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Abstract

In this study, sinc-collocation method is introduced for solving Volterra-Fredholm integro-
differential equations of fractional order. Fractional derivative is described in the Caputo
sense. Obtained results are given to literature as a new theorem. Some numerical examples
are presented to demonstrate the theoretical results.
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1 Introduction

Many problems, in science and engineering such as earthquake engineering, biomedical engineering,
fluid mechanics can be modeled by fractional integro-differential equations. In order to better
analysis these systems, it is required to obtain the solution of these equations. But, achieving
the analytical solution of these equations can not be possible. Therefore, finding more accurate
solutions using numerical schemes can be helpful. Some numerical algorithm for solving integro-
differential equation of fractional order can be summarized as follows: but not limited to; Adomian
decomposition method [16, 18, 19], Laplace decomposition method [32], Taylor expansion method
[9], least squares method [17] differential transform method [5, 21], Spectral collocation method
[14], Legendre wavelets method [24, 26], Haar wavelets method [7], Chebyshev wavelets method
[29, 33, 37], piecewise collocation methods [23, 36], Chebyshev pseudo-spectral method [10, 31],
homotopy analysis method [1, 35, 38], homotopy perturbation method [6, 20, 25] and variational
iteration method [6, 20].

The main advantage of the sinc-collocation method than other methods is that sinc-collocation
method provides a much better rate of convergence and more efficient results in the presence of
singularity. For more details about the sinc-collocation method see [2, 3, 4, 34].

Particulary, in the present paper, as an original contribution to literature, sinc-collocation
method is introduced for solving linear Volterra-Fredholm integro-differential equations of frac-
tional order. Examined integro-differential equations in the present paper include singularities at
some points. Obtained results are given in the form of a new theorem. Some numerical examples
in the form of graphs and tables are given to illustrate the theoretical results.

In this study, Volterra-Fredholm integro-differential equations of fractional order are considered
as follows:

µ2(x)y′′+µ1(x)y′+µα(x)Dα
xy+µ0(x)y =f(x)+λ1

∫ x

a

K1(x, t)y(t)dt+λ2

∫ b

a

K2(x, t)y(t)dt, 0 < α ≤ 1

(1.1)
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in which Dα
x is the Caputo sense fractional derivative. Eq.(1.1) is subject to following homogeneous

boundary conditions
y(a) = 0, y(b) = 0, a < x < b.

The structure of this paper is organized as follows; In section 2, some preliminaries and basic
definitions related to fractional calculus and sinc functions are recalled. In the next section, sinc-
collocation method is constructed for solving integro-differential equations of fractional order. In
section 4, numerical examples are presented. Finally, conclusions and remarks are given in the
section 5.

2 Preliminaries

In this section, some preliminaries and notations related to fractional calculus and sinc basis func-
tions are given. For more details see [8, 11, 12, 13, 15, 22, 27, 28, 30].

Definition 2.1. Let f : [a, b]→ R be a function, α a positive real number, n the integer satisfying
n − 1 ≤ α < n, and Γ the Euler gamma function. Then, the left Caputo fractional derivative of
order α of f(x) is given as follows:

Dα
xf(x) =

1

Γ(n− α)

∫ x

a

(x− t)n−α−1f (n)(t)dt. (2.1)

Definition 2.2. The Sinc function is defined on the whole real line −∞ < x <∞ by

sinc(x) =

{
sin(πx)
πx x 6= 0

1 x = 0.

Definition 2.3. For h > 0 and k = 0,±1,±2, ... the translated sinc function with space node are
given by:

S(k, h)(x) = sinc
(x− kh

h

)
=

 sin
(
π x−khh

)
π x−khh

x 6= kh

1 x = kh.

To construct approximation on the interval (a, b) the conformal map

ϕ(z) = ln
(z − a
b− z

)
is employed. The basis functions on the interval (a, b) are derived from the composite translated
sinc functions

Sk(z) = S(k, h)(z) ◦ ϕ(z) = sinc
(ϕ(z)− kh

h

)
.

