sheet for a quick reference, are available at
www.msstats.org/msstatsqc.

EXPERIMENTAL PROCEDURES

Overview and Notation—Denote i � 1,2, . . ., I the index of a metric
(such as retention time or peak area), j � 1,2, . . ., J the index of a
peptide, and t � 1,2, . . ., T the time point that an SST or QC run is
acquired. Denote Xijt the value of the metric for this peptide and time
point. Because most discussion below focuses on one metric and one
peptide at a time, we will omit the indices of metrics and peptides for
simplicity, and denote the values in a time point as Xt.

Because Xt is subject to stochastic variation, it is a random variable.
Denote � and � the expected value and the standard deviation of Xt.

It is also useful to define the quantity Zt �
Xt � �

�
, called Z score,

which standardizes Xt. The Z score is independent of the measure-
ment units of the metric. It fluctuates around the expected value of 0,
and has the standard deviation of 1. Note that � is a standard
deviation and not a standard error, and therefore the Z score is
different from a statistic used, e.g. in a t test. The true values of � and
� are typically unknown, and their estimates �̂ and �̂ are obtained
from a guide set of high quality runs.

Example Data Sets for Longitudinal QC Monitoring: Simulated
QC—Three simulated data sets were designed to evaluate longitudi-
nal QC monitoring algorithms for SRM proteomic workflows in situ-
ations where the true nature of the problem is known. The simulations
were based on the time course QC profiles of proteins in blood
presented in tutorials for SProCop (20) and Panorama AutoQC (21).
Ten measurements (runs 5–15) were used to estimate peak area
mean (�̂) and standard deviation (�̂) of peptide VYVEELKPT-
PEGDLEILLQK. This peptide was stable in these runs, and produced
good quality data (20). Next, peak areas measurements at 50 time
points were simulated from Normal distribution Xt � N��̂, �̂2�. Finally,
three types of disturbances were created. The Simulated Data Set 1
introduced three outlying observations with a larger mean level of
peak area by simulating Xt � N��̂ � 3�̂, �̂2� at t � 30, 40, 50. The
Simulated Data Set 2 introduced a small systematic increase (i.e. step
shift) in peak area measurements by simulating Xt � N��̂ � �̂, �̂2�
at 26 � t � 50. The Simulated Data Set 3 imitated a drift in peak
areas, and introduced an incremental increase by simulating
Xt � N��̂ � ��̂�t � 25�, �̂2� at 26 � t � 50, with � � 0.1. We used
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these data sets to illustrate the ability of SPC to detect isolated
outliers and subtle measurement drifts.

Example Data Sets for Longitudinal SST Monitoring: CPTAC Study
9.1—CPTAC study 9.1 (sites 54, 56A, 65, and 86) (8) were used to
evaluate longitudinal SST monitoring algorithms for SRM proteomic
workflows. The study designed a reference sample with 15 peptides
to characterize instrument performance in terms of peak area, reten-
tion time and FWHM metrics. The study acquired guide sets from this
sample, as well as longitudinal measurements collected during two
months in 11 labs. The number of time points in a lab varied between
36 and 89. The data sets were processed with Skyline 3.6.1.10690 to
generate a table of quantitative metrics for input to MSstatsQC. We
used these data sets to evaluate the ability of SPC to discover
abnormalities such as retention time and peak area drifts (Site 54),
retention time fluctuation (Site 86), and chromatographic shape prob-
lems (Site 65), and to illustrate effects of guide set selection on the
performance of detecting a retention time drift (Site 56A). Guide sets
are manually determined from in-control observations for each site.

Previously Used SPC Methods in Proteomics: Control Charts for
Monitoring Mean—The fundamental SPC tool for monitoring is a
control chart, first proposed by Shewhart (13, 14), and later trans-
ferred to clinical chemistry by Levey and Jennings (15). A control chart
summarizes QC measurements during time (e.g. peak area in Fig. 1A
and 1B). Decisions from the control charts are made by comparing
the observations to control limits. In some cases, the control limits
can be pre-defined by industry standards for the purposes of SST,
e.g. “mass accuracy must be less than 2 ppm” or “retention time
measurements must be within 2 min of the target retention time.” In
many other cases, however, the control limits are empirically derived,
as we discuss below.

