Path analysis and determining the distribution of indirect effects via simulation

Öznur İşçi Güneri, Atilla Göktaş \& Uğur Kayalı

To cite this article: Öznur İșçi Güneri, Atilla Göktaș \& Uğur Kayalı (2017) Path analysis and determining the distribution of indirect effects via simulation, Journal of Applied Statistics, 44:7, 1181-1210, DOI: 10.1080/02664763.2016.1201793

To link to this article: https://doi.org/10.1080/02664763.2016.1201793

Published online: 28 Jun 2016.

Submit your article to this journal

Article views: 205

View related articles

View Crossmark data \because

Citing articles: 1 View citing articles

Path analysis and determining the distribution of indirect effects via simulation

Öznur İşçi Güneri, Atilla Göktaş and Uğur Kayalı
Department of Statistics, Mugla Sıtkı Kocman University, Muğla, Turkey

Abstract

The difference between a path analysis and the other multivariate analyses is that the path analysis has the ability to compute the indirect effects apart from the direct effects. The aim of this study is to investigate the distribution of indirect effects that is one of the components of path analysis via generated data. To realize this, a simulation study has been conducted with four different sample sizes, three different numbers of explanatory variables and with three different correlation matrices. A replication of 1000 has been applied for every single combination. According to the results obtained, it is found that irrespective of the sample size path coefficients tend to be stable. Moreover, path coefficients are not affected by correlation types either. Since the replication number is 1000, which is fairly large, the indirect effects from the path models have been treated as normal and their confidence intervals have been presented as well. It is also found that the path analysis should not be used with three explanatory variables. We think that this study would help scientists who are working in both natural and social sciences to determine sample size and different number of variables in the path analysis.

ARTICLE HISTORY

Received 27 March 2015
Accepted 12 June 2016

KEYWORDS

Path analysis; path diagram; path coefficients; direct and indirect effect; path data simulation

1. Introduction

The path analysis technique was first developed in a series of samples in 1921 by Sewall Wright $[10,11]$. The purpose of path analysis is to predict the importance of the hypothetical causal correlations between the variables and to make policy implications. In the cause and effect correlations between two variables an important aspect is deciding which variable or variables is/are the cause variable/s and which variable or variables is/are the effect variable/s; hence this correlation should be determined by the investigator and the analysis should be performed according to this decision. The path analysis method developed by Wright is only applied to the sequence of correlations between the cause and effect variables.

Revealing the path analysis and mathematical structure of this analysis, Wright has asserted that the correlations between the variables should be linear and only the error terms should have no correlation with all the cause variables and the variables can be standardized and the interpretation problems that may arise from unit differences can be

[^0]encountered. The path analysis technique consists of more than one mathematical correlation and it analyzes the correlation coefficient according to its components as per the path diagram given in [12].

The path analysis is presented in the form of a research in social sciences [1,4]. A path diagram for numerical analysis, although not required, to demonstrate the direct and indirect relations between the variables is very useful in terms of [8]. Smith, Brown and Valour argued that the use of path analysis has pointed out the hidden pitfalls that may be encountered [9].

The most important difference that distinguishes the path analysis from other multivariate methods is that it determines not only the direct effects but also the indirect effects, unanalyzed effects and artificial effects. The studies performed till now are only oriented toward the application of the method. In this study, it is aimed to calculate the path coefficients by generating data via simulation according to different samples and number of variables and to investigate their distributions.

2. Path analysis

A path analysis has two components: path coefficients and a path diagram. Path coefficients represent the mathematical part of the analysis and the path diagram represents the visual part of the analysis. The part where all the variables for the analysis are present is called the path model. It is a multivariate technique that enables interpretation of the causal correlations between the variables of the model on the path analysis and to estimate the indirect effects [7]. The inter-variable correlations on the path analysis are presented numerically. This case provides an easy understanding of the correlation system and also visualizes the logical flow in the interpretation of the results [6].

Under the assumptions considered in the multiple regression analysis, when a dependent variable is being analyzed over all the independent variables every dependent variable in the path analysis is analyzed on every independent variable, that is, more than one regression analysis can be done. The path analysis considers a unilateral cause and effect correlation and presumes that the measurements are done in a quantitative structure and obtained without any errors [2].

2.1. Path coefficients

In a model with a causal correlation path coefficients are used in the determination of the effects of the independent variables on the dependent variables. In case the path coefficient between the dependent and independent variables is within the limits of the independent variable observed and when all the other variables in the model (thus the effects of this variable) are kept stable, the path coefficient is determined as the ratio of the change in the standard deviation value of the dependent variable to the change in the standard deviation value of the dependent variable when all the independent variables are all effective in the model. The path coefficients shown in the path diagram are calculated as follows [3,5]:

$$
\begin{equation*}
P_{Y X}=b \frac{S_{X}}{S_{Y}} \tag{1}
\end{equation*}
$$

where $P_{Y X}$ is the path coefficient showing the direct effect of X independent variable on the Y dependent variable and b is the partial regression coefficient. In Equation (2), S_{X} is the standard deviation of the X variable and S_{Y} is the standard deviation of the Y variable.

$$
\begin{align*}
& S_{X}=\sqrt{\left[\sum(X-\bar{X})^{2} \times \frac{1}{n}\right]}=\sqrt{\left(\sum X^{2}\right) \frac{\left(\sum X\right)^{2}}{n} \times \frac{1}{n}}=\sqrt{S_{X X}} \tag{2}\\
& S_{Y}=\sqrt{\left[\sum(Y-\bar{Y})^{2} \times \frac{1}{n}\right]}=\sqrt{\left(\sum Y^{2}\right) \frac{\left(\sum Y\right)^{2}}{n} \times \frac{1}{n}}=\sqrt{S_{Y Y}} .
\end{align*}
$$

Other than the linear correlations there are also nonlinear correlations between the variables. As the analyses of the nonlinear correlations are hard and also the interpretation of the system is hard, it is assumed that all the correlation systems are linear and the principles of the path analysis technique are tried to be explained according to this assumption. When the correlations are not linear they are tried to be converted to a linear form by a specified conversion [12].

The most difficult and most important part of the path analysis is to create a path diagram. Although a path diagram is not necessary for the numerical analyses, it is very useful to find the direct and indirect correlations between the variables [8]. In the path diagram, if there is a path coefficient bigger than 1 , then this indicates that there is a balancing mechanism (negative effect) in the system. When considered from this point of view, the path coefficients greater than 1 are not significant unilaterally [5]. When the path coefficients are being calculated, standardized variables are used. The difference of the average values of the variables from every observed value is calculated and these calculated differences are compared to the standard deviation of the variable. Thus the variable is standardized.

2.2. Calculation of the path coefficients

It is required to generate a path diagram and to calculate the path coefficients showing the causal correlations between the dependent and independent variables. An independent variable can have indirect effects on a dependent or another independent variable besides its direct effects. Correlation coefficient between these two variables is equal to the total of indirect effects of other variables plus the direct effect of the effective variable [12]. Thus the correlations between the independent variables can be written as:

$$
\begin{align*}
& P_{y x_{1}}+r_{x_{1} x_{2}} P_{y x_{2}}+\cdots+r_{x_{1} x_{k}} P_{y x_{k}}=r_{y x_{1}} \\
& r_{x_{2} x_{1}} P_{y x_{1}}+P_{y x_{2}}+\cdots+r_{x_{2} x_{k}} P_{y x_{k}}=r_{y x_{2}} \\
& \vdots \tag{3}\\
& r_{x_{2} x_{1}} P_{y x_{1}}+P_{y x_{2}}+\cdots+r_{x_{2} x_{k}} P_{y x_{k}}=r_{y x_{2}} .
\end{align*}
$$

Here, $P_{y x_{1}}$ is the direct effect of the first independent variable $\left(x_{1}\right)$ on the dependent variable $(y), r_{x_{1} x_{2}} P_{y x_{2}}$ is the indirect effect of the first independent variable $\left(x_{1}\right)$ on the second independent variable (x_{2}). Because the correlations between the independent variables and the correlations between the independent variables and the dependent variable are known it is possible to calculate the path coefficients. When the equations are considered in a
matrix format, if the correlation matrix between the independent variables is shown as A, path coefficient vector as P and the correlation vector between the independent variables and the dependent variable as B, then the equation in matrix form can be written as:

$$
\begin{equation*}
P=A^{-1} B . \tag{4}
\end{equation*}
$$

This equation becomes

$$
\left[\begin{array}{c}
P_{y x_{1}} \tag{5}\\
P_{y x_{2}} \\
\vdots \\
P_{y x_{k}}
\end{array}\right]=\left[\begin{array}{cccc}
1 & r_{x_{1} x_{2}} & \cdots & r_{x_{1} x_{k}} \\
r_{x_{2} x_{1}} & 1 & \cdots & r_{x_{2} x_{k}} \\
\vdots & \vdots & \ddots & \vdots \\
r_{x_{k} x_{1}} & r_{x_{k} x_{2}} & \cdots & 1
\end{array}\right] \cdot\left[\begin{array}{c}
r_{y x_{1}} \\
r_{y x_{2}} \\
\vdots \\
r_{y x_{k}}
\end{array}\right] .
$$

Besides the direct effects of independent variables, it is also possible to calculate their indirect effects. Matrix representation of indirect effects is calculated by multiplying the $k \times k$-sized K matrix with zero diagonal elements with the correlation matrix of the independent variables.

$$
\begin{align*}
& \underbrace{\left[\begin{array}{cccc}
P_{y x_{1}} & 0 & \cdots & 0 \\
0 & P_{y x_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & P_{y x_{k}}
\end{array}\right]}_{K} \cdot \underbrace{\left[\begin{array}{ccccc}
r_{x_{1} x_{1}} & r_{x_{1} x_{2}} & \cdots & r_{x_{1} x_{k}} \\
r_{x_{2} x_{1}} & r_{x_{2} x_{2}} & \cdots & r_{x_{2} x_{k}} \\
\vdots & \vdots & \ddots & \vdots \\
r_{x_{k} x_{1}} & r_{x_{2} x_{k}} & \cdots & r_{x_{k} x_{k}}
\end{array}\right]}_{D} \underbrace{\left[\begin{array}{cccc}
P_{y x_{1}} r_{x_{1} x_{1}} & P_{y x_{1}} r_{x_{1} x_{2}} & \cdots & P_{y x_{1}} r_{x_{1} x_{k}} \\
P_{y x_{2}} r_{x_{2} x_{1}} & P_{y x_{2}} r_{x_{2} x_{2}} & \cdots & P_{y x_{2}} r_{x_{2} x_{k}} \\
\vdots & \vdots & \ddots & \vdots \\
P_{y x_{k}} r_{x_{k} x_{1}} & P_{y x_{k}} r_{x_{k} x_{2}} & \cdots & P_{y x_{k}} r_{x_{k} x_{k}}
\end{array}\right]}_{A}
\end{align*}
$$