The inverse map of w = ϕ(z) is

z = ϕ−1(w) =
a+ bew

1 + ew
.

The sinc grid points zk ∈ (a, b) will be denoted by xk because they are real. For the evenly spaced
nodes {kh}∞k=−∞ on the real line, the image which corresponds to these nodes is denoted by

xk = ϕ−1(kh) =
a+ bekh

1 + ekh
, k = 0,±1,±2, ...
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Definition 2.4. An open set S ⊆ C is called connected if it cannot be written as the union of two
disjoint open sets A and B such that both A and B intersect S. An open set S ⊆ C is called simply
connected if C \ S, where C is the extended complex plane denoted C ∪ {∞}, is connected.

Definition 2.5. Let DE be a simply connected domain in the complex plane C, and let ∂DE

denote the boundary of DE . Let a, b be points on ∂DE and ϕ be a conformal map DE onto DS

such that ϕ(a) = −∞ and ϕ(b) =∞. If the inverse map of ϕ is denoted by ϕ, define

Γ = {ϕ−1(u) ∈ DE : −∞ < u <∞}

and zk = ϕ(kh), k = 0,±1,±2, ...

Definition 2.6. Let B(DE) be the class of functions F that are analytic in DE and satisfy∫
ψ(L+u)

|F (z)|dz →, asu = ∓∞,

where
L =

{
iy : |y| < d ≤ π

2

}
,

and those on the boundary of DE satisfy

T (F ) =

∫
∂DE

|F (z)dz| <∞.

Theorem 2.7. Let Γ be (0, 1), F ∈ B(DE), then for h > 0 sufficiently small,∫
Γ

F (z)dz − h
∞∑

j=−∞

F (zj)

ϕ′(zj)
=
i

2

∫
∂D

F (z)k(ϕ, h)(z)

sin(πϕ(z)/h)
dz ≡ IF (2.2)

where

|k(ϕ, h)|z∈∂D =
∣∣∣e[ iπϕ(z)

h sgn(Imϕ(z))
]∣∣∣
z∈∂D

= e
−πd
h .

For the term of fractional in (1.1), the infinite quadrature rule must be truncated to a finite sum.
The following theorem indicates the conditions under which an exponential convergence results.

Theorem 2.8. If there exist positive constants α, β and C such that∣∣∣ F (x)

ϕ′(x)

∣∣∣ ≤ C { e−α|ϕ(x)| x ∈ ψ((−∞,∞))
e−β|ϕ(x)| x ∈ ψ((0,∞)).

(2.3)

then the error bound for the quadrature rule (2.3) is

∣∣∣ ∫
Γ

F (x)dx− h
N∑

j=−M

F (xj)

ϕ′(xj)

∣∣∣ ≤ C(e−αMh

α
+
e−βNh

β

)
+ |IF | (2.4)
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The infinite sum in (2.3) is truncated with the use of (2.4) to arrive at the inequality (2.5).
Making the selections

h =

√
πd

αM

N ≡
[⌊αM

β
+ 1
⌋]

where [b.c] is an integer part of the statement and M is the integer value which specifies the grid
size, then ∫

Γ

F (x)dx = h
N∑

j=−M

F (xj)

ϕ′(xj)
+O

(
e−(παdM)1/2

)
. (2.5)

We used these theorems to approximate the kernel integral and the arising integral in the formula-
tion of the term fractional in (1.1).

Lemma 2.9. Let ϕ be the conformal one-to-one mapping of the simply connected domain DE

onto DS , given by (2.2). Then

δ
(0)
jk = [S(j, h)oϕ(x)]|x=xk

{
1 j = k
0 j 6= k.

δ
(1)
jk = h

d

dϕ
[S(j, h)oϕ(x)]

∣∣∣
x=xk

{
0 j = k
(−1)k−j

k−j j 6= k.

δ
(2)
jk = h2 d2

dϕ2
[S(j, h)oϕ(x)]

∣∣∣
x=xk

{
−π

2

3 j = k
−2(−1)k−j

(k−j)2 j 6= k.