To make conclusions on the original (i.e. not standardized) scale of
the metric, the X chart (Fig. 1A) monitors the mean of Xt and sets
control limits in the form (�̂ 	 L�̂). This expression assumes that the
observations are independent and Normally distributed. A typical
value of L is 3, which corresponds to �3 standard deviations from
the mean of a metric, and results in the false alarm probability

 � 0.0027. This approach is used in SProCop (20). Equivalently,
the Z chart (Fig. 1B) monitors the standardized measurements

Zt �
Xt � �̂

�̂
, and sets the control limits to �3. If an observation is

within the control limits, it is considered in-control. If an observation
exceeds the limits, it is out-of-control. The goal of the next steps is to
find the earliest time point when the variation occurred, and investi-
gate and eliminate its root cause.

SPC Method Advocated In This Manuscript: Simultaneous Moni-
toring of Mean and Variability With XmR and ZmR Charts—Although X
charts can detect shifts the mean value of a metric, they can fail
detecting shifts in its variation. Yet shifts in variation can be a major
issue in mass spectrometric experiments, e.g. in cases of undesirable
between-run fluctuation in retention time of an analyte. Monitoring
variation of a metric along with its mean allows us to detect these
problems. To this end, the X chart is supplemented with another
control chart that displays moving ranges mRt � � Xt�1 � Xt�, t � 2
(Fig. 1C) (16). Values of mR are sensitive to changes between con-
secutive measurements, and therefore to changes in the variability of
a metric. Control limits for the mR chart are set to (0, LmR). The
constant L is often set to L � 3.268, matching the false alarm
probability 
 � 0.0027 of the X and Z charts for moving ranges of
length 2. The value of mR is estimated as the average of all the moving
ranges in the guide set.

A pair (X chart, mR chart) of a metric is called XmR chart, and a pair
(Z chart, mR chart) is called ZmR chart. In XmR and ZmR charts the
estimate of variation �̂ is typically replaced to mR, and the constant L
in the control limits of the X chart is set to L � 2.66, to match the false

alarm probability 
 � 0.0027 (16). The XmR and ZmR charts detect
observations that are out-of-control in terms of both the mean of the
metric, and its variation.

SPC Methods Advocated in This Manuscript: Detection of Subtle
Shifts With CUSUMm and CUSUMv—Although XmR and ZmR charts
detect large undesirable deviations, they miss subtler problems, such
as small isolated deviations of values of a metric, or slow sustained
drifts. As an attempt to remedy this situation, Westgard rules (17) are
used. These rules are used as plug-ins to X control chart. For exam-
ple, Rule 10x raises a red flag when 10 consecutive retention time
measurements fall on one side of their respective �̂ for a peptide.
Unfortunately, these rules do not meet the needs of mass spectrom-
etry-based proteomics. They are somewhat arbitrary, and do not
scale beyond a small number of metrics and analytes. The differences
in failure times and types of the problems between the analytes
complicate the use of these rules even further. We advocate another
approach that uses a family of cumulative sum (CUSUM) control
charts (33) detects such subtle shifts effectively by monitoring time-
weighted measurements.

The CUSUMm chart (16, 34) (Fig. 2C) monitors shifts in the metric’s
mean. It has two components, CUSUMm� and CUSUMm� that sep-
arately consider positive and negative changes. For example, a slow
but steady increase in retention time is reflected by an increased
CUSUMm�. For at time point (t � 1), CUSUMm�,t and CUSUMm�,t are
defined as cumulative sums of sequential measurements, i.e.
CUSUMm�,t � max (0,Xt � k � CUSUMm�,(t � 1)), and CUSUMm�,t �
max(0,�Xt � k � CUSUMm�,t � 1), with starting values CUSUMm�,0 �
CUSUMm�,0 � 0. Here k is a parameter (also called slack value),
which affects the sensitivity of the approach. The control limit h is
defined such that P(0 � CUSUMm� � h) � P(0 � CUSUMm� � h) �

