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Abstract Amphiphile + aliphatic alcohol lyotropic systems
with addition of water can form micelles with normal, mixed,
and inverse type. Such systems display various types of
mesophases and exhibit interesting structural, physical, and phys-
icochemical properties. Therefore, lyotropic systems are impor-
tant objects from both fundamental and application points of
view. In this work, shape of anisometric micelles has been deter-
mined, and also, the magneto-morphologic properties of textures
and optical refractive properties of mesophase have been inves-
tigated in hexadecyltrimethylammonium bromide (HDTMABr)
+ 1-decanol (DeOH) lyotropic system with various additions of
water (H2O). Dependences of the magneto-morphologic proper-
ties vs. time have been obtained. Temperature and concentration
dependences of the optical refractive index have been investigat-
ed. The effect of the DeOH/H2O concentration ratio on the re-
fractive properties has been studied.
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Introduction

Mixtures of amphiphiles in different solvents form micelles
with the spherical, disc-like, and rod-like shapes. Such mi-
celles in definite concentration and temperature regions form
various lyotropic phases and lyotropic liquid crystalline

mesophases. These phases and mesophases exhibit different
spatial packing and point-like symmetries and display various
physical and physicochemical properties. Lyotropic liquid
crystalline mesophases are binary and multicomponent mix-
tures of amphiphile (anionic, cationic, or zwitterionic amphi-
phile), polar or/and non-polar solvents, optical active material,
non-organic salt, etc. additions [1–7]. Water, aliphatic alcohol,
and mixture of water with aliphatic alcohol (i.e., mixture of
polar and non-polar organic solvent) are the most important
solvents for amphiphile materials.

Liquid crystalline mesophases with structural units as the
anisometric micelles arise when molecules of amphiphiles
self-assemble in polar or/and non-polar solvents. In the case
of amphiphile + water systems, lyotropic mesophases with
normalmicelles are arisen. Lyotropicmesophases with normal
micelles also arise in amphiphile + water + aliphatic alcohol,
when concentration of water is bigger than concentration of
aliphatic alcohol. In the case of amphiphile + aliphatic alcohol
mixture, lyotropic mesophases with inverse micelles are aris-
en. Lyotropic mesophases with inverse micelles also arise in
amphiphile + water + aliphatic alcohol, when concentration of
aliphatic alcohol is bigger than concentration of water. If the
concentration of water is approximately equal concentration
of aliphatic alcohol, anisometric micelles of mixed shape can
be arisen in lyotropic systems [1–3, 8–11]. Thus, a change of
polar solvent/non-polar solvent concentration ratio leads to a
change of type of micelles and to a transformation of the
spatial structure and point-like symmetry of liquid crystalline
mesophase.

Lyotropic mixtures as amphiphile + aliphatic alcohol are very
important materials in colloid systems, techniques, and technol-
ogy of detergents and surfactants and also for studies of the
thermotropic and lyotropic phase transitions. Besides, these mix-
tures are also sufficiently important as model system for investi-
gations of biological function and processes. Unfortunately,
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many problems of physics and physicochemistry of such
lyotropic liquid crystalline systems with specific micelles have
not been sufficiently investigated.

Alkyltrimethylammonium bromide amphiphiles
{hexadecyltrimethylammonium bromide (HDTMABr),
tetradecyltrimethylammonium bromide (TDTMABr), and
dodecyltrimethylammonium bromide (DDTMABr)} are suffi-
ciently important materials for scientific investigations and appli-
cation in techniques and technology. The point is that such am-
phiphiles form colloid systems with isometric and anisometric
micelles of normal and inverse shapes in water and water +
aliphatic alcohol mixtures. Such systems exhibit physically iso-
tropic phases and physically anisotropic mesophases. The phase
diagrams and peculiarities of phases and mesophases in
HDTMABr + water (H2O) and HDTMABr + H2O + aliphatic
alcohol are presented in [12–20]. The phase diagrams and pecu-
liarities of phases and mesophases have been given for low con-
centration of aliphatic alcohol and high concentration of H2O,
namely, for the aliphatic alcohol/H2O concentration ratios as 0 ≤
c ≤ 0.12 [12–20]. Unfortunately, scientific information about
phase states, physical and physicochemical properties of isotro-
pic phases, and anisotropic mesophases in lyotropic mixtures for
the aliphatic alcohol/H2O concentration ratio as c> 1.0 is absent.