3 The sinc-collocation method

Let us assume an approximate solution for y(x) in Eq.(1.1) by finite expansion of sinc basis functions
for as follows;

yn(x) =
N∑

k=−M

ckSk(x), n = M +N + 1 (3.1)

where Sk(x) is the function S(k, h)◦ϕ(x). Here, the unknown coefficients ck in (3.1) are determined
by sinc-collocation method via the following theorems.

Theorem 3.1. The first and second derivatives of yn(x) are given by

d

dx
yn(x) =

N∑
k=−M

ckϕ
′(x)

d

dϕ
Sk(x) (3.2)

d2

dx2
yn(x) =

N∑
k=−M

ck

(
ϕ′′(x)

d

dϕ
Sk(x) + (ϕ′)2 d2

dϕ2
Sk(x)

)
(3.3)

respectively.
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Theorem 3.2. If ξ is a conformal map for the interval [a, x], then α order derivative of yn(x) for
0 < α < 1 is given by

Dα
x (yn(x)) =

N∑
k=−M

ckD
α
x (Sk(x)) (3.4)

where

Dα
x (Sk(x)) ≈ hL

Γ(1− α)

L∑
r=−L

(x− xr)S′k(xr)

ξ′(xr)

Proof. If we use the definition of Caputo fractional derivative given in (2.1), it is written that

Dα
x (yn(x)) =

N∑
k=−M

ckD
α
x (Sk(x))

where

Dα
x (Sk(x)) =

1

Γ(1− α)

∫ x

a

(x− t)−αS′k(t)dt

Now we use quadrature rule given by (2.5) to compute the above integral which is divergent on the
interval [a, x]. For this purpose, a conformal map and its inverse image that denotes the sinc grid
points are given by

ξ(t) = ln
( t− a
x− t

)
and

xr = ξ−1(rhL) =
a+ xerhL

1 + erhL

where hL = π/
√
L. Then, according to equality (2.5), we can write

Dα
x (Sk(x)) ≈ hL

Γ(1− α)

L∑
r=−L

(x− xr)S′k(xr)

ξ′(xr)

This completes the proof. q.e.d.

Application of equality (2.5) to the kernel integral in (1.1) gives the following two lemmas.

Lemma 3.3. The following relation holds∫ xj

a

K1(x, t)y(t)dt ≈ h
N∑

k=−M

δ
(−1)
jk

K1(xj , tk)

ϕ′(tk)
yk (3.5)

where

σjk =

∫ j−k

0

sinπt

πt
dt

δ
(−1)
jk =

1

2
+ σjk

and yk denotes an approximate value of y(tk).
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Lemma 3.4. The following relation holds∫ b

a

K2(x, t)y(t)dt ≈ h
N∑

k=−M

K2(x, tk)

ϕ′(tk)
yk (3.6)

where yk denotes an approximate value of y(tk).

Replacing each term of (1.1) with the approximation given in (3.1)-(3.6), we obtain the following
system

N∑
k=−M

[
ck

{
µ2(x)

(
ϕ′′(x)

d

dϕ
Sk(x) + (ϕ′(x))2 d2

dϕ2
Sk(x)

)
+ µ1(x)ϕ′(x)

d

dϕ
Sk(x) + µα(x)Dα

x (Sk(x))

+ µ0(x)Sk(x)− λ1hδ
(−1)
jk

K1(x, tk)

ϕ′(tk)
− λ2h

K2(x, tk)

ϕ′(tk)

}]
= f(x)

Then, multiplying the resulting equation by {(1/ϕ′(x))2}, we obtain

N∑
k=−M

[
ck

{
µ2(x)

d2

dϕ2
Sk(x) +

(
µ2(x)

ϕ′′(x)

(ϕ′(x))2
+ µ1(x)

1

ϕ′(x)

) d

dϕ
Sk(x) + µα(x)

( 1

ϕ′(x)

)2

Dα
x (Sk(x))