1 �



2
. If CUSUMm�,t or CUSUMm�,t exceed the control limit h, the

process is considered out-of-control.
Here we advocate a modified version of CUSUM that simplifies the

interpretation. Specifically, we replace Xt with its standardized version
Zt, and set k � 0.5 and h � 5. In this definition, CUSUMm�,t � max
(0,Zt � 0.5 � CUSUMm�,(t � 1)), and CUSUMm�,t � max (0,�Zt �
0.5 � CUSUMm�,t � 1). It can be shown that this approach detects 1�

deviations from the metric mean, with the false alarm rate of 
 �
0.0027 that matches the approaches above.

Similarly, CUSUM� charts (Fig. 2D) detect slow changes in varia-
tion. For example, if retention time becomes increasingly unstable,
the value of CUSUM�� increases. CUSUM�� is constructed from the

transformation Vt � ��Zt� � 0.822
0.349

(16, 34). Hawkins (1981) (35)

showed that ��Zt� is very close to Normal distribution with mean
0.822 and standard deviation 0.349, and therefore Vt follows ap-
proximately standard Normal distribution. Similarly to CUSUMm,
define CUSUM��,t � max (0, Vt � k � CUSUM��,(t�1)), and
CUSUM��,t � max(0,�Vt � k � CUSUM��,t�1) We suggest the same
parameters k � 0.5 and h � 5 to match 
 � 0.0027. If CUSUM��,t or
CUSUM��,t exceeds the control limit h, the variation of the process is
out-of-control.

SPC Method Advocated in this Manuscript: Change Point Analy-
sis—The goal of longitudinal profiling is to detect the earliest time
point, called change point, at which a problem occurs. However, in
some cases, especially in presence of slow sustained drifts, the
problem can only be detected with a delay. Change point analysis,
performed after an out-of-control observation occurs, helps pinpoint
the change point more exactly (e.g. supplemental Fig. S2). Many
statistical approaches for change point analysis exist (36).

Here we advocate detecting change point based on maximum
likelihood estimation of (1) a step shift change model for the mean
(37), and (2) a step shift change model for the variability (38). This
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approach has been proven effective in conjunction with control
charts (37–39). Assume that a step change in the mean of a met-
ric occurs after the change point  ( � 1, .. . , T). Then,

Xt � �N��,��,t � 1, 2, . . ., 
N��1, ��, t �  � 1,  � 2, . . ., T � where N(.) denotes Nor-

mal distribution, �1 � � � �� is the post-change mean and � is the
magnitude of a change. The estimate of the change point ̂ is

obtained by maximizing the likelihood L�,�1�X� � 	t�1


1

�2�.�
exp


�
�Xt � ��2

2�2 � � 	t��1


1

�2�.�
exp
�

�Xt � �1�
2

2�2 �. This is equivalent to

maximizing Ct � (T � t � 1) (X� T,t � �̂)2 where X� T,t �	t
�t
T Xt
/

(T � t
 � 1) is the reverse cumulative mean. The change point esti-
mate is therefore ̂ � argmax1�t�T (Ct).

Similarly, the change point for variation is estimated by maxi-

mizing the likelihood L�,�1�X� � 	t�1


1

�2�.�
exp
�

�Xt � ��2

2�2 � �

	t��1


1

�2�.�1
exp
�

�Xt � ��2

2�1
2 �, or, equivalently, maximizing Dt �

SST,t/2�̂2 � ((T � t � 1)/2)loge(SST,t/((T � t � 1)�̂2)) � (T � t � 1)/2,
where SST,t � 	t
�t

T (Xt
 � �̂)2 is the reverse cumulative sum of squares
of T � t most recent observations. The change point estimate is ̂ �
argmax1�t�T (Dt) The change point estimate for variability helps user
identify the time of a change in the variability of a metric.