In this work, we are interested in shape of micelles in
HDTMABr + 1-decanol (DeOH) + H2O lyotropic system
and type of liquid crystalline mesophase for the DeOH/H2O
concentration ratio as c > 1.0. The typical textures, depen-
dences of the magneto-morphologic properties vs. time, and
also temperature and concentration dependences of the optical
refractive index have been investigated. The effect of the
DeOH/H2O concentration ratio on absolute value of the elec-
trical conductivity anisotropy and on the refractive index in
HDTMABr + DeOH + H2O lyotropic system has been
estimated.

Experimental

Materials and samples

Ionic amphiphile HDTMABr with molecular formula as
CH3(CH2)15N(Br)(CH3)3 (cat. No. SigmaUltra H9151) was
purchased from Sigma. DeOH (cat. No. 803463), which was
used as the general solvent, was purchased from Merck.
HDTMABr was characterized by the CMC value as 0.90 ·
10−4 mol L−1. HDTMABr and DeOH have the high degree
of purity (non less than 99%) and therefore were used without
further purification. Water, which was used as polar solvent,
was triple distilled and deionized.

The preparation process of the lyotropic mixtures under
investigations followed known procedure. HDTMABr and
water were weighted into glass ampoules by a precision bal-
ance with an accuracy of ±10−4 g. The mixtures were kept in

thermostat at 308.0 ± 0.1 K for homogenization. After homog-
enization of binary mixtures, DeOH was added in these mix-
tures. Both binary and ternary lyotropic mixtures were peri-
odically mixed by a shaker in hermetically closed ampoule.
Homogeneity of the obtained lyotropic mixtures was con-
trolled by the crossed polarizers and by study of the typical
textures, using a polarizing optical microscopy.

For investigation of the magneto-morphologic properties
of lyotropic liquid crystalline mesophase under investigation,
the microslide samples as the sandwich cell were used. The
thickness of liquid crystalline layer, which was placed be-
tween reference surfaces of the sandwich cell, was
100.0 ± 0.1 μm. The samples were hermetically closed at once
after filling by lyotropic mixture.

Methods

In this work, for the study of the magneto-morphologic prop-
erties of lyotropic mixtures under investigations, the magneto-
optical setup has been used. A permanent magnet from Lebold
was used for the experiments to obtain magnetically induced
textures and for investigations of the magneto-morphologic
properties. The magnetic field as H = 0.93 T was available.
Magnetic field was applied perpendicularly to the reference
surfaces of the sandwich cells and accordingly perpendicular-
ly to the liquid crystalline layer. During the magnetic field
influence, the samples were kept at a stable temperature as
302.5 ± 0.1 K.

Investigations of the thermomorphologic properties of
HDTMABr + DeOH lyotropic system with additions of 1-
decanol have been carried out by the polarizing optical mi-
croscopy (POM) method. As is known, the POM method is a
sufficiently convenient and informative method for investiga-
tion of the mesomorphic and morphologic properties of liquid
crystalline phases and mesophases [1, 21–23]. Our setup
consisted of a trinocular polarizing microscope with
orthoscopic/conoscopic observations, microphotographic sys-
tem, and Berek compensator from Olympus Optical Co.,
Cannon 6D digital system, optical filters, λ-plates
(λ = 137 μm and λ = 530 μm), quartz plate, heater thermostat
with a digital temperature control system, differential Cu–Co
thermocouples, power supply, and multimeters.

In this work, the temperature dependences of the refractive
index for lyotropic mixtures have been measured. For these
measurements, the polythermic refractometry setup, based on
an Atago Abbe refractometer, has been used. Accuracy for the
refractive index measurements was 0.1%. The temperature
changes of Abbe refractometer have been carried out by recir-
culation immersion thermostat Ultraterm 200. Temperature of
mixtures under investigation was controlled by the Atago dig-
ital temperature controller with accuracy as ±0.1 K.