In the $k \times k$-sized matrix D calculated in the above-mentioned matrix equation the diagonal values show the path coefficients and the other values show the indirect effect quantities. Matrix D is not a symmetrical matrix. It can be calculated in two different forms. In the indirect effect matrix written as $D=K \cdot A$, the values on the i th row and j th column show the indirect effect quantity that the j th independent variable made on the dependent variable over the i th independent variable. In general, the indirect effect matrix in the sources is calculated as $D=A K$. In this case, the values on the i th row and j th column show the indirect effect quantity that the i th independent variable made on the dependent variable via the j th independent variable. In the simulation study performed in this study, the calculations are done by the $D=K \cdot A$ formula. The correlation coefficient of the independent variable is written as:

$$
\begin{equation*}
r_{y y}=\sum_{i=1}^{k} \sum_{j=1}^{k} P_{y x_{i}} P_{y x_{j}} r_{x_{i} x_{j}}+P_{y x_{e}}^{2}=1 . \tag{7}
\end{equation*}
$$

If the correlation between the independent variables is statistically insignificant, that is, equal to zero, then the correlations between the independent variable and the dependent
variables will be equal to the path coefficients in the model. For k independent variable;

$$
\begin{equation*}
r_{y y}=\sum_{i=1}^{k} P_{y x_{i}}^{2}+P_{y x_{e}}^{2}=1 \tag{8}
\end{equation*}
$$

Equation (8) provides convenience if used in complex path models where there is no correlation between the independent variables.

2.3. Path diagram

The path analysis technique starts by showing the variables that are thought to be related to each other completely in a diagram and the interpretation of the system is made by the path coefficients to be calculated. Also determination of such coefficients mathematically requires the determination of the cause and effect correlations system between the variables in a mathematical model. When the investigator determines the cause and effect correlation, he/she may benefit from the investigations made regarding the subject and also generates the path diagram for the cause and effect correlation together with the specialists.

Unilateral correlations that are thought to be present between the variables in the path model are shown by arrows that are drawn from a variable to another variable. The correlations between the independent variables in the model are shown by double-sided arrows; however, such arrows are drawn as curvilinear. Briefly, the values of the arrows on the path diagram are the representation of the path coefficients or the correlations or they show the numerical values. Besides, it is also possible to write equations for the model by considering the path diagram. When the path diagram is being interpreted, it starts from the independent variable and continued by following the arrows. There are four major situations that should be considered during interpretation. These are called, as we have mentioned above, the direct effect, indirect effect, unanalyzed effect and spurious effect.

The graphical representation in Figure 1 represents a classical path diagram for three independent variables. Four effects found as a result of the path analysis are

Figure 1. Path diagram sample.

Direct effect ($D E$): Direct effect means the effect of an independent variable in the path diagram on the dependent variable without any other effects.

Indirect effect (IE): It can be defined as the change created by an independent variable in the path diagram on the dependent variable via another independent variable. Indirect effects are the effects that can be calculated mathematically by hand. Path coefficients are multiplied and indirect effects are calculated.

Unanalyzed effect (UE): It is the effect that arises when a double-side correlation is present between the cause variables. This effect is also called the U (unanalyzed) effect. U effect is a different correlation from the path models. This correlation is accepted as unanalyzed effect.

Spurious effect (SE): The case of a common reason affecting both variables for which the correlation is examined is called a spurious effect. This effect is also called the S (spurious) effect.

3. Application

In this study; path models with 3,5 and 7 different independent variables are selected. Among the independent variables in these selected models; three different correlation levels as low, medium and high are determined. These correlation matrices used are presented as follows:

	x_{1}	$x_{2} \quad x_{3}$			x_{1}	x_{2}	x_{3}		x_{1}	x_{2}	
[1.0	0.7	-0.5	0.27	[1.0	0.5	0.4	0.4	[1.0	0.65	0.55	0.457
0.7	1.0	0.1	0.1	0.5	1.0	0.0	-0.2	0.65	1.0	0.0	0.0
-0.5	0.1	1.0	0.0	0.4	0.0	1.0	0.0	0.55	0.0	1.0	0.55
0.2	0.1	0.0	1.0		-0.2	0.0	1.0	0.45	0.0	0.55	1.0

$$
\begin{gather*}
y \tag{9}\\
{\left[\begin{array}{cccccc}
1.0 & 0.3 & 0.20 & x_{1} & x_{3} & x_{4} \\
0.20 & x_{5} \\
0.3 & 1.0 & -0.10 & 0.10 & 0.15 & 0.40 \\
0.20 & -0.1 & 1.0 & 0.15 & -0.20 & 0.10 \\
-0.20 & 0.1 & 0.15 & 1.0 & 0.20 & 0.15 \\
0.15 & 0.2 & -0.20 & 0.20 & 1.0 & -0.10 \\
-0.40 & -0.2 & 0.10 & 0.15 & -0.10 & 1.0
\end{array}\right]} \\
{\left[\begin{array}{ccccccc}
1.0 & 0.3 & 0.20 & -0.20 & 0.15 & -0.40 \\
0.3 & 1.0 & -0.20 & 0.20 & 0.30 & -0.30 \\
0.20 & -0.2 & 1.0 & 0.25 & -0.20 & 0.10 \\
-0.20 & 0.2 & 0.25 & 1.0 & 0.20 & 0.25 \\
0.15 & 0.3 & -0.20 & 0.20 & 1.0 & -0.20 \\
-0.40 & -0.3 & 0.10 & 0.25 & -0.20 & 1.0
\end{array}\right]}
\end{gather*}
$$

$$
\begin{align*}
& \begin{array}{cccccc}
& y & x_{1} & x_{2} & x_{3} & x_{4}
\end{array} x_{5} . \tag{10}\\
& y \quad x_{1} \quad x_{2} \quad x_{3} x_{4} x_{5} x_{6} x_{7} \\
& {\left[\begin{array}{cccccccc}
1.0 & 0.30 & 0.20 & -0.20 & 0.15 & -0.40 & -0.20 & 0.50 \\
0.30 & 1.0 & -0.10 & 0.10 & 0.20 & -0.20 & 0.15 & -0.10 \\
0.20 & -0.10 & 1.0 & 0.15 & -0.20 & 0.10 & 0.20 & 0.10 \\
-0.20 & 0.10 & 0.15 & 1.0 & 0.20 & 0.15 & -0.20 & 0.15 \\
0.15 & 0.20 & -0.20 & 0.20 & 1.0 & -0.10 & 0.15 & -0.25 \\
-0.40 & -0.20 & 0.10 & 0.15 & -0.10 & 1.0 & 0.25 & 0.25 \\
0.20 & 0.15 & 0.20 & -0.20 & 0.15 & 0.25 & 1.0 & -0.10 \\
0.50 & -0.10 & 0.10 & 0.15 & -0.25 & 0.25 & -0.10 & 1.0
\end{array}\right]} \\
& \left.\right] \\
& y \quad x_{1} \quad x_{2} \quad x_{3} x_{4} x_{5} x_{6} x_{7} \\
& {\left[\begin{array}{cccccccc}
1.0 & 0.30 & 0.20 & -0.20 & 0.25 & -0.30 & -0.22 & 0.19 \\
0.30 & 1.0 & -0.20 & -0.25 & 0.24 & -0.24 & 0.31 & -0.31 \\
0.20 & -0.20 & 1.0 & 0.19 & -0.14 & 0.14 & -0.30 & 0.25 \\
-0.20 & -0.25 & 0.19 & 1.0 & 0.22 & 0.25 & 0.35 & -0.25 \\
0.25 & 0.24 & -0.14 & 0.22 & 1.0 & 0.10 & 0.15 & 0.15 \\
-0.30 & -0.24 & 0.14 & 0.25 & 0.10 & 1.0 & 0.00 & -0.20 \\
0.22 & 0.31 & -0.30 & 0.35 & 0.15 & 0.00 & 1.0 & 0.10 \\
0.19 & -0.31 & 0.25 & -0.25 & 0.15 & -0.20 & 0.00 & 1.0
\end{array}\right] .} \tag{11}
\end{align*}
$$

A 1000 replication with $50,100,250$ and 500 different sample sizes regarding to all the specified models and correlation levels are derived using Minitab 16 statistical package program.

Such derived data are separated in groups for 1000 times and the path analysis is applied for every group. By means of the path coefficients in the result of the analysis and of previously determined correlations at different levels an indirect effects matrix is calculated by Equation (5). The normality of the distribution of such calculated indirect effects is examined by the Anderson-Darling normality test in Minitab 16 statistical package program. While the derived data have a standard normal distribution, the distribution of indirect effects obtained as a result of analysis is investigated. As a result of the simulation; it is observed that indirect effects diverge from normality when the sample size and number of variables increase.

3.1. Calculation of the path coefficients

Before starting the simulation; low, medium and high levels of correlations are defined between the independent variables for 3,5 and $7(k=3, k=5$ and $k=7)$ different path models. Benefiting from these defined correlations 1000 replication data are derived for every sample size and for the correlations at every level. While the data are being derived, special macros are written in Minitab 16.

Algorithm of the macros is explained as distinguishing the derived data set in groups and seeing every group as a sample and making calculations that are specific for that data set. Thus 1000 data sets from every sample size and then 1000 groups are generated. The correlation matrices and path coefficients for these groups are stored separately in temporary memory files and the calculations are performed later. In a similar manner, the average of the intergroup correlation matrices from the stored memory is taken and the average correlation matrix is obtained. Accordingly, by using the obtained correlation matrices intergroup average path coefficients are calculated.

In Tables 1-3, calculated path coefficients are presented for average correlation matrices. The significance of the correlation matrices is statistically (at 95\% significance level) tested. When the path coefficient values are observed, it can be said, by observing the 1000replicated simulation result, that the path coefficients in the sample size that is greater than 100 are not affected by the sample sizes.

Table 1 presents the path coefficients obtained by low, medium and high correlations as a result of 1000 replications for the path models having three different variables 50,100 , 250 and 500 sample sizes.

Table 1. Average path coefficients obtained by low, medium and high correlations for $k=3$.