SPC Method Advocated in this Manuscript: Summary Plots and
Decision Maps—A distinctive feature of mass spectrometric experi-
ments is the ability to simultaneously quantify multiple metrics of
multiple analytes, for the purposes of biological investigations, but
also for the purposes of SST or QC. However, extending the control
charts to highly multivariate settings is non-trivial. The metrics and
analytes produce multiple charts, which exponentially increase the
comparisons to the control limits, and inflate the number of false alarms.

Given the complexity of the situation, we advocate a visual repre-
sentation of individual longitudinal profiles of metrics and analytes, as
well as simple ad hoc summaries (pass, warning, fail) of the overall
performance, as described below.

A decision map (e.g. Fig. 4A and 4B) presents the most general
overview of the overall performance per method (e.g. X chart and mR
chart). It takes as input user-defined pass/warning/fail criteria for a
control chart, and aggregates the conclusions from each metric over
all the analytes and summaries obtained for the method. For example,
the user-defined criteria can generate a warning signal if the propor-
tion pt of analytes with out-of-control values in at least one metric (e.g.
retention time) is 0.10 � pt � 0.25, and generate a fail signal if pt �

0.25. With this approach, each metric generates its own pass/warn-
ing/fail signals at each time point for each control chart. The signals
are visually summarized, e.g. with a heatmap. Although this approach
does not guarantee optimal decisions, it is a step toward making
more objective, reproducible, and documentable decisions in multi-
variate situations.

A more detailed Look into the results of the control charts is
required to efficiently identify the root causes of the problems. A river
plot and a radar plot provide such more detailed insight. The river plot
(e.g. Fig. 4C) details the performance of each metric in terms of the
mean and variability of a metric, aggregated over the analytes. For
example, in the case of retention time or total peak area in Fig. 4C, the
river plots distinguish the proportions of out-of-control peptides with
positive and negative deviations in mean and variation (colored lines),
present trends over time (x axis), and indicate the estimated change
point time for each deviation type and each analyte (red dots). Sloping
curves and large numbers of red dots indicate worsening of the per-
formance.

A radar plot (e.g. Fig. 4D) investigates the extent of the problems at
the peptide level. For each metric, each summary and each peptide,

it displays the number of time points that exceeded the control limits
throughout the duration of the experiment. Different types of devi-
ations (i.e. increases and decreases in the mean or variability)
are color-coded. Large colored areas indicate worsening of the
performance.

Implementation in Open-source Software—We implemented the
methods discussed in this manuscript in an R package MSstatsQC.
MSstatsQC is available free and open-source under Artistic 2.0 li-
cense (same license as, e.g. the project Bioconductor (40)). The
package takes as input SST or QC measurements in a tabular format
produced by data processing tools such as Skyline, or any other. The
package can be accessed through its online graphical user interface,
where input files of at most 5MB are uploaded on a remote server
hosted by RStudio. Alternatively, the package can be installed on a
local server, and used via its web interface or via a command line. The
size of the input files can be increased to 100MB in that case. This is
useful for organizations that wish to perform all the analyses locally, or
integrate SPC into broader automated pipelines. The implementa-
tions, examples, experimental data sets, link to the source code on
Github are available at msstats.org/msstatsqc.

RESULTS

XmR Control Charts Are Sensitive to Large Aberrations in
Longitudinal Measurements—Fig. 1 illustrates the ability of X
charts to detect large isolated deviations in longitudinal pro-
files in Simulated Data Set 1. The simulation contained three
outlying peak area observations at time points t � 30, 40, 50.
Detecting such isolated outliers im mass spectrometric ex-
periments is critical, as they can point to problems related to
flow rate or run-to-run carry-over. Fig. 1A and 1B illustrate
that X or Z charts were effective at detecting these outlying
measurements, while avoiding false positive alarms. The X
chart may be a better option for users who prefer monitoring
profiles on the original scale. A side-effect of the isolated
outliers was the increase in metric variation around t � 30, 40,
50. Fig. 1C shows that the mR chart exceeded the upper
control limit around the outlying time points. It effectively
detected the change in variation, but produced one false
alarm.