For the determination of the shape of micelles in lyotropic
mixtures under investigation, the method of the electrical
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conductivity anisotropy in the orientational shear flow has
been used. The principles of this classic method were de-
scribed in detail in [24–27]. This method was modified by
us and allowed to measure the electrical conductivity values
simultaneously in both parallel and perpendicular directions to
the shear flow. The setup was also capable for investigation of
the dynamics of orientational processes in lyotropic liquid
crystalline mesophases [28, 29]. The method, which has been
used in this work, is connected with the anisometricity of
micelles in lyotropic liquid crystalline systems. This method
is based on the fact that anisometric micelles with the plate-
like and rod-like shapes exhibit the translational mobility in
the shear flow [24–27]. The sum of changes of the electrical
conductivity for both the plate-like and rod-likemicelles in the
three mutually perpendicular directions (i.e., X-, Y-, and Z-
directions) should be equal to zero [24–27, 30, 31]. The con-
nection between the electrical conductivity in these directions
is as follows:
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for the plate-like and rod-like micelles, accordingly. As
seen from Eqs. (1) and (2), estimation of the shape of the
anisometric micelles is sufficient to determine the electrical
conductivity in two directions, i.e., in direction of the shear
flow (X-direction) and in direction perpendicular to the shear
flow (Y-direction).

Results and discussion

In this work, five mixtures of HDTMABr + DeOH lyotropic
system with additions of H2O have been used. Compositions
of lyotropic mixtures are presented in Table 1. These compo-
sitions were chosen for obtaining of lyotropic mesophase with
micelles, which consist of low concentration of water and
large concentration of aliphatic alcohol. We would like to note
that HDTMABr + H2O + DeOH lyotropic liquid crystalline
system with low concentration of DeOH and high concentra-
tion of H2O exhibits isotropic micellar L1 phase, hexagonal E
phase, lyotropic nematic phase, and lamellar D mesophases
[15, 18, 32].

In Fig. 1, textures of S1–S5 samples are presented. As seen
in this figure, textures of these samples consist of the so-
named Boily streak^ formations. As is known, texture with
the oily streak formations is the most common texture for
layered liquid crystalline mesophases and was observed only
for such mesophases [22, 33–39]. The oily streaks are the

bright birefringent bands. These bands consist of small con-
focal formations and form the network on the pseudoisotropic
background. Textures with the oily streaks have been also
observed by various researches in thermotropic cholesteric
mesophase and lyotropic lamellar mesophase [22, 40–47].
As an example, in Fig. 2, textures with the oily streak forma-
tions, which have been obtained by us for lamellar D
mesophase and thermotropic cholesteric mesophase, are pre-
sented. As seen from comparison Figs.1 and 2a, the morpho-
logical peculiarities of these textures have both some differ-
ences and some common peculiarities. In Fig. 1, the destroyed
and bundle oily streak formations, which form dense net, are
observed. In Fig. 2b, classic texture of thermotropic cholester-
ic mesophase with the oily streak formations is observed.
Investigations showed that the morphological and optical pe-
culiarities of textures, which are presented in Figs. 1 and 2a,
are also quite different from texture, which is presented in
Fig. 2b. Namely, the background of texture in Fig. 2b has
planar alignment and is optically active. Optical activity of
texture with the oily streaks in cholesteric mesophase is typi-
cal peculiarity for mesophases with the chiral structure of
mesophase [22, 39–41]. Besides, the optical investigations
showed that the optical sign of the planar aligned background
in this texture (Fig. 2b) (i.e., sign of the birefringence) is neg-
ative. But, as it is noted earlier, the background in textures
with the oily streaks in Figs. 1 and 2a is pseudoisotropic.
Thus, it can be concluded that textures, which are presented
in Fig. 1, are typical for mesophase with layered structure and
are typical for lyotropic lamellar mesophase.