+ µ0(x)
( 1

ϕ′(x)

)2

Sk(x)− λ1hδ
(−1)
jk

K1(x, tk)

ϕ′(x)2ϕ′(tk)
− λ2h

K2(x, tk)

ϕ′(x)2ϕ′(tk)

}]
= f(x)

( 1

ϕ′(x)

)2

Here, by using the following equality

ϕ′′(x)

(ϕ′)2
= −

( 1

ϕ′(x)

)′
we can write

N∑
k=−M

[
ck

{ 2∑
i=0

gi(x)
di

dϕi
Sk + g3(x)Dα

x (Sk(x)) + g4(x)δ
(−1)
jk

K1(x, tk)

ϕ′(tk)
+ g5(x)

K2(x, tk)

ϕ′(tk)

}]
=

(
f(x)

( 1

ϕ′(x)

)2
)

where

g0(x) = µ0(x)
( 1

ϕ′(x)

)2

g1(x) =

[
µ1(x)

( 1

ϕ′(x)

)
− µ2(x)

( 1

ϕ′(x)

)′]
g2(x) = µ2(x)

g3(x) = µα(x)
( 1

ϕ′(x)

)2

g4(x) = −λ1h
( 1

ϕ′(x)

)2

g5(x) = −λ2h
( 1

ϕ′(x)

)2
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It’s known from [18] that

δ
(0)
jk = δ

(0)
kj , δ

(1)
jk = −δ(1)

kj , δ
(2)
jk = δ

(2)
kj

So, we obtain the following theorem.

Theorem 3.5. If the assumed approximate solution of boundary value problem (1.1) is (3.1), then
the discrete sinc-collocation system for the determination of the unknown coefficients {ck}Nk=−M is
given by

N∑
k=−M

[
ck

{ 2∑
i=0

gi(xj)

hi
δ

(i)
jk + g3(xj)D

α
x (Sk(xj)) + g4(xj)δ

(−1)
jk

K1(xj , tk)

ϕ′(tk)
+ g5(xj)

K2(xj , tk)

ϕ′(tk)

}]
=

(
f(xj)

( 1

ϕ′(xj)

)2
)
, j = −M, ..., N (3.7)

We now introduce some notations to rewrite in the matrix form for system (3.7). Let D(y)
denotes a diagonal matrix whose diagonal elements are y(x−M ), y(x−M+1), , y(xN ) and non-diagonal
elements are zero, let

G = Dα
x (Sk(xj))

E1 =
K1(xj , tk)

(ϕ′(xj))2ϕ′(tk)

and

E2 =
K2(xj , tk)

(ϕ′(xj))2ϕ′(tk)

denote a matrix and also let I(i) denote the matrices

I(i) = [δ
(i)
jk ], i = −1, 0, 1, 2

where D,G,E1,E2, I
(−1), I(0), I(1) and I(2) are square matrices of order n×n. In order to calculate

unknown coefficients ck in linear system (3.7), we rewrite this system by using the above notations
in matrix form as

Ac = B (3.8)

where

A =
2∑
i=0

1

hi
D(gi)I

(i) + D(g3)G + D(g4)(E1 ◦ I(−1)) + D(g5)E2

B = D

(
f

(ϕ′)2

)
1

c = (c−M , c−M+1, ..., cN )T

The notation ” ◦ ” denotes the Hadamard matrix multiplication. Now we have linear system of n
equations in the n unknown coefficients given by (3.8). We can find the unknown coefficients ck by
solving this system.
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Table 1: Absolute errors for Example 1 for N = 32 and different values of α