		Sample (n)			
	Path coefficients	$n=50$	$n=100$	$n=250$	$n=500$
Low	P_{1}	0.741421235	0.745495256	0.745973427	0.744060427
	P_{2}	-0.59340935	-0.57451509	-0.57518798	-0.57438451
Medium	P_{3}	0.184837448	0.124653325	0.125806733	0.125726866
	P_{1}	0.68952725	0.6067489	0.6056498	0.60408750
	P_{2}	0.43739701	0.4023159	0.3986353	0.40128679
	P_{3}	0.38574288	0.5216676	0.5213272	0.52125667
		0.484974572	0.649417986	0.649627638	0.65009446
	P_{1}	0.269815166	0.436836478	0.434691171	0.432164321
	P_{2}	0.10560636	0.206042647	0.21137821	0.21256532

Table 2. Average path coefficients obtained by low, medium and high correlations for $k=5$.

	Path coefficients	Sample (n)			
		$n=50$	$n=100$	$n=250$	$n=500$
Low	P_{1}	0.259780993	0.256898134	0.258096235	0.25773555
	P_{2}	0.334477864	0.340063338	0.332609532	0.335568972
	P_{3}	-0.25818781	-0.26867756	-0.26231591	-0.26485095
	P_{4}	0.188871356	0.188173246	0.1862136	0.185849463
	P_{5}	-0.32270515	-0.31873578	-0.32499224	-0.32382546
Medium	P_{1}	0.338898017	0.330562864	0.3377689	0.337625605
	P_{2}	0.400677029	0.402900835	0.406984368	0.406212662
	P_{3}	-0.33842934	-0.34103160	-0.3406510	-0.34556967
	P_{4}	0.145426833	0.153810234	0.153674562	0.153002143
	P_{5}	-0.21927681	-0.22302646	-0.22493474	-0.22357729
High	P_{1}	0.477201632	0.472951587	0.478185536	0.477655936
	P_{2}	0.618994833	0.613587907	0.616819141	0.614744739
	P_{3}	-0.52326957	-0.52143605	-0.52491123	-0.52550079
	P_{4}	0.260371334	0.261377527	0.264402677	0.260551019
	P_{5}	-0.21662696	-0.21108697	-0.20595157	-0.20842388

Table 3. Average path coefficients obtained by low, medium and high correlations for $k=7$.

	Path coefficient	Sample (n)			
		$n=50$	$n=100$	$n=250$	$n=500$
Low	P_{1}	0.364161476	0.361681116	0.362135456	0.362244173
	P_{2}	0.445329068	0.443885082	0.443465834	0.444329719
	P_{3}	-0.53027707	-0.53185315	-0.53064998	-0.53142754
	P_{4}	0.475848262	0.477533261	0.476951203	0.477900979
	P_{5}	-0.33981911	-0.33859657	-0.33873867	-0.33825130
	P_{6}	-0.36115211	-0.36218416	-0.36176015	-0.36312949
	P_{7}	0.738871959	0.73867098	0.73969009	0.739407623
Medium	P_{1}	0.898632048	0.897390995	0.896210264	0.896167055
	P_{2}	-0.61758461	-0.61240481	-0.61295693	-0.61499601
	P_{3}	0.527752616	0.524375224	0.525613233	0.525455593
	P_{4}	-0.82302101	-0.81712191	-0.81750039	-0.81716957
	P_{5}	-0.01529724	-0.01234697	-0.01539039	-0.01405122
	P_{6}	-1.03699478	-1.03183247	-1.03078623	-1.03124772
	P_{7}	1.310586715	1.301846382	1.303761231	1.304719353
High	P_{1}	0.451656114	0.43488986	0.436579191	0.443317636
	P_{2}	0.15745583	0.164694944	0.159858273	0.160444919
	P_{3}	0.082522716	0.067644968	0.072550585	0.080552736
	P_{4}	0.183276075	0.193216694	0.192460916	0.188673742
	P_{5}	-0.20201783	-0.20974374	-0.20704478	-0.20488864
	P_{6}	-0.37226728	-0.35908862	-0.36148431	-0.36638241
	P_{7}	0.240315363	0.228209849	0.234169828	0.240116227

In Table 2, the path coefficients obtained by low, medium and high correlations as a result of 1000 replications for the path models having five different variables with 50,100 , 250 and 500 different sample sizes are presented.

In Table 3, the path coefficients obtained by low, medium and high correlations as a result of 1000 replications for the path models having seven different independent variables for $50,100,250$ and 500 different sample sizes are given. It is seen that the path coefficients are not affected by the sample sizes at the same correlation level in the models with 3,5 and 7 different variables.

3.2. Generation and interpretation of path diagrams

As a result of obtaining the data derivation and path coefficients by the AMOS program, path diagrams are generated. In these diagrams, bilateral arrows represent the correlation values, unilateral arrows represent the path coefficients and the direction of causality and angled nodes represent the standardized independent variables, and finally the eclipse nodes represent the error terms.

The path diagrams prepared by AMOS are presented in Figures $2-13$. All the interpretations can be performed for all the above-mentioned models. It should be considered that in all the path models with seven variables and high correlations, there is no correlation between $X_{5}-X_{6}$ and $X_{6}-X_{7}$ independent variables. The reason is that the correlations obtained as a result of the tests are statistically insignificant. Such insignificant correlations are eliminated from the path model and the path diagram has taken its current form.

In Figure 2(a)-(d), the path diagrams with low, medium and high correlations having 50 sample sizes and 3 independent variables are given. For the path diagrams with low correlations, the correlation coefficient between X_{1} and X_{2} is calculated as 0.099 , the correlation coefficient between X_{1} and X_{3} is calculated as 0.097 and the correlation coefficient between X_{2} and X_{3} is calculated as 0.096 . Also the path coefficient between X_{1} and Y is calculated as 0.741 , and the path coefficient between X_{2} and Y is calculated as -0.593 and the path coefficient between X_{3} and Y is calculated as 0.184 . When the effect of the other variables is kept stable, one-unit change in any of the independent variables in the model will cause the relevant dependent variable to change as much as the path coefficient quantity of the related variable. When the indirect effects are considered, the indirect effect of X_{1} on Y over X_{2} is calculated as $-0.593 \times 0.099=-0.0587$. In other words, one-unit change in the X_{1} variable will cause 0.0587 unit change on Y in reverse direction because of the correlation with X_{2}. The correlations in the other figures are interpreted similarly.

3.3. Normality tests of the distribution of indirect effects

In order to test whether the indirect effects in the path models within the scope of this study are normal or not previously specified but different macros are written using Minitab 16 package program. Macros help in calculating every indirect effect in every path model and writing these indirect effects on the columns in the worksheet window. Thus all the indirect effect values are duly recorded. The normality test of such values is again performed by the Anderson-Darling normality test in Minitab 16 program. It means that the p values that are greater than .05 at 95% significance level have a normal distribution. Also the p values specified with $.005^{*}$ are written for the p values that are smaller than .005 . In the belowmentioned schemes, the results of these tests are given.

In Table 4 in the path models obtained as a result of 1000 repetitions with three variables, Anderson-Darling normality test p values of the indirect effects of independent variables regarding the dependent variable are given. Considering such values while sample size increases in the low-relation path models, it can be said that indirect effects are closer to normal distribution. Same interpretation can be done for the medium- and high-correlated path models. However when the sample size is considered to be medium say from 50 to 100 and the correlation is high within the path models, the distribution of the indirect effect approaches to normal. This can also be observed in low-correlated path models when the sample size reaches 500 .

Figure 2. (a) $k=3$ and $n=50$. Low-correlation path diagram, (b) $k=3$ and $n=50$. Medium-correlation path diagram and (c) $k=3$ and $n=50$. High-correlation path diagram.

Figure 3. (a) $k=3$ and $n=100$. Low-correlation path diagram, (b) $k=3$ and $n=100$. Medium-correlation path diagram and (c) $k=3$ and $n=100$. Highcorrelation path diagram.

Figure 4. (a) $k=3$ and $n=250$. Low-correlation path diagram, (b) $k=3$ and $n=250$. Medium-correlation path diagram and (c) $k=3$ and $n=250$. Highcorrelation path diagram.

Figure 5. (a) $k=3$ and $n=500$. Low-correlation path diagram, (b) $k=3$ and $n=500$. Medium-correlation path diagram and (c) $k=3$ and $n=500$ Highcorrelation path diagram.

Figure 6. (a) $k=5$ and $n=50$ Low-correlation path diagram, (b) $k=5$ and $n=50$ Medium-correlation path diagram and (c) $k=5$ and $n=50$ High-correlation path diagram.

Figure 7. (a) $k=5$ and $n=100$. Low-correlation path diagram, (b) $k=5$ and $n=100$. Medium-correlation path diagram and (c) $k=5$ and $n=100$. Highcorrelation path diagram.

Figure 8. (a) $k=5$ and $n=250$. Low-correlation path diagram, (b) $k=5$ and $n=250$. Medium-correlation path diagram and (c) $k=5$ and $n=250$. Highcorrelation path diagram.

Figure 9. (a) $k=5$ and $n=500$. Low-correlation path diagram, (b) $k=5$ and $n=500$. Medium-correlation path diagram and (c) $k=5$ and $n=500$. Highcorrelation path diagram.

Figure 11. (a) $k=7$ and $n=100$. Low-correlation path diagram, (b) $k=7$ and $n=100$. Medium-correlation path diagram and (c) $k=7$ and $n=100$. Highcorrelation path diagram.

Figure 13. (a) $k=7$ and $n=500$. Low-correlation path diagram, (b) $k=7$ and $n=500$. Medium-correlation path diagram and (c) $k=7$ and $n=500$. Highcorrelation path diagram.

Table 4. Anderson-Darling normality test p values of the indirect effects for $k=3$.