CUSUM Control Charts Are Sensitive to Small Sustained
Drifts in Metric Mean and/or Variation—CUSUM charts are
designed to accumulate historical information about the val-
ues of the metric. They did not detect the isolated outliers in
Simulated Data Set 1 above (supplemental Fig. S1A–S1B).
However, they outperform XmR charts in other situations, e.g.
in presence of minor (less than 1.5�) deviations from the
metric mean, or in presence of slow drifts in metric mean or
variation. Monitoring such drifts in mass spectrometric exper-
iments is important, as it helps discover problems such as
faulty calibration or wear in parts.

Simulated Data Set 2 contained a small step shift, where
the mean of the peak area increased systematically at t � 30
(Fig. 2A). The step shift was small enough that the XmR chart
(Fig. 2A and 2B) did not detect any out-of-control observa-
tions. However, the CUSUMm chart (Fig. 2C) indicated a
steady increase at t � 25, and successfully detected the
subtle increase in peak area mean. Similarly, the CUSUM�
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chart (Fig. 2D) monitored changes in peak area variation
around its mean. The chart did not detect any out-of-control
observations in this case, and correctly indicated that the
variability of peak area around its mean was due primarily to
random causes. The change point analysis (supplemental Fig.
S2) correctly pointed to the shift in peak area mean at t � 26.

Similarly, Simulated Data Set 3 contained a small linear drift
in the peak area of the peptide at 26 � t � 50. This disturb-
ance wasn’t easily detected with the XmR chart (Fig. 3A and
Fig. 3B), however, a steady increase in CUSUMm� (Fig. 3C)
provided a strong evidence of an increased peak area over

time. No out-of-control observations were detected with
CUSUM� chart (Fig. 3D), correctly indicating that the variabil-
ity of peak area around its mean was primarily random. The
change point analysis (supplemental Fig. S3) supports the
existence of a mean shift in peak area at t � 24. To summa-
rize, the CUSUMm control chart was particularly effective in
detecting subtle shifts and drifts in metric mean, and change
point analysis allowed us to pinpoint the time when the
change first occurred.

Monitoring Multiple Peptides Helps Detect Different Types
of System Problems—Up to this point, we discussed SPC

FIG. 1. Simulated Data set 1: detecting isolated spikes with control charts. Monitoring peak area measurements of a single peptide,
VYVEELKPTPEGDLEILLQK. A, X chart. B, Z chart. C, mR chart. Blue circles: QC measurements within control limits. Red lines: control limits.
Filled red circles: out-of-control measurements exceeding lower or upper thresholds. The control limits were set to be �3 for the Z chart. Same
outlying observations were detected with the X chart and the Z chart.
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methods for monitoring one peptide. Monitoring one peptide
is a common approach in SST or QC. It makes an implicit
assumption that all the peptides respond to a problem in a
similar way. Unfortunately, this assumption does not always
hold. For example, in Site 54 of CPTAC study 9.1, the peak
areas of early eluting peptides were out of control, whereas
the rest of the peptides remained stable. supplemental Fig. S4
provides an example Skyline output of Site 54, and shows the
retention time and peak area problems for peptide FFVAPF-
PEVFGK. Because the disturbance was relatively small, the
CUSUMm chart was best suited to detect the steady increase
in retention time and the peak area decrease. This problem
could not have been detected if we only monitored a stable
peptide such as LVNELTEFAK (supplemental Fig. S5).