As seen from the comparison of the oily streak textures in
Fig. 1, textures of S1–S5 samples are of the same type but
have some differences in the morphologic properties. Namely,
the density of the oily streak formations and small confocal
formations in volume of the sandwich cell is different.
Comparison of the density of the oily streak formations with
component compositions of the previously mentioned sam-
ples showed that an increase of the DeOH/H2O concentration
ratio in HDTMABr + DeOH + H2O lyotropic liquid crystal-
line system leads to an increase of this density in S1–S5 sam-
ples. Thus, an increase of DeOH concentration in the

Table 1 Compositions of lyotropic liquid crystalline mixtures

Samples Compositions (wt%) 1-Decanol/water ratio

HDTMABr 1-Decanol Water

S1 40 32.00 28.00 1.14

S2 40 35.00 25.00 1.40

S3 40 38.00 22.00 1.73

S4 40 40.00 20.00 2.00

S5 40 42.00 18.00 2.33
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previously mentioned lyotropic mixtures is an efficient way
for an increase of the optical density of texture of mesophase
under investigation.

As is mentioned earlier, for the determination of the shape
of micelles in lyotropic liquid crystalline system under inves-
tigation, the character of the electrical conductivity anisotropy
in the orientational shear flow has been investigated. As an
example, in Fig. 3, dependences of the electrical conductivity
anisotropy vs. the rotational frequency for samples S1, S3, and
S5 in the X- and Z-directions are presented. As seen in this

figure, the values of the electrical conductivity anisotropy in
the X-direction are about two times bigger than that in the Y-
direction. Such correlation between dependences for the X-
direction and Y-direction corresponds to the Eq. (1) and indi-
cates the fact that micelles of lyotropic mixtures under inves-
tigations have plate-like shapes [24, 25, 29, 48, 49]. Besides,
as seen in Fig. 3, the absolute value of the electrical conduc-
tivity anisotropy of the samples under investigations increases
with an increase of the rotational frequency in both X-
direction (i.e., along the direction of the velocity gradient)

Fig. 1 Microphotographs of liquid crystalline textures in HDTMABr +DeOHmixture with addition of H2O. a Sample S1. b Sample S2. c Sample S3. d
Sample S4. e Sample S5. Temperature 302.5 K. Crossed polarizer and analyzer. Magnification ×100
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and Y-direction (i.e., perpendicular to the velocity gradient).
This increase is connected with an increase of the orientation
degree of micelles under influence of the shear flow. Then, at
definite rotational frequency values, the linear behavior of the
electrical conductivity anisotropy takes place for all of the
investigated samples. Such situation corresponds to full orien-
tation of micelles in the shear flow.

Besides, as seen in Fig. 3, the behavior of the electrical
conductivity anisotropy vs. the rotational frequency depends
on the concentration ratio of component of lyotropic mixtures
under investigation. In Fig. 4, dependences of the absolute

value of the electrical conductivity anisotropy vs. the
DeOH/H2O concentration ratio are presented. As seen in this
figure, an increase of the DeOH/H2O concentration ratio in
HDTMABr + DeOH + H2O lyotropic liquid crystalline sys-
tem leads to a decrease of the absolute value of the electrical
conductivity anisotropy in samples S1–S5. An increase of
DeOH concentration in samples under investigation (i.e., an
increase of the DeOH/H2O concentration ratio) leads obvious-
ly to a change of number of micelles in volume of liquid
crystalline system, to a change of distance between the plate-
like micelles and to a change of interaction between micelles
and the counter ions [6, 45, 48]. In consequence of these
changes, the anisometricity of micelles is changed. Besides,
as is known, an increase of concentration of components in
lyotropic liquid crystalline system leads to a change of the
order degree of polar parts and non-polar chains of amphiphile
molecules in micelles [45, 47, 50]. Such effects lead to a
change of the electrical conductivity and, accordingly, to a

Fig. 2 Typical textures with Boily streaks.^ a Lyotropic lamellar mesophase of HDTMABr + H2O + DeOHmixture with low concentration of DeOH. b
Thermotropic cholesteric mesophase. Crossed polarizer and analyzer. Magnification ×100

Fig. 3 The electrical conductivity anisotropy vs. rotational frequency for
samples S1 (a), S3 (b), and S5 (c)

Fig. 4 Dependences of absolute value of the electrical conductivity
anisotropy vs. DeOH/H2O concentration ratio in HDTMABr + DeOH
+ H2O lyotropic system. a X-direction. b Y-direction
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change of the electrical conductivity anisotropy in lyotropic
mesophases.