		Sample width (n)			
Relation level	IE	$n=50$	$n=100$	$n=250$	$n=500$
Low	X_{1}, X_{2}	0.104	0.324	0.991	0.049
	X_{1}, X_{3}	0.885	0.861	0.585	0.523
	X_{2}, X_{1}	0.174	0.335	0.911	0.079
	X_{2}, X_{3}	0.249	0.522	0.307	0.646
	X_{3}, X_{1}	0.005^{*}	0.05^{*}	0.005^{*}	0.211
	X_{3}, X_{2}	0.005^{*}	0.005^{*}	0.009	0.495
	X_{1}, X_{2}	0.805	0.551	0.456	0.107
	X_{1}, X_{3}	0.441	0.325	0.568	0.209
	X_{2}, X_{1}	0.021	0.137	0.460	0.078
	X_{2}, X_{3}	0.005^{*}	0.085	0.101	0.949
	X_{3}, X_{1}	0.005^{*}	0.107	0.923	0.454
	X_{3}, X_{2}	0.005^{*}	0.299	0.043	0.943
	X_{1}, X_{2}	0.005^{*}	0.458	0.472	0.116
	X_{1}, X_{3}	0.005^{*}	0.124	0.442	0.398
	X_{2}, X_{1}	0.005^{*}	0.298	0.514	0.120
	X_{2}, X_{3}	0.005^{*}	0.016	0.504	
	X_{3}, X_{1}	0.005^{*}	0.005^{*}	0.487	0.548
	X_{3}, X_{2}	0.005^{*}	0.005^{*}	0.786	0.042
				0.05^{*}	

In Table 5 in the path models with five variables obtained as a result of 1000 repetitions, Anderson-Darling normality test p values of the indirect effects of the independent variables are given. It is observed that most of the indirect effects in low- and mediumcorrelated path models do not show compliance to the normal distribution and the sample size does not have any effect on the distribution of indirect effects. In high-correlated path

Table 5. Anderson-Darling normality test p values of the indirect effects for $k=5$.

		Sample width (n)			
Correlation level	IE	$n=50$	$n=100$	$n=250$	$n=500$
Low	X_{1}, X_{2}	0.005^{*}	0.005^{*}	0.005^{*}	0.006
	X_{1}, X_{3}	0.005^{*}	0.005^{*}	0.005^{*}	0.005^{*}
	X_{1}, X_{4}	0.005^{*}	0.005^{*}	0.005^{*}	0.041
	X_{1}, X_{5}	0.005^{*}	0.005^{*}	0.005^{*}	0.044
	X_{2}, X_{1}	0.005^{*}	0.005^{*}	0.010	0.010
	X_{2}, X_{3}	0.005^{*}	0.005^{*}	0.032	0.816
	X_{2}, X_{4}	0.005^{*}	0.005^{*}	0.009	0.005^{*}
	X_{2}, X_{5}	0.005^{*}	0.005^{*}	0.453	0.295
	X_{3}, X_{1}	0.005^{*}	0.005^{*}	0.005^{*}	0.006
	X_{3}, X_{2}	0.005^{*}	0.005^{*}	0.007	0.005^{*}
	X_{3}, X_{4}	0.005^{*}	0.005^{*}	0.005^{*}	0.034
	X_{3}, X_{5}	0.005^{*}	0.005^{*}	0.005^{*}	0.005^{*}
	X_{4}, X_{1}	0.005^{*}	0.005^{*}	0.005^{*}	0.005^{*}
	X_{4}, X_{2}	0.005^{*}	0.005^{*}	0.005^{*}	0.005^{*}
	X_{4}, X_{3}	0.005^{*}	0.005^{*}	0.005^{*}	0.005^{*}
	X_{4}, X_{5}	0.005^{*}	0.005^{*}	0.005^{*}	0.005^{*}
	X_{5}, X_{1}	0.005^{*}	0.005^{*}	0.005^{*}	0.005^{*}
	X_{5}, X_{2}	0.005^{*}	0.005^{*}	0.005^{*}	0.005^{*}
	X_{5}, X_{3}	0.005^{*}	0.005^{*}	0.005^{*}	0.005^{*}
	X_{5}, X_{4}	0.005^{*}	0.005^{*}	0.005^{*}	0.005^{*}
	X_{1}, X_{2}	0.005^{*}	0.005^{*}	0.006	0.005^{*}

Table 5. Continued

Correlation level	IE	Sample width (n)			
		$n=50$	$n=100$	$n=250$	$n=500$
	X_{1}, X_{3}	0.005*	0.005*	0.005*	0.055
	X_{1}, X_{4}	0.005*	0.005*	0.029	0.005*
	X_{1}, X_{5}	0.005*	0.005*	0.005*	0.016
	X_{2}, X_{1}	0.005*	0.005*	0.015	0.006
	X_{2}, x_{3}	0.005*	0.039	0.258	0.039
	X_{2}, X_{4}	0.005*	0.005*	0.005*	0.279
	X_{2}, X_{5}	0.005*	0.460	0.977	0.019
	X_{3}, X_{1}	0.005*	0.005*	0.005*	0.154
	X_{3}, X_{2}	0.005*	0.005*	0.020	0.005*
	X_{3}, X_{4}	0.005*	0.005*	0.005*	0.027
	X_{3}, X_{5}	0.005*	0.005*	0.005*	0.005*
	X_{4}, X_{1}	0.005*	0.005*	0.005*	0.005*
	X_{4}, X_{2}	0.005*	0.005*	0.005*	0.005*
	X_{4}, X_{3}	0.005*	0.005*	0.005*	0.005*
	X_{4}, X_{5}	0.005*	0.005*	0.005*	0.005*
	X_{5}, X_{1}	0.005*	0.005*	0.016	0.005*
	X_{5}, X_{2}	0.005*	0.005*	0.005*	0.005*
	X_{5}, X_{3}	0.005*	0.005*	0.005*	0.005*
	X_{5}, X_{4}	0.005*	0.005*	0.005*	0.005*
High	X_{1}, X_{2}	0.005*	0.022	0.280	0.084
	X_{1}, X_{3}	0.005*	0.005*	0.090	0.152
	X_{1}, X_{4}	0.005*	0.341	0.154	0.072
	X_{1}, X_{5}	0.005*	0.097	0.219	0.806
	X_{2}, x_{1}	0.005*	0.208	0.494	0.587
	X_{2}, X_{3}	0.106	0.008	0.028	0.037
	X_{2}, X_{4}	0.005*	0.039	0.164	0.095
	X_{2}, X_{5}	0.005*	0.866	0.053	0.634
	X_{3}, X_{1}	0.005*	0.005*	0.086	0.297
	X_{3}, X_{2}	0.005*	0.005*	0.019	0.005*
	X_{3}, X_{4}	0.005*	0.005*	0.014	0.092
	X_{3}, x_{5}	0.005*	0.005*	0.102	0.008
	X_{4}, X_{1}	0.005*	0.005*	0.005*	0.791
	X_{4}, X_{2}	0.005*	0.005*	0.005*	0.503
	X_{4}, X_{3}	0.005*	0.005*	0.005*	0.005*
	X_{4}, X_{5}	0.005*	0.005*	0.005*	0.006
	X_{5}, X_{1}	0.005*	0.005*	0.005*	0.626
	X_{5}, X_{2}	0.005*	0.005*	0.005*	0.049
	X_{5}, X_{3}	0.005*	0.005*	0.005*	0.005*
	X_{5}, X_{4}	0.005*	0.005*	0.005*	0.006

Table 6. Anderson-Darling normality test p values of the indirect effects for $k=7$.

		Sample width (n)			
Correlation level	IE	$n=50$	$n=100$	$n=250$	$n=500$
Low	X_{1}, X_{2}	0.471	0.954	0.395	0.585
	X_{1}, X_{3}	0.137	0.034	0.110	0.363
	X_{1}, X_{4}	0.279	0.301	0.930	0.224
	X_{1}, X_{5}	0.412	0.731	0.026	0.152
	X_{1}, X_{6}	0.710	0.622	0.025	0.271
	X_{1}, X_{7}	0.091	0.277	0.630	0.946
	X_{2}, X_{1}	0.416	0.968	0.538	0.543
	X_{2}, X_{3}	0.568	0.678	0.988	0.325
	X_{2}, X_{4}	0.252	0.112	0.124	0.234
	X_{2}, X_{5}	0.420	0.506	0.291	0.047

Table 6. Continued

Correlation level	IE	Sample width (n)			
		$n=50$	$n=100$	$n=250$	$n=500$
	X_{2}, X_{6}	0.048	0.592	0.844	0.804
	X_{2}, X_{7}	0.402	0.826	0.078	0.353
	X_{3}, X_{1}	0.117	0.125	0.308	0.506
	X_{3}, X_{2}	0.447	0.335	0.909	0.179
	X_{3}, X_{4}	0.097	0.193	0.238	0.027
	X_{3}, X_{5}	0.482	0.988	0.320	0.198
	X_{3}, X_{6}	0.880	0.350	0.709	0.619
	X_{3}, X_{7}	0.07	0.484	0.726	0.848
	X_{4}, X_{1}	0.861	0.040	0.608	0.075
	X_{4}, X_{2}	0.383	0.138	0.248	0.324
	X_{4}, X_{3}	0.333	0.506	0.242	0.028
	X_{4}, X_{5}	0.611	0.379	0.755	0.291
	X_{4}, X_{6}	0.483	0.857	0.215	0.327
	X_{4}, X_{7}	0.086	0.348	0.758	0.683
	X_{5}, X_{1}	0.430	0.820	0.065	0.181
	X_{5}, X_{2}	0.718	0.460	0.520	0.062
	X_{5}, X_{3}	0.838	0.719	0.320	0.080
	X_{5}, X_{4}	0.303	0.505	0.822	0.504
	X_{5}, X_{6}	0.552	0.991	0.483	0.301
	X_{5}, X_{7}	0.582	0.117	0.579	0.217
	X_{6}, X_{1}	0.791	0.533	0.042	0.097
	X_{6}, X_{2}	0.081	0.885	0.793	0.793
	X_{6}, X_{3}	0.879	0.485	0.564	0.767
	X_{6}, X_{4}	0.668	0.929	0.367	0.335
	X_{6}, X_{5}	0.116	0.421	0.237	0.222
	X_{6}, X_{7}	0.910	0.606	0.517	0.681
	X_{7}, X_{1}	0.182	0.385	0.526	0.912
	X_{7}, X_{2}	0.066	0.698	0.122	0.303
	X_{7}, X_{3}	0.014	0.441	0.595	0.825
	X_{7}, X_{4}	0.016	0.110	0.869	0.820
	X_{7}, X_{5}	0.080	0.212	0.367	0.293
	X_{7}, X_{6}	0.695	0.895	0.714	0.510
Medium	X_{1}, X_{2}	0.846	0.818	0.902	0.661
	X_{1}, X_{3}	0.343	0.368	0.138	0.875
	X_{1}, X_{4}	0.601	0.463	0.126	0.759
	X_{1}, X_{5}	0.127	0.135	0.190	0.273
	X_{1}, X_{6}	0.463	0.663	0.449	0.410
	X_{1}, X_{7}	0.379	0.510	0.711	0.337
	X_{2}, X_{1}	0.017	0.343	0.887	0.943
	X_{2}, X_{3}	0.005*	0.515	0.141	0.725
	X_{2}, X_{4}	0.005*	0.031	0.535	0.398
	X_{2}, X_{5}	0.107	0.047	0.468	0.887
	X_{2}, X_{6}	0.005*	0.008	0.784	0.045
	X_{2}, X_{7}	0.015	0.119	0.044	0.050
	X_{3}, X_{1}	0.005*	0.095	0.801	0.150
	X_{3}, X_{2}	0.005*	0.286	0.113	0.845
	X_{3}, X_{4}	0.005*	0.140	0.081	0.735
	X_{3}, X_{5}	0.005*	0.076	0.110	0.612
	X_{3}, X_{6}	0.083	0.049	0.006	0.218
	X_{3}, X_{7}	0.569	0.032	0.508	0.155
	X_{4}, X_{1}	0.005	0.742	0.290	0.955
	X_{4}, X_{2}	0.079	0.739	0.680	0.952
	X_{4}, X_{3}	0.270	0.848	0.34	0.226
	X_{4}, X_{5}	0.168	0.405	0.290	0.887
	X_{4}, X_{6}	0.050	0.057	0.843	0.912
	X_{4}, X_{7}	0.661	0.576	0.044	0.566
	X_{5}, X_{1}	0.005*	0.005*	0.005*	0.507
	X_{5}, X_{2}	0.005*	0.005*	0.005*	0.005*