x α = 0.1 α = 0.5 α = 0.9

0.1 3.395× 10−3 1.945× 10−3 1.181× 10−3

0.2 6.465× 10−3 3.602× 10−3 2.170× 10−3

0.3 8.649× 10−3 4.551× 10−3 2.774× 10−3

0.4 9.362× 10−3 4.411× 10−3 2.814× 10−3

0.5 8.227× 10−3 3.016× 10−3 2.205× 10−3

0.6 5.285× 10−3 5.421× 10−4 1.018× 10−3

0.7 1.175× 10−3 2.394× 10−3 4.705× 10−4

0.8 2.719× 10−3 4.665× 10−3 1.728× 10−3

0.9 4.167× 10−3 4.607× 10−3 1.947× 10−3

4 Computational examples

In this section, two problems that have homogeneous boundary conditions will be tested by using
the present method via Mathematica10. In the first example a problem that has the known exact
solution for integer order derivative case is considered. So one could compare the obtained results
from the proposed numerical algorithm with the exact solution. Then the second example is given
to show the efficiency of the proposed method for the singular problems. In the both examples, we
take h = π/

√
N,L = N = M .

Example 1. Let us first consider the linear fractional integro-differential equation

y′′(x) +Dα
xy(x) = f(x)− 2

∫ x

0

K1(x, t)y(t)dt+

∫ 1

0

K2(x, t)y(t)dt

subject to the homogeneous boundary conditions

y(0) = 0, y(1) = 0

where f(x) = − 1
30 − 6x+ 181x2

20 + 4x3 − x5

10 + x6

15 , K1(x, t) = x− t and K2(x, t) = x2 − t. The exact
solution of this problem for α = 1 is y(x) = x3(x− 1). The numerical solutions which are obtained
by using the present method for N = 32 and different values of α are presented in Table 1. Also,
the graphs of approximate solutions for different values of α are given in Figure 1. Graphs in Figure
1 show that when α approaches to 1, the corresponding solutions of fractional order differential
equation approach to the solutions of integer order differential equation.
Example 2. Consider the linear singular fractional integro-differential equation

y′′(x) +
1

x
D0.5
x y(x) +

1

x2
y(x) = f(x) +

∫ x

0

K1(x, t)y(t)dt+

∫ 1

0

K2(x, t)y(t)dt

subject to the homogeneous boundary conditions

y(0) = 0, y(1) = 0
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Figure 1: Graphs of approximate solutions for Example 1 for N = 32 and different values of α

where f(x) = 5+1.50451x0.5−13x−1.80541x1.5−x2+x3−2.0674 cos (x)+5.95385 sin(x), K1(x, t) =
sin (x− t) and K2(x, t) = cos(x− t). The exact solution of this problem is y(x) = x2(1− x). The
numerical solutions which are obtained by using the present method for different values of N are
presented in Table 2. Also, the graphs of approximate solutions for different values of N are given
in Figure 2.
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-0.06 

-0.08 

-0.10 
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Table 2: Absolute errors for Example 2 for different values of N

x N = 4 N = 8 N = 16 N = 32 N = 64

0.1 6.570× 10−3 1.160× 10−2 6.951× 10−4 7.309× 10−6 6.417× 10−8

0.2 2.330× 10−2 2.277× 10−2 1.546× 10−3 2.048× 10−5 2.931× 10−7

0.3 2.989× 10−2 2.678× 10−2 1.755× 10−3 2.606× 10−5 3.853× 10−7

0.4 2.690× 10−2 2.572× 10−2 1.632× 10−3 2.503× 10−5 3.915× 10−7

0.5 1.876× 10−2 2.158× 10−2 1.456× 10−3 2.221× 10−5 3.449× 10−7

0.6 1.011× 10−2 1.656× 10−2 1.209× 10−3 1.789× 10−5 2.696× 10−7

0.7 4.615× 10−3 1.223× 10−2 8.495× 10−4 1.202× 10−5 1.838× 10−7

0.8 3.697× 10−3 8.652× 10−3 5.251× 10−4 7.682× 10−6 1.011× 10−7

0.9 4.256× 10−3 4.091× 10−3 2.684× 10−4 3.034× 10−6 3.596× 10−8

(a) N = 4 (b) N = 16

(c) N = 64

Figure 2: Graphs of exact and approximate solutions for Example 2
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5 Conclusion

In this paper, sinc-collocation method is used to solve a class of fractional Volterra-Fredholm integro
differential equation. In order to illustrate the accuracy and effective of the method, it is applied
to some examples and obtained results are compared with the exact ones. The comparisons in
table and graphical forms show that the approximate solutions converge the exact ones when it
is increased that the number of sinc grid points N and the present method is a powerful tool for
solving fractional integro-differential equations with boundary conditions.