Additionally, a change of the DeOH/H2O concentration
ratio leads to a change of the thicknesses of DeOH and H2O
layers in micelles of lamellar mesophase. In Fig. 5, schematic
representation of micelles for the DeOH/H2O <1.0 and
DeOH/H2O >1.0 concentration ratios is presented. As is

indicated in [51–54], because of the flexibility of the non-
polar part of amphiphile molecule, thickness of micelles
(i.e., double length of amphiphile molecule) decreases with
addition of aliphatic alcohol. Therefore, we can infer that such
changes in the shape and sizes of micelles lead to a change of
the physical and physicochemical properties of lyotropic
systems.

Fig. 5 Schematic sketch of
micelles in lamellar mesophase of
HDTMABr + DeOH + H2O
lyotropic system for case of the
DeOH/H2O <1.0 (a) and
DeOH/H2O >1.0 (b)
concentration ratios

Fig. 6 Magnetically induced textures of sample S1. a 1.5 h in magnetic field. b 4.5 h in magnetic field. c 7.0 h in magnetic field. d 24.0 h in magnetic
field. Temperature 302.3 K. Magnification ×100. Crossed polarizer and analyzer
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In this work, the magneto-morphologic properties of sam-
ples S1–S5 have been investigated. Investigations showed that
the external magnetic field has some influence on the morpho-
logic properties of S1 and S2 samples and is some efficient for
obtaining the non-equilibrium magnetically induced textures.
But such field has no sufficient influence on the morphologic
properties of S3, S4, and S5 samples. As an example, in
Figs. 6, 7 and 8, texture transformations under influence of
magnetic field for S1, S2, and S5 samples are presented. As
seen in Fig. 6, transformations of the oily streak formations
and destruction of the network of these formations take place.
As the results of these transformations, a system of small
confocal formations is formed. During these transformations,
the pseudoisotropic background of textures was kept. Thus,
the external magnetic field is effective for realization of the
oily streak formations → the system of scattered confocal
formation morphologic transformations in lyotropic mixtures
under investigations. We would like to note that investigation
of the magneto-morphologic properties of lamellar D
mesophase in lyotropic liquid crystalline system amphiphile
+ H2O + DeOHwith low concentration of DeOH showed that
the external magnetic field has low effect on the morphologic
properties of lamellar mesophase D [44]. As seen in Figs. 7

and 8, sufficient transformations of typical textures and chang-
es of types of textures have not been observed for S3, S4, and
S5 samples. Thus, an increase of DeOH concentration in
HDTMABr + DeOH + H2O lyotropic liquid crystalline sys-
tem caused a decrease of sensitivity of lyotropic mixture to the
external magnetic field.

Investigations of the thermomorphologic properties of the
reverse isotropic liquid–lyotropic mesophase phase transition
in S1–S5 samples showed that in the biphasic region of this
transition, the elongated germs of the mesophase under inves-
tigation have been observed (Fig. 9). These germs of the
mesophase are so-named Bbatonnets^ and arise in temperature
region of isotropic liquid. Optical investigations by the quartz
wedge showed that these batonnets are optically uniaxial and
have positive optical sign. Availability of such formations indi-
cates the layered structure of liquid crystalline mesophase. Such
batonnets have been observed by various scientists at the ther-
motropic phase transition from isotropic liquid to layered liquid
crystalline mesophase [22, 55, 56]. The availability of the
batonnets in region of the isotropic liquid–lyotropic mesophase
phase transition in samples under investigations, also as a char-
acter of the electrical conductivity anisotropy in the shear flow,
indicates the availability of the layered structure of lyotropic

Fig. 7 Magnetically induced textures of sample S3. a 1.5 h in magnetic field. b 4.5 h in magnetic field. c 7.0 h in magnetic field. d 24.0 h in magnetic
field. Temperature 303.0 K. Magnification ×100. Crossed polarizer and analyzer
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mesophase in S1–S5 samples, i.e., availability of lamellar
mesophase in mixtures under investigations.