Table 6. Continued

Correlation level	IE	Sample width (n)			
		$n=50$	$n=100$	$n=250$	$n=500$
	$X_{5,} X_{3}$	0.005*	0.005*	0.005*	0.224
	X_{5}, X_{4}	0.005*	0.005*	0.005*	0.956
	X_{5}, X_{6}	0.005*	0.005*	0.005*	0.005*
	X_{5}, X_{7}	0.005*	0.005*	0.005*	0.077
	X_{6}, X_{1}	0.658	0.902	0.498	0197
	X_{6}, X_{2}	0.780	0.375	0.727	0.626
	X_{6}, X_{3}	0.121	0.570	0.361	0.593
	X_{6}, X_{4}	0.511	0.111	0.980	0.770
	X_{6}, X_{5}	0.722	0.993	0.524	0.778
	X_{6}, X_{7}	0.554	0.107	0.103	0.690
	X_{7}, X_{1}	0.097	0.428	0.475	0.142
	X_{7}, X_{2}	0.866	0.232	0.375	0.523
	X_{7}, X_{3}	0.027	0.827	0.901	0.640
	X_{7}, X_{4}	0.121	0.242	0.087	0.599
	X_{7}, X_{5}	0.844	0.173	0.312	0.538
	X_{7}, X_{6}	0.720	0.094	0.101	0.428
High	X_{1}, X_{2}	0.005*	0.005*	0.005*	0.005*
	X_{1}, X_{3}	0.005*	0.005*	0.005*	0.005*
	X_{1}, X_{4}	0.005*	0.005*	0.005*	0.005*
	X_{1}, X_{5}	0.005*	0.005*	0.005*	0.005*
	X_{1}, X_{6}	0.005*	0.005*	0.043	0.189
	X_{1}, X_{7}	0.005*	0.005*	0.005	0.072
	X_{2}, X_{1}	0.005*	0.005*	0.005*	0.005*
	X_{2}, X_{3}	0.005*	0.005*	0.005*	0.005*
	X_{2}, X_{4}	0.005*	0.005*	0.005*	0.005*
	X_{2}, X_{5}	0.005*	0.005*	0.005*	0.005*
	X_{2}, X_{6}	0.005*	0.005*	0.017	0.115
	X_{2}, X_{7}	0.005*	0.005*	0.005*	0.006
	X_{3}, X_{1}	0.005*	0.005*	0.005*	0.504
	X_{3}, X_{2}	0.005*	0.005*	0.005*	0.126
	X_{3}, X_{4}	0.005*	0.005*	0.050	0.024
	X_{3}, X_{5}	0.005*	0.005*	0.069	0.342
	X_{3}, X_{6}	0.005*	0.005*	0.684	0.631
	X_{3}, X_{7}	0.005*	0.005*	0.037	0.083
	X_{4}, X_{1}	0.005*	0.005*	0.005*	0.005*
	X_{4}, X_{2}	0.005*	0.005*	0.005*	0.005*
	X_{4}, X_{3}	0.005*	0.005*	0.005*	0.005*
	X_{4}, X_{5}	0.005*	0.005*	0.005*	0.005*
	X_{4}, X_{6}	0.005*	0.005*	0.005*	0.005*
	X_{4}, X_{7}	0.005*	0.005*	0.005*	0.005*
	X_{5}, X_{1}	0.005*	0.005*	0.005*	0.005*
	X_{5}, X_{2}	0.005*	0.005*	0.005*	0.005*
	X_{5}, X_{3}	0.005*	0.005*	0.005*	0.005*
	X_{5}, X_{4}	0.005*	0.005*	0.005*	0.005*
	X_{5}, X_{6}	0.005*	0.005*	0.005*	0.018
	X_{5}, X_{7}	0.005*	0.005*	0.005*	0.005*
	X_{6}, X_{1}	0.005*	0.005*	0.009	0.011
	X_{6}, X_{2}	0.005*	0.005*	0.005*	0.005*
	X_{6}, X_{3}	0.005*	0.005*	0.038	0.433
	X_{6}, X_{4}	0.005*	0.005*	0.005*	0.005*
	X_{6}, X_{5}	0.005*	0.005*	0.087	0.014
	X_{6}, X_{7}	0.005*	0.005*	0.027	0.984
	X_{7}, X_{1}	0.005*	0.005*	0.033	0.089
	X_{7}, X_{2}	0.005*	0.005*	0.005*	0.005*
	X_{7}, X_{3}	0.005*	0.005*	0.005*	0.005*
	X_{7}, X_{4}	0.005*	0.005*	0.005*	0.005*
	X_{7}, X_{5}	0.005*	0.005*	0.005*	0.005*
	X_{7}, X_{6}	0.005*	0.005*	0.005*	0.102

Figure 14. Examples of the indirect effects with or without normal distribution.
diagrams, some of the indirect effects of path models with 250 and 500 sample sizes have a normal distribution ($p<.05$).

In Table 6 in the path models with seven variables obtained as a result of 1000 repetitions, Anderson-Darling normality test p values for the indirect effects of independent variables on the dependent variable are given. Considering such values, most of the indirect effects in low-correlated path models have a normal distribution, and in medium-correlated path models indirect effects show less compliance to the normal distribution than the low-and high-correlated path models; distribution of the indirect effects move away from normality. Also in the path models with three and five variables, as mentioned before, it is observed that sample size does not have any effect on the distribution of indirect effects.

In the histograms obtained by Minitab 16 (Figure 14)it is shown that indirect effects are more similar to normal distribution in shape. It should be considered that the calculated p value is affected from the 1000 repetitions.

When Figure 14 is observed, it is seen that the distribution of the indirect effects with three independent variables has a normal distribution in Anderson-Darling normality test. End points are uniformly distributed in both sides of the distribution. It is also seen that although the distribution of the indirect effects with five independent variables does not seem to have a normal distribution in Anderson-Darling normality test, the end points are mostly accumulated in the left side of the distribution. It may be considered that this situation affects the result of the test. 95% confidence interval values of the indirect effects are given in Tables 7-16.

In Table 7, 95% confidence interval of values of the indirect effects for the path models with three variables are given. Such confidence intervals are calculated by using a unilateral t-test in Minitab 16. The confidence intervals including 0 (zero) value are accepted as insignificant. For example, in the simulation study performed with 50 sample size at low level the indirect effect between the first independent variable and the third independent variable is statistically insignificant.

Table 7. Confidence intervals and average values of the indirect effects for $k=3$.

		$n=50$		$n=100$		$n=250$		$n=500$	
		Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper
Low	X_{1}, X_{2}	0.0661	0.0798	0.0699	0.0791	0.0676	0.0734	0.0719	0.0760
	X_{1}, X_{3}	-0.0537	0.0790	0.0687	0.0781	0.0702	0.0759	0.0721	0.0762
	X_{2}, X_{1}	-0.0639	-0.0519	-0.0609	-0.0538	-0.0567	-0.0522	-0.0587	-0.0555
	X_{2}, X_{3}	-0.0624	0.0195	-0.0037	0.0034	-0.0004	0.0043	-0.0024	0.0007
	X_{3}, X_{1}	0.0160	0.0194	0.0113	0.0130	0.0118	0.0129	0.0121	0.0129
	X_{3}, X_{2}	0.0159	0.0194	0.0008	0.0007	-0.0008	-0.0001	-0.0001	0.0005
Medium	X_{1}, X_{2}	-0.1773	-0.1653	-0.0024	0.0052	-0.0011	0.0038	-0.0020	0.0014
	X_{1}, X_{3}	-0.1468	-0.1346	-0.1236	-0.1160	-0.1233	-0.1189	-0.1223	-0.1189
	X_{2}, X_{1}	-0.1119	-0.1039	-0.0017	0.0034	0.0007	0.0025	-0.0013	0.0009
	X_{2}, X_{3}	0.1516	0.1596	-0.0018	0.0032	0.0024	0.0006	-0.0016	0.0006
	X_{3}, X_{1}	-0.0826	-0.0753	-0.1058	-0.0992	0.1062	0.1023	-0.1055	-0.1026
	X_{3}, X_{2}	0.1340	0.1413	-0.0023	0.0041	-0.0032	0.0008	-0.0022	0.0007
High	X_{1}, X_{2}	0.2124	0.2228	-0.0061	0.0021	-0.0024	0.0026	-0.0009	0.0026
	X_{1}, X_{3}	0.1883	0.1983	-0.0055	0.0026	-0.0029	0.0022	-0.0017	0.0019
	X_{2}, X_{1}	0.1162	0.1244	-0.0040	0.0015	-0.0015	0.0018	-0.0006	0.0017
	X_{2}, X_{3}	0.1417	0.1511	0.2360	0.2417	0.2372	0.2407	0.2369	0.2393
	X_{3}, X_{1}	0.0385	0.0453	-0.0016	0.0009	-0.0009	0.0007	-0.0005	0.0005
	X_{3}, X_{2}	0.0528	0.0617	0.1105	0.1152	0.1148	0.1177	0.1161	0.1181

Table 8. Confidence intervals and average values of the indirect effects for $k=5$ and low correlation.