References

[1] S. Abbasbandy, M. S. Hashemi and I. Hashim, On convergence of homotopy analysis method
and its application to fractional integro-differential equations, Quaestiones Mathematicae, 36
(2013), No. 1, 93-105.

[2] S. Alkan, A new solution method for nonlinear fractional integro-differential equations, Discrete
and Continuous Dynamical Systems - Series S, 8 (2015), No. 6, 1065-1077.

[3] S. Alkan and A. Secer, Solution of nonlinear fractional boundary value problems with nonho-
mogeneous boundary conditions, Applied and Computational Mathematics, 14 (2015), No. 3,
284-295.

[4] S. Alkan, K. Yildirim and A. Secer, An efficient algorithm for solving fractional differential
equations with boundary conditions, Open Physics, 14 (2016), No. 1, 6-14.

[5] A. Arikoglu and I. Ozkol, Solution of fractional integro-differential equations by using fractional
differential transform method, Chaos, Solitons & Fractals, 40 (2009), No. 2, 521-529.

[6] A. A. Elbeleze, A. Klman and B. M. Taib, Approximate solution of integro-differential equation
of fractional (arbitrary) order, Journal of King Saud University - Science, 28 (2016), 61-68.

[7] I. Aziz and M. Fayyaz, A new approach for numerical solution of integro-differential equations
via Haar wavelets, International Journal of Computer Mathematics, 90 (2013), No. 9, 1971-
1989.

[8] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Series on Complexity, Nonlinearity and
Chaos in Fractional Calculus Models and Numerical Methods, World Scientific, 2012.

[9] L. Huang, X. F. Li, Y. Zhao,and X. Y. Duan, Approximate solution of fractional integro-
differential equations by Taylor expansion method, Computers & Mathematics with Applica-
tions, 62 (2011), No. 3, 1127-1134.

[10] M. M. Khader and N. H. Sweilam, On the approximate solutions for system of fractional
integro-differential equations using Chebyshev pseudo-spectral method, Applied Mathematical
Modelling, 37 (2013), No. 24, 9819-9828.

[11] A. Kilbas, H. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential
Equations, Elsevier, 2006.



12 S. Alkan, V. F. Hatipoglu

[12] V. Lakshmikantham, S. Leela and D. J. Vasundhara, Theory of Fractional Dynamic Systems,
Cambridge Scientific Publishers, 2009.

[13] J. Lund, and K. L. Bowers, Sinc methods for quadrature and differential equations, SIAM,
1992.

[14] X. Ma and C. Huang, Spectral collocation method for linear fractional integro-differential equa-
tions, Applied Mathematical Modelling, 38 (2014), No. 4, 1434-1448.

[15] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential
Equations, Wiley, 1993.

[16] R. C. Mittal and R. Nigam, Solution of fractional integro-differential equations by Adomian
decomposition method, The International Journal of Applied Mathematics and Mechanics, 4
(2008), No. 2, 87-94.

[17] D. S. Mohammed, Numerical Solution of Fractional Integro-Differential Equations by Least
Squares Method and Shifted Chebyshev Polynomial, Mathematical Problems in Engineering
2014 (2014).

[18] S. Momani and M. A. Noor, Numerical methods for fourth-order fractional integro-differential
equations, Applied Mathematics and Computation, 182 (2006), No. 1, 754-760.

[19] S. Momani and R. Qaralleh, An efficient method for solving systems of fractional integro-
differential equations, Computers & Mathematics with Applications, 52 (2006), No. 3, 459-470.