We used the CPTAC study 9.1 to illustrate strategies of
simultaneous profiling of multiple metrics and multiple pep-
tides suggested in this manuscript. The decision maps for
CUSUMm and CUSUM� generated the “pass” signal for a
metric at a time when the percentage of out-of-control pep-
tides pt was pt � 0.10 for all the statistical summaries. They
generated the “warning” signals for each metric when 0.10 �

pt � 0.25, and the “fail” signal when pt � 0.25 for the corre-
sponding statistical summary (e.g. river plot for mean and

river plot for variability). Applied to Site 54, and using the first
20 observations as the guide set, this ad hoc decision con-
cluded that the system failed in terms of both the mean of
retention time and the mean of peak area after t � 20 (Fig. 4A).
Additionally, decision-map for variability showed increases in
the variability of retention time and peak area after t � 20
(Fig. 4B).

Next, the river plot (Fig. 4C) and the radar plot (Fig. 4D)
analyses of Site 54 were used to gain additional insight. River
plots showed an increase in retention time mean and a de-
crease in peak area mean. These problems were observed in
almost half of the peptides. Early eluting peptides were par-
ticularly affected. To further refine the analysis, peptide-level
CUSUMm (Fig. 4E) and CUSUMm (Fig. 4F) plots for the early
eluting peptide TAAYVNAIEK detected an increase in both the
mean and the variability of retention time. Change point esti-
mates (red dots in Fig. 4C) indicated that problems in reten-
tion time and total peak area begun to occur after t � 15.
Overall, the proposed approach allowed us to first outline the
general performance readout of SST or QC runs over multiple
metrics and peptides, using summaries that can detect di-
verse types of problems such as subtle shifts. Next, the
approach allowed us to zoom into the individual metrics,

FIG. 2. Simulated Data set 2: detecting a step shift with control charts. Monitoring peak area measurements of a single peptide,
VYVEELKPTPEGDLEILLQK. A, X chart. B, mR chart. C, CUSUMm chart. D, CUSUM� chart. Blue circles: QC measurements within control limits.
Red lines: control limits. Filled red circles: out-of-control observations exceeding lower or upper thresholds. Measurements with the step
change in total peak area were detected by the CUSUMm chart, but not by the X, mR or CUSUM� charts.
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peptides and deviation types, evaluate the nature of the prob-
lems, and the time when it first occurred.

Monitoring Multiple Diverse Metrics Helps Detect a Wider
Range of Problems—So far, we have focused on a limited
number of metrics, such as total peak area and retention time.
However, monitoring a larger and more diverse set of metrics
can be extremely useful for identifying causes of undesirable
variation. Good chromatographic shape, a hallmark of high
quality SRM experiments, can be monitored in terms of
FWHM and in terms of peak asymmetry. Gradual increase in
peak width can be caused by column problems, such as
column aging or build-up of contamination on column, and
require diligent attention for better reproducibility. Fig. 5
shows FWHM and peak asymmetry results for the CPTAC
study 9.1 Site 65, where the first 5 observations were used as
the guide set. River plots (Fig. 5A) summarized the XmR
charts, and showed a large increase in the mean of peak
width, and a decrease in the mean of peak asymmetry. Radar
plots (Fig. 5B) showed that the disturbance affected almost all
the peptides, and in a similar way. After examining the control
charts for the individual peptides, such as the X chart for
FWHM (Fig. 5C) or for peak asymmetry (Fig. 5D) of HGGTIP-
IVPTAEFQDR, we concluded that a disturbance in peak width
and asymmetry occurred after t � 10. The mR charts (Fig. 5E
and 5F) showed an increased variability of these metrics over
time. supplemental Fig. S6 shows river and radar plots for

retention time and peak area measurements. It illustrates that
the problem with peak shape would not have been detected if
we only monitored retention time. Overall, we recommend
using a diverse range of metrics, such as the ones related to
chromatographic shape, for better identification of problems
and root causes.