		$n=50$		$n=100$		$n=250$		$n=500$	
		Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper
Low	X_{1}, X_{2}	-0.0293	-0.0238	-0.0279	-0.0238	-0.0266	-0.0244	-0.0263	-0.0247
	X_{1}, X_{3}	0.0254	0.0309	0.0223	-0.0392	0.0245	0.0266	0.0253	0.0268
	X_{1}, X_{4}	0.0487	0.0548	0.0499	-0.0513	0.0500	0.0524	0.0512	0.0529
	X_{1}, X_{5}	-0.0554	-0.0492	-0.0532	-0.0389	-0.0530	-0.0505	-0.0521	-0.0504
	X_{2}, X_{1}	-0.0376	-0.0310	-0.0372	0.0388	-0.0343	-0.0316	-0.0342	-0.0322
	X_{2}, X_{3}	0.0461	0.0524	0.0492	-0.0349	0.0482	0.0510	0.0497	0.0517
	X_{2}, X_{4}	-0.0716	-0.0651	-0.0687	0.0392	-0.0670	-0.0641	-0.0674	-0.0654
	X_{2}, X_{5}	0.0295	0.0360	0.0313	-0.0172	0.0326	0.0352	0.0318	0.0338
	X_{3}, X_{1}	-0.0307	-0.0255	-0.0273	0.0664	-0.0271	-0.0249	-0.0273	-0.0258
	X_{3}, X_{2}	-0.0410	-0.0355	-0.0431	-0.0292	-0.0401	-0.0378	-0.0408	-0.0392
	X_{3}, X_{4}	-0.0551	-0.0492	-0.0554	-0.0458	-0.0536	-0.0511	-0.0538	-0.0521
	X_{3}, X_{5}	-0.0407	-0.0348	-0.0428	0.0340	-0.0402	-0.0379	-0.0406	-0.0389
	X_{4}, X_{1}	0.0350	0.0399	0.0356	-0.0238	0.0360	0.0380	0.0368	0.0382
	X_{4}, X_{2}	-0.0409	-0.0361	-0.0382	-0.0392	-0.0376	-0.0356	-0.0376	-0.0362
	X_{4}, X_{3}	0.0356	0.0406	0.0358	-0.0513	0.0361	0.0380	0.0364	0.0379
	X_{4}, X_{5}	-0.0201	-0.0160	-0.0201	-0.0389	-0.0194	-0.0178	-0.0186	-0.0174
	X_{5}, X_{1}	0.0610	0.0676	0.0618	0.0388	0.0637	0.0665	0.0634	0.0654
	X_{5}, X_{2}	-0.0344	-0.0280	-0.0335	-0.0349	-0.0346	-0.0320	-0.0326	-0.0307
	χ_{5}, X_{3}	-0.0489	-0.0426	-0.0503	0.0392	-0.0498	-0.0471	-0.0493	-0.0475
	$X_{5,},{ }_{4}$	0.0279	0.0342	0.0297	-0.0172	0.0314	0.0340	0.0305	0.0324

Table 9. Confidence intervals and average values of the indirect effects for $k=5$ and medium correlation.

		$n=50$		$n=100$		$n=250$		$n=500$	
		Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper
Medium	X_{1}, X_{2}	-0.0700	-0.0625	-0.0696	0.0436	-0.0687	-0.0657	-0.0692	-0.0671
	X_{1}, X_{3}	0.0607	0.0678	0.0637	-0.0656	0.0657	0.0688	0.0664	0.0685
	X_{1}, X_{4}	0.0957	0.1038	0.0968	-0.0824	0.1001	0.1034	0.0999	0.1022
	X_{1}, X_{5}	-0.1044	-0.0964	-0.1015	-0.0675	-0.1030	-0.0996	-0.1023	-0.0999
	X_{2}, X_{1}	-0.0814	-0.0735	-0.0849	-0.0819	-0.0831	-0.0796	-0.0832	-0.0808
	X_{2}, X_{3}	0.0962	0.1043	0.0975	0.0485	0.1001	0.1035	0.0996	0.1022
	X_{2}, X_{4}	-0.0790	-0.0708	-0.0815	0.0284	-0.0847	-0.0811	-0.0823	-0.0799
	X_{2}, X_{5}	0.0358	0.0437	0.0385	0.0327	0.0386	0.0418	0.0398	0.0420
	X_{3}, X_{1}	-0.0682	-0.0610	-0.0704	0.0293	-0.0693	-0.0662	-0.0700	-0.0679
	X_{3}, X_{2}	-0.0880	-0.0807	-0.0876	0.0684	-0.0869	-0.0838	-0.0869	-0.0846
	X_{3}, X_{4}	-0.0721	-0.0648	-0.0726	0.0216	-0.0694	-0.0664	-0.0702	-0.0680
	X_{3}, X_{5}	-0.0885	-0.0812	-0.0870	-0.0533	-0.0867	-0.0836	-0.0874	-0.0852
	X_{4}, X_{1}	0.0401	0.0461	0.0444	0.0467	0.0452	0.0477	0.0450	0.0467
	X_{4}, X_{2}	-0.0298	-0.0250	-0.0316	0.0436	-0.0323	-0.0304	-0.0312	-0.0299
	X_{4}, X_{3}	0.0270	0.0318	0.0295	-0.0656	0.0296	0.0314	0.0299	0.0312
	X_{4}, X_{5}	-0.0303	-0.0257	-0.0325	-0.0824	-0.0317	-0.0299	-0.0311	-0.0298
	X_{5}, X_{1}	0.0619	0.0685	0.06420	-0.0675	0.0660	0.0687	0.0660	0.0679
	X_{5}, X_{2}	-0.0242	-0.0192	-0.0248	-0.0819	-0.0232	-0.0213	-0.0231	-0.0218
	χ_{5}, X_{3}	-0.0568	-0.0509	-0.0573	0.0485	-0.0577	-0.0551	-0.0566	-0.0549
	X_{5}, X_{4}	0.0425	0.0483	0.0431	0.0284	0.0440	0.0462	0.0435	0.0450

When considered generally, 27 of 144 indirect effects in all the path models with three variables are seen statistically insignificant. Accordingly, it may be suitable to use the regression analysis in the path models with three variables.

In Table 10, 95% confidence intervals of the indirect effects regarding the path models with five variables are given. The interpretations made for the models with three variables

Table 10. Confidence intervals and average values of the indirect effects for $k=5$ and high correlation.

		$n=50$		$n=100$		$n=250$		$n=500$	
		Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper
High	X_{1}, X_{2}	-0.1457	-0.1361	-0.1461	-0.1396	-0.1458	-0.1420	-0.1452	-0.1423
	X_{1}, X_{3}	0.1381	0.1477	0.1379	0.1444	0.1418	0.1459	0.1411	0.1439
	X_{1}, X_{4}	0.1576	0.1673	0.1599	0.1665	0.1652	0.1694	0.1657	0.1685
	X_{1}, X_{5}	-0.1708	-0.1612	-0.1672	-0.1605	-0.1680	-0.1637	-0.1688	-0.1659
	X_{2}, X_{1}	-0.1900	-0.1783	-0.1887	-0.1811	-0.1880	-0.1833	-0.1869	-0.1834
	X_{2}, X_{3}	0.1468	0.1579	0.1513	0.1589	0.1500	0.1551	0.1516	0.1550
	X_{2}, X_{4}	-0.1872	-0.1758	-0.1883	-0.1805	-0.1862	-0.1814	-0.1865	-0.1831
	X_{2}, X_{5}	0.1773	0.1890	0.1821	0.1896	0.1806	0.1854	0.1824	0.1858
	X_{3}, X_{1}	-0.1619	-0.1517	-0.1596	-0.1523	-0.1600	-0.1556	-0.1582	-0.1551
	X_{3}, X_{2}	-0.1346	-0.1245	-0.1348	-0.1281	-0.1320	-0.1275	-0.1325	-0.1295
	X_{3}, X_{4}	-0.1602	-0.1501	-0.1578	-0.1505	-0.1601	-0.1558	-0.1586	-0.1555
	X_{3}, X_{5}	-0.1329	-0.1223	-0.1345	-0.1276	-0.1332	-0.1288	-0.1333	-0.1301
	X_{4}, X_{1}	0.0849	0.0921	0.0878	0.0928	0.0907	0.0937	0.0901	0.0921
	X_{4}, X_{2}	-0.0788	-0.0721	-0.0810	-0.0763	-0.0802	-0.0773	-0.0792	-0.0773
	X_{4}, X_{3}	0.0742	0.0809	0.0749	0.0796	0.0780	0.0808	0.0769	0.0788
	X_{4}, X_{5}	-0.0796	-0.0727	-0.0807	-0.0761	-0.0799	-0.0771	-0.0791	-0.0771
	X_{5}, X_{1}	0.0734	0.0805	0.0707	0.0754	0.0700	0.0727	0.0720	0.0740
	X_{5}, X_{2}	-0.0666	-0.0603	-0.0654	-0.0614	-0.0623	-0.0598	-0.0632	-0.0615
	χ_{5}, X_{3}	-0.0555	-0.0497	0.0547	0.0509	-0.0524	-0.0501	-0.0530	-0.0514
	X_{5}, X_{4}	0.0604	0.0668	0.0618	0.0660	0.0599	0.0624	0.0616	0.0635

Table 11. Confidence intervals and average values of the indirect effects for $k=7$ and low correlation.