[20] Y. Nawaz, Variational iteration method and homotopy perturbation method for fourth-order
fractional integro-differential equations, Computers & Mathematics with Applications, 61
(2011), No. 8, 2330-2341.

[21] D. Nazari and S. Shahmorad, Application of the fractional differential transform method to
fractional-order integro-differential equations with nonlocal boundary conditions, Journal of
Computational and Applied Mathematics, 234 (2010), No. 3, 883-891.

[22] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, frac-
tional differential equations, to methods of their solution and some of their applications, Vol.
198. Academic press, 1998.

[23] E. A. Rawashdeh, Numerical solution of fractional integro-differential equations by collocation
method, Applied Mathematics and Computation, 176 (2006), No. 1, 1-6.

[24] E. A. Rawashdeh, Legendre wavelets method for fractional integro-differential equations, Ap-
plied Mathematical Sciences, 5 (2011), No. 2, 2467-2474.

[25] R. K. Saeed and H. M. Sdeq, Solving a system of linear fredholm fractional integro-differential
equations using homotopy perturbation method, Australian Journal of Basic and Applied Sci-
ences, 4 (2010), No. 4, 633-638.

[26] P. K. Sahu and S. S. Ray, A numerical approach for solving nonlinear fractional VolterraFred-
holm integro-differential equations with mixed boundary conditions, International Journal of
Wavelets, Multiresolution and Information Processing 14(2016), 1-15.



Approximate solutions of Volterra-Fredholm integro-differential equations ... 13

[27] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives. Theory and
Applications, Gordon and Breach, Yverdon, 1993.

[28] A. Secer, S. Alkan, M. A. Akinlar and M. Bayram, Sinc-Galerkin method for approximate
solutions of fractional order boundary value problems, Boundary Value Problems, 2013 (2013),
No. 1, 281.

[29] A. Setia, Y. Liu and A. S. Vatsala, Numerical solution of Fredholm-Volterra fractional integro-
differential equations wth nonlocal boundary conditions, Journal of Fractional Calculus and
Applications 5 (2014), 155-165.

[30] F. Stenger, Handbook of Sinc numerical methods, CRC Press, 2010.

[31] N. H. Sweilam and M. M. Khader, A Chebyshev pseudo-spectral method for solving fractional-
order integro-differential equations, The ANZIAM Journal, 51 (2010), No. 4, 464-475.

[32] C. Yang and J. Hou, Numerical solution of Volterra Integro-differential equations of fractional
order by Laplace decomposition method, World Academy of Science, Engineering and Technol-
ogy, International Journal of Mathematical, Computational, Physical, Electrical and Computer
Engineering, 7 (2013), 863-867.

[33] L. Yuanlu, Solving a nonlinear fractional differential equation using Chebyshev wavelets, Com-
munications in Nonlinear Science and Numerical Simulation, 15 (2010), No. 9, 2284-2292.

[34] M. Zarebnia and Z. Nikpour, Solution of linear Volterra integro-differential equations via Sinc
functions, International Journal of Applied Mathematics and Computation, 2 (2009), No. 1,
001-010.

[35] X. Zhang, B. Tang, and Y. He, Homotopy analysis method for higher-order fractional integro-
differential equations, Computers & Mathematics with Applications, 62 (2011), No. 8, 3194-
3203.

[36] J. Zhao, J. Xiao, and N. J. Ford, Collocation methods for fractional integro-differential equa-
tions with weakly singular kernels, Numerical Algorithms, 65 (2014), No. 4, 723-743.

[37] L. Zhu and Q. Fan, Solving fractional nonlinear Fredholm integro-differential equations by the
second kind Chebyshev wavelet, Communications in Nonlinear Science and Numerical Simula-
tion, 17 (2012), 2333-2341.

[38] M. Zurigat, S. Momani, A. Alawneh, Homotopy analysis method for systems of fractional
integro-differential equations, Neural Parallel Sci. Comput., 17 (2009), 169-186.



Copyright of Tbilisi Mathematical Journal is the property of Tbilisi Centre for Mathematical
Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv
without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.