Empirical Control Limits Provide Laboratory-specific Infor-
mation for SST and QC—Predefined control limits are com-
monly used in SST and QC. However, a process that satisfies
the predefined criteria can still perform poorly. Supplementing
the predefined criteria with empirical control limits helps bet-
ter assess the performance of the measurement system. We
examined this point using CPTAC Study 9.1, Site 86. supple-
mental Fig. S7 shows the Skyline report for the peptide
LVNELTEFAK. Suppose that the predefined control limits for
the retention time of this peptide were set to 33.5 and 35.5
min. These limits were relatively wide, and produced only a
few out-of-control observations (Fig. 6A and 6B). On the other
hand, empirically calculated control limits were narrower, and
detected all the measurements as below the expected reten-
tion time. In other words, although the prespecified control
limits were wider than warranted for this particular process,
the empirical control limits were more exact and effectively
detected the retention time drift. Therefore, combining pre-
defined and empirical control limits helps assess the perform-

FIG. 3. Simulated Data set 3: detecting a linear drift with control charts. Monitoring peak area measurements of a single peptide,
VYVEELKPTPEGDLEILLQK. A, X chart. B, mR chart. C, CUSUMm chart. D, CUSUM� chart. Blue circles: QC measurements within control limits.
Red lines: control limits. Filled red circles: out-of-control observations exceeding lower or upper thresholds. Measurements with the drift in total
peak area were detected by the CUSUMm chart but not with the X, mR or CUSUM� charts.
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ance with respect to both industry benchmark and the prop-
erties of the particular laboratory setup.

The Choice of the Guide-set Impacts the Conclusions of
SPC—Because empirical derivations of control limits rely on a
guide set of good quality runs, analysts should be alert about
the importance of appropriately selecting the guide set. Mass
spectrometry instruments often require warm-up or calibra-
tion time for effective assay development and implementa-
tion. If warm-up samples are included in the guide set, they
can inflate the estimates of acceptable variation, widen the
control limits, and deteriorate our ability to detect undesirable
deviations. This problem was observed in the CPTAC study
9.1 Site 56A. Site 56A performed a series of adjustments

during the first 15 runs to generate desirable assays, and later
experienced an increase in retention time. Fig. 7 shows the
XmR control charts of retention times of the peptide
LVNELTEFAK, obtained with two different guide sets, namely
runs 1–20 on Fig. 7A and 7B, and runs 30–60 on Fig. 7C and
7D. The adjustments increased the variability in the retention
times among the first 15 runs, and therefore the variability of
the guide set on Fig. 7A and 7B, and widened the control
limits. As the result, the XmR charts did not detect the unde-
sirable systematic increase in retention time. In contrast,
when the guide sets only included later runs, the X chart
successfully detected the retention time drift (Fig. 7C). The
large variation in the warm-up period was also noticeable in

FIG. 4. CPTAC study 9. 1, Site 54: importance of monitoring multiple peptides. Monitoring peak area and retention time. A, Decision map
for CUSUMm. Red (fail): more than 25% of the peptides were as out-of-control when monitored CUSUMm. Yellow (warning): 10–25% of the
peptides were out-of-control. Blue (pass): less than 10% of the peptides were out-of-control for CUSUMm. A consistent drift in the means of
retention time and total peak area occurred after t � 20. B, Decision map for CUSUM�. Colors as in A. Both retention time and total peak area
experienced fluctuations after t � 20. C, river plots for CUSUMm and CUSUM�. Colored lines: proportions of out-of-control peptides. Red dots
at the top of each panel: change point estimates for mean increase or decrease. Red dots at the bottom of each panel: change point estimates
for variability increase of decrease. Approximately 50% of peptides had an increase in retention time after t � 20. Most peptides increased both
mean and variability of total peak areas after t � 20. D, radar plots for CUSUMm and CUSUM�. Colored areas: number of time points exceeding
the control limits or each metric, each summary and each peptide. Large colored areas indicate worsening of the performance. In this
experiment, early eluting peptides suffered from an increase of both mean and variability of retention time. Approximately 10 peptides suffered
from decrease of mean total peak area and increase of its variability. E, CUSUMm chart of retention time of TAAYVNAIEK. Blue circles:
measurements within control limits. Red lines: control limits. Filled red circles are out-of-control observations that exceed the lower or upper
thresholds. F, CUSUM� chart of retention time for TAAYVNAIEK. Colors and symbols as in E. The CUSUMm and CUSUM� charts show the
increased mean and variability of retention time after t � 20.
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FIG. 5. CPTAC study 9. 1, Site 65: monitoring multiple diverse metrics to detect a wider range of problems. Detecting chromatographic
shape problems using FWHM and peak asymmetry. A, river plot for X and mR control charts. B, radar plot for X and mR control charts. C, X
chart of HGGTIPIVPTAEFQDR for FWHM. D, X chart of HGGTIPIVPTAEFQDR for peak asymmetry. E, mR chart of HGGTIPIVPTAEFQDR for
FWHM. F, mR chart of HGGTIPIVPTAEFQDR for peak asymmetry. Upper panel of each river plot shows results for the X chart whereas lower
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the mR control chart (Fig. 7D). Overall, we recommend to
exercise caution when selecting the guide set. A careful cu-
ration of the guide set runs is also recommended, to manually
eliminate isolated outliers or other potential problems.