		$n=50$		$n=100$		$n=250$		$n=500$	
		Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper
Low	X_{1}, X_{2}	-0.0413	-0.0350	-0.0385	-0.0339	-0.0377	-0.0349	-0.0380	-0.0360
	X_{1}, X_{3}	0.0313	0.0377	0.0353	0.0398	0.0341	0.0370	0.0352	0.0372
	X_{1}, X_{4}	0.0694	0.0757	0.0704	0.0747	0.0711	0.0739	0.0710	0.0728
	X_{1}, X_{5}	-0.0739	-0.0677	-0.0743	-0.0701	-0.0731	-0.0702	-0.0728	-0.0709
	X_{1}, X_{6}	0.0499	0.0565	0.0524	0.0569	0.0531	0.0559	0.0527	0.0547
	X_{1}, X_{7}	-0.0389	-0.0324	-0.0365	-0.0322	-0.0379	-0.0351	-0.0361	-0.0342
	X_{2}, X_{1}	-0.0506	-0.0428	-0.0474	-0.0417	-0.0461	-0.0428	-0.0467	-0.0442
	X_{2}, X_{3}	0.0644	0.0722	0.0646	0.0700	0.0660	0.0695	0.0642	0.0666
	X_{2}, X_{4}	-0.0885	-0.0807	-0.0916	-0.0861	-0.0905	-0.0873	-0.0899	-0.0874
	$X_{2,}, X_{5}$	0.0409	0.0487	0.0431	0.0484	0.0439	0.0474	0.0426	0.0451
	X_{2}, X_{6}	0.0861	0.0939	0.0854	0.0909	0.0864	0.0899	0.0881	0.0905
	$X_{2,}, X_{7}$	0.0389	0.0470	0.0405	0.0460	0.0437	0.0471	0.0428	0.0452
	X_{3}, X_{1}	-0.0552	-0.0459	-0.0583	-0.0517	-0.0542	-0.0500	-0.0546	-0.0516
	X_{3}, X_{2}	-0.0859	-0.0767	-0.0840	-0.0775	-0.0832	-0.0790	-0.0797	-0.0768
	X_{3}, X_{4}	-0.1110	-0.1019	-0.1077	-0.1012	-0.1081	-0.1041	-0.1081	-0.1053
	X_{3}, X_{5}	-0.0844	-0.0752	-0.0830	-0.0761	-0.0817	-0.0776	-0.0809	-0.0779
	X_{3}, X_{6}	0.0999	0.1091	0.1004	0.1070	0.1033	0.1074	0.1046	0.1074
	X_{3}, X_{7}	-0.0820	-0.0725	-0.0837	-0.0775	-0.0808	-0.0765	-0.0805	-0.0776
	X_{4}, X_{1}	0.0914	0.0998	0.0928	0.0984	0.0937	0.0974	0.0937	0.0961
	X_{4}, X_{2}	-0.0947	-0.0863	-0.0985	-0.0926	-0.0974	-0.0940	-0.0967	-0.0940
	X_{4}, X_{3}	0.0913	0.0994	0.0908	0.0967	0.0936	0.0971	0.0947	0.0972
	X_{4}, X_{5}	-0.0537	-0.0455	-0.0520	-0.0460	-0.0487	-0.0451	-0.0497	-0.0471
	X_{4}, X_{6}	0.0680	0.0763	0.0697	0.0756	0.0694	0.0732	0.0694	0.0719
	X_{4}, X_{7}	-0.1258	-0.1176	-0.1218	-0.1162	-0.1204	-0.1169	-0.1197	-0.1171

are also valid for these models. The indirect effects of confidence intervals capturing zero value are statistically insignificant .

In Tables 15 and 16, 95% confidence intervals of the indirect effects for the path models with seven variables in high correlation are given. The interpretations made for the models

Table 12. Confidence intervals and average values of the indirect effects for $k=7$ and low correlation.

		$n=50$		$n=100$		$n=250$		$n=500$	
		Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper
Low	X_{5}, X_{1}	-0.0865	-0.0809	-0.0852	-0.0811	-0.0868	-0.0842	0.0333	0.0352
	X_{5}, X_{2}	-0.0873	-0.0815	0.0857	0.0818	-0.0863	-0.0838	-0.0850	-0.0832
	X_{5}, X_{3}	-0.0562	-0.0496	-0.0569	-0.0524	-0.0560	-0.0531	-0.0851	-0.0833
	X_{5}, X_{4}	-0.0763	-0.0699	-0.0742	-0.0697	-0.0733	-0.0705	-0.0548	-0.0528
	X_{5}, X_{6}	0.0677	0.0740	0.0682	0.0728	0.0703	0.0732	-0.0740	-0.0720
	X_{5}, X_{7}	-0.0579	-0.0516	-0.0574	-0.0529	-0.0556	-0.0526	0.0715	0.0734
	X_{6}, X_{1}	-0.0920	-0.0860	-0.0909	-0.0866	-0.0926	-0.0899	-0.0546	-0.0527
	X_{6}, X_{3}	0.0343	0.0409	0.0335	0.0380	0.0338	0.0367	-0.0913	-0.0894
	X_{6}, X_{4}	-0.0785	-0.0656	-0.0746	-0.0657	-0.0775	-0.0717	0.0342	0.0362
	X_{6}, X_{5}	0.0642	0.0775	0.0674	0.0766	0.0729	0.0786	-0.0738	-0.0698
	X_{6}, X_{7}	0.1015	0.1148	0.1079	0.1165	0.1067	0.1126	0.0714	0.0753
	X_{7}, X_{1}	-0.1951	-0.1826	-0.1882	-0.1797	-0.1866	-0.1813	0.1080	0.1120
	X_{7}, X_{2}	0.1774	0.1897	0.1789	0.1872	0.1832	0.1885	-0.1851	-0.1813
	X_{7}, X_{3}	-0.0836	-0.0699	-0.0774	-0.0683	-0.0750	-0.0692	0.1822	0.1860
	X_{7}, X_{4}	-0.0865	-0.0809	-0.0852	-0.0811	-0.0868	-0.0842	-0.0738	-0.0698
	X_{7}, X_{5}	-0.0873	-0.0815	0.0857	0.0818	-0.0863	-0.0838	0.0333	0.0352
	$X_{7,}, X_{6}$	-0.0562	-0.0496	-0.0569	-0.0524	-0.0560	-0.0531	-0.0850	-0.0832

Table 13. Confidence intervals and average values of the indirect effects for $k=7$ and medium correlation.

		$n=50$		$n=100$		$n=250$		$n=500$	
		Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper
Medium	X_{1}, X_{2}	-0.1820	-0.1655	-0.1819	-0.1709	-0.1852	-0.1785	-0.1833	-0.1782
	X_{1}, X_{3}	0.1696	0.1847	0.1717	0.1826	0.1713	0.1782	0.1761	0.1811
	X_{1}, X_{4}	0.2557	0.2705	0.2610	0.2717	0.2629	0.2696	0.2650	0.2699
	X_{1}, X_{5}	-0.2781	-0.2631	-0.2765	-0.2658	-0.2726	-0.2659	-0.2714	-0.2666
	X_{1}, X_{6}	0.2105	0.2259	0.2170	0.2277	0.2208	0.2276	0.2232	0.2279
	X_{1}, X_{7}	-0.2311	-0.2154	-0.2304	-0.2198	-0.2247	-0.2180	-0.2268	-0.2219
	X_{2}, X_{1}	0.1124	0.1242	0.1164	0.1242	0.1220	0.1267	0.1223	0.1259
	X_{2}, X_{3}	-0.1617	-0.1503	-0.1571	-0.1492	-0.1572	-0.1522	-0.1534	-0.1499
	X_{2}, X_{4}	0.1126	0.1239	0.1193	0.1275	0.1215	0.1263	0.1220	0.1257
	X_{2}, X_{5}	-0.0668	-0.0559	-0.0641	-0.0564	-0.0662	-0.0613	-0.0632	-0.0598
	X_{2}, X_{6}	0.1762	0.1879	0.1774	0.1854	0.1795	0.1846	0.1831	0.1865
	X_{2}, X_{7}	-0.1866	-0.1757	-0.1877	-0.1796	-0.1855	-0.1806	-0.1872	-0.1838
	X_{3}, X_{1}	0.0991	0.1087	0.1004	0.1072	0.1004	0.1046	0.1031	0.1061
	X_{3}, X_{2}	0.1285	0.1384	0.1277	0.1345	0.1305	0.1348	0.1281	0.1311
	X_{3}, X_{4}	0.0981	0.1078	0.1025	0.1089	0.1001	0.1043	0.1044	0.1073
	X_{3}, X_{5}	0.1246	0.1349	0.1267	0.1336	0.1305	0.3480	0.1293	0.1324
	X_{3}, X_{6}	0.1280	0.1380	0.1258	0.1330	0.1287	0.3290	0.1295	0.1324
	X_{3}, X_{7}	-0.1335	-0.1236	-0.1345	-0.1275	-0.1332	-0.2910	-0.1332	-0.1303
	X_{4}, X_{1}	-0.2484	-0.2340	-0.2474	-0.2373	-0.2460	-0.2397	-0.2461	-0.2415
	X_{4}, X_{2}	0.1505	0.1651	0.1588	0.1693	0.1620	0.1683	0.1622	0.1669
	X_{4}, X_{3}	-0.1665	-0.1521	-0.1698	-0.1601	-0.1623	-0.1559	-0.1668	-0.1624
	X_{4}, X_{5}	0.1565	0.1713	0.1552	0.1654	0.1607	0.1671	0.1596	0.1640
	X_{4}, X_{6}	0.1609	0.1754	0.1569	0.1668	0.1612	0.1673	0.1581	0.1627
	X_{4}, X_{7}	-0.1768	-0.1616	-0.1625	-0.1526	-0.1673	-0.16100	-0.1650	-0.1606

with 3 and 5 variables are also valid for the path models with seven variables. The indirect effects of confidence intervals capturing zero value are also treated to be statistically insignificant.

Table 14. Confidence intervals and average values of the indirect effects for $k=7$ and medium correlation.

		$n=50$		$n=100$		$n=250$		$n=500$	
		Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper
Medium	X_{5}, X_{1}	0.0033	0.0011	0.0023	0.0010	0.0025	0.0018	-0.002	-0.0017
	X_{5}, X_{2}	0.0005	0.0029	0.0012	0.0024	0.0018	0.0025	0.0017	0.0022
	X_{5}, X_{3}	-0.2608	-0.2428	-0.2621	-0.2496	-0.2619	-0.2539	-0.2622	-0.2567
	X_{5}, X_{4}	0.2960	0.3140	0.2998	0.3123	0.3022	0.3101	0.3072	0.3126
	X_{5}, X_{6}	-0.2706	-0.2527	-0.2610	-0.2478	-0.2605	-0.2528	-0.2600	-0.2545
	X_{5}, X_{7}	0.2032	0.2211	0.1980	0.2102	0.2035	0.2112	0.1995	0.2053
	X_{6}, X_{1}	-0.1618	-0.1435	-0.1577	-0.1452	-0.1571	-0.1490	-0.1551	-0.1494
	X_{6}, X_{3}	-0.1092	-0.0897	-0.1106	-0.0979	-0.1084	-0.1004	-0.1060	-0.1003
	X_{6}, X_{4}	-0.3350	-0.3125	-0.3346	-0.3192	-0.3270	-0.3172	-0.3302	-0.3231
	X_{6}, X_{5}	0.3758	0.3970	0.3829	0.3984	0.3847	0.3943	0.3902	0.3968
	X_{6}, X_{7}	-0.3329	-0.3099	-0.3324	-0.3166	-0.3300	-0.3206	-0.3306	-0.3239
	X_{7}, X_{1}	0.2562	0.2797	0.2432	0.2585	0.2570	0.2669	0.2566	0.2635
	X_{7}, X_{2}	-0.2102	-0.1865	-0.2025	-0.1866	-0.2027	-0.1923	-0.1973	-0.1899
	X_{7}, X_{3}	0.1132	0.1376	0.1240	0.1399	0.1271	0.1371	0.1270	0.1342
	X_{7}, X_{4}	0.0033	0.0011	0.0023	0.0010	0.0025	0.0018	-0.0022	-0.0017
	X_{7}, X_{5}	0.0005	0.0029	0.0012	0.0024	0.0018	0.0025	0.0017	0.0022
	$X_{7,}, X_{6}$	-0.2608	-0.2428	-0.2621	-0.2496	-0.2619	-0.2539	-0.2622	-0.2567

Table 15. Confidence intervals and average values of the indirect effects for $k=7$ and high correlation.