In this work, we are also interested in the temperature and
concentration behavior of the optical refractive index {n =
n(T) and n = n(c), accordingly} in HDTMABr + DeOH +
H2O lyotropic liquid crystalline system. Investigations

showed that this index linearly decreases with an increase of
temperature for all the investigated samples (Fig. 10). Such
character of the n = n(T) dependences in S1–S5 samples indi-
cates the stabile decrease of the refractive properties in
lyotropic mixtures with large content of aliphatic alcohol.
Besides, as seen in Fig. 10, a change of the DeOH/H2O

Fig. 8 Magnetically induced textures of sample S5. a 1.5 h in magnetic field. b 4.5 h in magnetic field. c 7.0 h in magnetic field. d 24.0 h in magnetic
field. Temperature 302.5 K. Magnification ×100. Crossed polarizer and analyzer

Fig. 9 a Region of the lamellar mesophase–isotropic liquid phase transition. b, c Batonnets in the lamellar mesophase–isotropic liquid phase transition.
Magnification ×200. Crossed polarizer and analyzer
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concentration ratio with constant concentration of HDTMABr
leads to a change of value of the optical refractive index.
Namely, an increase of the DeOH/H2O concentration ratio
leads to a decrease of the refractive properties of lyotropic
mixtures under investigations. The concentration depen-
dences of the refractive index n = n(c) for S1–S5 samples at
constant temperature conditions are presented in Fig. 11. As
seen in this figure, the refractive index for these samples at
constant temperature condition exhibits the linear decrease
with an increase of the DeOH/H2O concentration ratio. By
that, the interval of change of the refractive index for the
presented temperatures is the same, i.e., as δn ≈ 0.0056
(Fig. 11). Thus, the variation of the DeOH/H2O concentration
ratio is an effective way for change of the refracting properties
in lyotropic system HDTMABr + DeOH with additions of
H2O; i.e., by variation of the DeOH/H2O concentration ratio,
it is possible to control the temperature and concentration
dependences of the refracting properties in lyotropic
mesophase of HDTMABr + DeOH + H2O lyotropic liquid
crystalline system.

Summary

The results obtained in this work can be summarized as follows:
HDTMABr + DeOH lyotropic mixtures with low concen-

tration of H2O exhibit textures with the oily streak formations.
Such type of textures is typical for liquid crystalline
mesophases with layered structures. Textures of HDTMABr
+ DeOH + H2O lyotropic mixtures with the oily streaks have
morphologic peculiarities, which are some different from such
textures of lamellar mesophase in lyotropic mixtures of
HDTMABr + H2O with low concentration of DeOH. An in-
crease of DeOH concentration in HDTMABr + DeOH + H2O
lyotropic mixtures leads to an increase of density of the oily
streak formations and number of small confocal formations.

Studies of shapes of micelles in HDTMABr + DeOH
lyotropic liquid crystalline system with additions of H2O by
method of the electrical conductivity anisotropy in the shear
flow showed that these micelles in S1–S5 samples have the
plate-like shapes. An increase of the DeOH/H2O concentra-
tion ratio in lyotropic liquid crystalline system under investi-
gations leads to a decrease of the absolute value of the elec-
trical conductivity anisotropy in S1–S5 samples.

The external magnetic field has an effect on typical textures of
lyotropic mesophase in the investigated lyotropic liquid crystal-
line system. Such field leads to the oily streak formations→ the
system of scattered confocal formation morphologic transforma-
tions in lyotropic mixtures under investigations.

Temperature dependences of the refractive index exhibit the
linear decrease with an increase of temperature. An increase of
the DeOH/H2O concentration ratio in lyotropic liquid crystal-
line system leads to a decrease of the refractive properties of
S1–S5 samples. By variation of the DeOH/H2O concentration
ratio, it is possible to control the temperature and concentration
dependences of the refracting properties in lyotropic mesophase
of HDTMABr + DeOH + H2O lyotropic liquid crystalline
system.

Fig. 10 Temperature
dependences of the refractive
index for samples S1 (a), S2 (b),
S3 (c), S4 (d), and S5 (e)

Fig. 11 Dependences of the refractive index vs. DeOH/H2O ratio. a
313.0 K. b 323 K. c 333.0 K
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