DISCUSSION

In mass spectrometry-based proteomics, reference mate-
rials are interleaved between the biological samples for sys-
tem suitability testing, and as a proxy of in-process quality
control. A common feature of spectra acquired from these
materials is their longitudinal nature, and the consistency of
the measurements between good-quality runs. The statistical
methods presented in this manuscript make an efficient use of
such longitudinal data, and help detect deviations from the
consistent patterns. Different statistical summaries presented
in the manuscript help detect different types of problems, and
therefore it is advantageous to use these summaries jointly.
Furthermore, change point time analysis pinpoints the time
when a systematic change in patterns likely occurred. The
statistical methods rely on control limits. When the control
limits are empirically derived, they usefully complement pre-
defined standards of good performance. They help detect
undesirable deviations specific to the instrument configura-

tion and the particular lab, provided that the guide sets are
chosen with care.

Our results demonstrated that in mass spectrometry-based
experiments it is advantageous to monitor multiple metrics of
multiple peptides, as they help us detect deviations specific to
a subset of the peptides. We proposed visual approaches for
exploring the large decision space of multiple peptides. Al-
though these approaches are ad-hoc and potentially subop-
timal, they are a step toward objective and reproducible
decisions in these multivariate settings. It is unfortunately
impossible for us to provide specific recommendations for the
action that follows the out-of-control diagnosis, but it will
depend on the type and purpose of the experiment, the root
cause of the deviations, and the existing regulatory, manufac-
turer, and operating guidelines.

The methods discussed in this manuscript are implemented
in open-source R-based software, which can be used via a
command line or via graphical user interface, locally or on a
remote server. The implementation aims to be inclusive, in
that it can be interfaced with any data processing tool that
produces quantitative metrics in a tabular format.

Although the methods and the implementation have so far
been tested with SRM experiments and relative protein quan-

panel summarizes results for mR chart. Red dots in river plot show change point estimates for each peptide. Because of an increase in the
mean of FWHM and a decrease in the mean of peak asymmetry, almost all peptides are outlying after t � 10. In control charts, blue circles
represent measurements that are within control limits, red lines are control limits and filled red circles are out-of-control observations that
exceed lower or upper thresholds in the XmR charts for HGGTIPIVPTAEFQDR. The drift in the mean of both FWHM and peak asymmetry is
detected effectively in the X charts. River plots and mR charts indicate that problems with variability of these metrics is less significant.

FIG. 6. CPTAC study 9. 1, Site 86: Empirical control limits provide laboratory-specific information for SST and QC. Monitoring retention time
of LVNELTEFAK. A, X chart. B, mR chart. Dashed blue lines: predefined retention time limits. Other colors and symbols as in Fig. 1. All the
measurements were below the target retention time. They were within the pre-specified control limits, but were effectively detected with the
empirical control limits.
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tification, they are in principle applicable to other metric types
(such as limits of detection, limits of quantification, or linearity
of an assay), or to other mass spectrometric workflows such
as data-dependent acquisition (DDA) or data-independent ac-
quisition (DIA). We hope that these methods and the imple-
mentation will become widely used.
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