		$n=50$		$n=100$		$n=250$		$n=500$	
		Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper
High	X_{1}, X_{2}	-0.0916	-0.0818	-0.0887	-0.0819	-0.0880	-0.0830	-0.0895	-0.0865
	X_{1}, X_{3}	-0.1172	-0.1061	-0.1120	-0.1043	-0.1113	-0.1060	-0.1125	-0.1093
	X_{1}, X_{4}	0.1019	01131	0.1011	0.1084	0.1026	0.1070	0.1049	0.1080
	X_{1}, X_{5}	-0.1116	-0.1009	-0.1089	-0.1015	-0.1062	-0.1010	-0.1076	-0.1044
	X_{1}, X_{6}	0.1313	0.1431	0.1304	0.1389	0.1328	0.1370	0.1352	0.1387
	X_{1}, X_{7}	-0.1449	-0.1326	-0.1367	-0.1287	-0.1369	-0.1310	-0.1383	-0.1348
	X_{2}, X_{1}	-0.0355	-0.0293	-0.0339	-0.0298	0.0324	-0.0302	-0.0326	-0.0309
	X_{2}, X_{3}	0.0267	0.0332	0.0290	0.0328	0.0292	0.0314	0.0296	0.0312
	X_{2}, X_{4}	-0.0264	-0.0209	0.0242	0.0208	0.0234	-0.0214	-0.0230	-0.0216
	X_{2}, X_{5}	0.0179	0.0229	0.0208	0.0242	0.0213	0.0232	0.0214	0.0228
	X_{2}, X_{6}	-0.0500	-0.0418	-0.0509	-0.0456	0.0491	-0.0459	-0.0492	-0.0469
	X_{2}, X_{7}	0.0362	0.0434	0.0382	0.0429	0.0379	0.0406	0.0392	0.0412
	X_{3}, X_{1}	-0.0246	-00162	-0.0200	-0.0146	0.0199	-0.0166	-0.0213	-0.0190
	X_{3}, X_{2}	0.0109	0.0179	0.0111	0.0157	0.0129	0.0155	0.0142	0.0161
	X_{3}, X_{4}	0.0137	0.0217	0.0128	0.0177	0.0145	0.0175	0.0166	0.0187
	X_{3}, X_{5}	0.0160	0.0243	0.0144	0.0198	0.0163	0.0196	0.0188	0.0212
	X_{3}, X_{6}	0.0235	0.0348	0.0185	0.0256	0.0228	0.0270	0.0268	0.0300
	X_{3}, X_{7}	-0.0250	-0.0168	-0.0197	-0.0143	0.0193	-0.0160	-0.0212	-0.0189
	X_{4}, X_{1}	0.0403	0.0474	0.0436	0.0481	0.0450	0.0478	0.0445	0.0466
	X_{4}, X_{2}	-0.0293	-0.0237	0.0275	0.0242	0.0280	-0.0259	-0.0269	-0.0254
	X_{4}, X_{3}	0.0375	0.0441	0.0403	0.0447	0.0415	0.0442	0.0403	0.0421
	X_{4}, X_{5}	0.0144	0.0196	0.0175	0.0208	0.0186	0.0204	0.0186	0.0199
	X_{4}, X_{6}	0.0250	0.0305	0.0276	0.0312	0.0285	0.0306	0.0272	0.0287
	X_{4}, X_{7}	0.0234	0.0289	0.0281	0.0319	0.0270	0.0290	0.0273	0.0288

4. Results and discussion

Via the regression analysis the coefficients of the direct effects between the variables can be accessed. However, besides the direct effects between the variables, it is also important to specify the indirect effects. A path analysis can evaluate the causality correlation of the variables with each other and can explain the correlations by a diagram. The path analysis

Table 16. Confidence intervals and average values of the indirect effects for $k=7$ and high correlation.

		$n=50$		$n=100$		$n=250$		$n=500$	
		Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper
High	X_{5}, X_{1}	-0.0038	0.0005	0.0013	0.0017	0.0012	0.0004	-0.0005	0.0005
	X_{5}, X_{2}	0.0365	0.0421	0.0396	0.0434	0.0406	0.0429	0.0403	0.0419
	X_{5}, X_{3}	-0.1180	-0.1079	-0.1145	-0.1071	-0.1144	-0.1100	-0.1146	-0.1116
	X_{5}, X_{4}	0.1047	0.1149	0.1022	0.1092	0.1053	0.1090	0.1083	0.1114
	X_{5}, X_{6}	-0.1347	-0.1234	-0.1272	-0.1197	-0.1283	-0.1230	-0.1304	-0.1271
	X_{5}, X_{7}	-0.0583	-0.0503	-0.0570	-0.0517	0.0570	-0.0537	-0.0554	-0.0531
	X_{6}, X_{1}	-0.0024	0.0048	-0.0011	0.0037	0.0016	0.0012	-0.0008	0.0012
	X_{6}, X_{3}	-0.0052	0.0024	-0.0056	-0.0004	0.0029	-0.0001	-0.0001	0.0018
	X_{6}, X_{4}	-0.0788	-0.0686	-0.0726	-0.0661	-0.0740	-0.0690	-0.0754	-0.0724
	X_{6}, X_{5}	0.0559	0.0649	0.0522	0.0578	0.0562	0.0598	0.0589	0.0614
	X_{6}, X_{7}	-0.0627	-0.0541	-0.0593	-0.0536	0.0596	-0.0561	-0.0612	-0.0586
	X_{7}, X_{1}	0.0321	0.0392	0.0328	0.0373	0.0332	0.0358	0.0350	0.0369
	X_{7}, X_{2}	-0.0511	-0.0430	-0.0474	-0.0424	0.0489	-0.0458	-0.0494	-0.0471
	X_{7}, X_{3}	-0.0018	0.0042	0.0000	0.0038	0.0001	0.0021	-0.0012	0.0000
	X_{7}, X_{4}	-0.0038	0.0005	0.0013	0.0017	0.0012	0.0004	-0.0005	0.0005
	X_{7}, X_{5}	0.0365	0.0421	0.0396	0.0434	0.0406	0.0429	0.0403	0.0419
	$X_{7,}, X_{6}$	-0.1180	-0.1079	-0.1145	-0.1071	-0.1144	-0.1100	-0.1146	-0.1116

can also provide detailed answers to the problems of the examiner without eliminating the structure consisting of the cause and effect correlation between the independent variables. Without decreasing the number of variables and without having any information loss the examiner can easily develop his/her study. Besides the effect of an independent variable in the path analysis on the dependent variable, it is also possible to see the effect on the other dependent variables. This situation makes the path analysis the preferred method over the other multivariate analysis methods.

In the path models obtained as a result of the simulation studies, the normality of the distribution of indirect effects is tested via the Anderson-Darling normality test. According to the results obtained, most of the indirect effects in the path models with three and seven variables have a normal distribution, but most of the path models with five variables are away from the normal distribution. Briefly, it is possible to say that the number of variables is effective on the indirect effects.

When the distribution of the indirect effects is examined in terms of the sample sizes, it can be said that the distribution of the indirect effects in path models with 250 and 500 samples is closer to the normal distribution than the path models with 50 and 100 samples.

When the distribution of indirect effects is examined in terms of correlation levels, it is observed that the indirect effects of the high-correlated path models digress from normal distribution. Accordingly, it is possible to say that when the correlation level increases, the distribution of the indirect effects digresses from normal distribution.

Moreover, although the path coefficients of the path models do not get affected by the sample size and correlation level it is found that indirect effects are affected by these values.

It is seen that most of the indirect effects of the path models with 3,5 and 7 variables are statistically significant at 95% confidence interval.

In order to interpret the path analysis and explain the causal correlation, the number of variables should not be a lot. When the number of variables increases, the indirect effect on the variables increases because the causal structure widens, and accordingly the model gets more complicated. Ö.i. GÜNERI ET AL.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

[1] R. Boudon, A method of linear causal analysis: Dependence analysis, Am. Sociol. Rev. 30 (1965), pp. 365-374.
[2] M.T. Brannick, Path analysis (2010). Available at http://luna.cas.usf.edu/ ~ mbrannic/files/ regression/Pathan.html.
[3] D.R. Dewey, and K.H. Lu, A correlation and path analysis of crested wheatgrass seed production, Agron. J. 51 (1959), pp. 515-518.
[4] O.D. Duncan, Path analysis: Sociological examples, Am. J. Sociol. 72 (1966), pp. 1-16.
[5] C.C. Li, Path Analysis a Primer, The Boxwood Press, Pacific Grove, CA, 1975.
[6] S.W. Martin, and A.H. Meek, A path model of factors influencing morbidity and mortality in Ontario Feedlot Calves, Can. J. Vet. Res. 50 (1986), pp. 15-22.
[7] R.J. Mitchell, Testing evolutionary and ecological hypotheses using path analysis and structural equation modeling, Funct. Ecol. 6 (1992), pp. 123-129.
[8] E.J. Pedhazur, Multiple Regression in Behavioral Research: Explanation and Prediction, Harcourt Brace College Publishers, Fort Worth, TX, 1997.
[9] F.A. Smith, J.H. Brown, and T.J. Valone, Path analysis: A critical evaluation using long-term experimental data, Am. Nat. 149 (1997), pp. 29-42.
[10] S. Wright, Correlation and causation, J. Agricult. Res. 20 (1921), pp. 557-585.
[11] S. Wright, Path coefficients and path regression: Alternative on complementary concepts, Biometrics 16 (1960), pp. 189-202.
[12] S. Wright, Genetic and biometric foundation, Vol. 1, The University of Chicago Press, Chicago, 1968.

[^0]: CONTACT Öznur İşçi Güneri oznur.isci@mu.edu.tr

