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A NOTE ON SOFT MODULES

CANAN CELEP YÜCEL AND UMMAHAN ACAR

Abstract. In this paper, essential soft submodule and complement of a soft
submodule in a soft module are defined. The basic properties of such soft
submodules are obtained. The notion of complement of soft submodules on
soft modules is introduced. The relations between this and direct summand of
soft modules are investigated.

1. Introduction

Dealing with uncertainties is a main problem in many areas such as econom-
ics, engineering, environmental science, medical science and social sciences. These
kinds of problems cannot be dealt with classical methods. Because, these classical
methods have their inherent diffi culties. To overcome these kinds of diffi culties,
Molodtsov [1] proposed a completely new approach, which is called soft set theory,
for modeling uncertainty. Jun [2] and Park [3] pointed out several directions for the
applications of soft sets. Moreover, many related concept with soft sets, especially
soft set operations, have undergone tremendous studies. Maji et al. [4] studied
some operations on the theory of soft sets. Ali et al. [5] introduced several new
operations on soft sets. Sezgin and Atagün [6] and Ali et al. [7] studied on soft
sets operations as well. Besides, Aktaş and Çaǧman [8] defined soft groups and
obtained the main properties of these groups. Acar et al. [9] defined soft ring and
applied the notion of soft sets by Molodtsov [1] to the ring theory. Sun et al. [10]
defined the concept of soft modules and investigated their basic properties. This
concept was also discussed by many authors. Atagün and Sezgin [11] introduced
soft subrings and soft ideals of a ring by using Molodtsov’s definition of the soft
sets. Moreover, they introduced soft subfields of a field and soft submodule of a
left R-module. Türkmen and Pancar [12] defined the notion of sum and direct sum
of soft submodules, small soft submodules and radical of a soft module. Moreover,
they showed that every finite sum of small soft submodules of a soft module is a
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small soft module and proved that the class of small soft submodules of a soft mod-
ule is closed under soft module homomorphisms. Furthermore, some interesting
results in the theory of modules are still being explored currently. But the theory
of essential and complement soft submodules have not yet been studied.
In this paper we first define essential soft submodule and complement soft sub-

module in a soft module. We then obtain the basic properties of these soft submod-
ules. The existence of closure of a soft submodule is proved. In addition we prove
that every direct summand of a soft module is a complement in the soft module
and show that the converse is not true, in general.

2. Basic concepts of soft sets and soft modules

In [1] Molodtsov defined the soft set in the following way: Let U be an initial
universe set and E be a set of parameters. Let P (U) denote the power set of U and
A be a subset of E.

Definition 2.1. [1] A pair (F,A) is called a soft set over U , where F is a mapping
given by F : A −→ P (U).

In other words, a soft set over U is a parameterized family of subsets of the universe
U . For e ∈ A, F (e) may be considered as the set of e-approximate elements of the
soft set (F,A). Clearly, a soft set is not a set. For illustration, Molodtsov considered
several examples in [1].
At present, works on the soft set theory are prosing rapidly. The algebraic

structure of this theory dealing with uncertainties has been studied by some authors
([4], [5]). We review some of the literature discussing the definitions of soft set,
intersection, union and restricted intersection in the following.

Definition 2.2. [4] For two soft sets (F,A) and (G,B) over a common universe
U , we say that (G,B) is called a soft subset of (F,A), denoted by (G,B)⊂̃(F,A),
if it satisfies the following:

(i) B ⊂ A.
(ii) G(x) ⊆ F (x) for every x ∈ B.

Definition 2.3. [4] Let (F,A) and (G,B) be two soft sets over a common universe
U. The intersection of (F,A) and (G,B) is defined to be the soft set (H,C) satisfying
the following conditions:

(i) C = A ∩B.
(ii) For all x ∈ C, H(x) = F (x) or G(x), (as both are same set).
In this case, we write (F,A) ∩̃ (G,B) = (H,C).

Definition 2.4. [4] Let (F,A) and (G,B) be two soft sets over a common universe
U. The union of (F,A) and (G,B) is defined to be the soft set (H,C) satisfying the
following conditions:

(i) C = A ∪B.
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(ii) For all x ∈ C, H(x) =

 F (x) if x ∈ A \ B;
G(x) if x ∈ B \ A ;
F (x) ∪G(x) if x ∈ A ∩B.

In this case, we write (F,A) ∪̃ (G,B) =(H,C).

Definition 2.5. [5] Let (F,A) and (G,B) be two soft sets overM such that A∩B 6=
∅. The restricted intersection of (F,A) and (G,B) is denoted by (F,A) e (G,B),
and is defined as

(F,A) e (G,B) = (H,A ∩B),
where H(x) = F (x) ∩G(x) for all x ∈ A ∩B.

Now we will recall the definition of soft modules and their basic properties. Soft
modules were defined by Sun et. al. [10]. This concept was also discussed by many
authors (e.g. [6], [12]).
Throughout this paper, R is an associative ring with identity and all modules

are unital left R-modules, unless otherwise stated. Let M be an R-module. By
N ≤M , we mean that N is a submodule of M .

Definition 2.6. [10] Let (F,A) be soft set over a module M . (F,A) is said to be
a soft module over M if and only if F (x) ≤M for all x ∈ A.

Definition 2.7. [10] Let (F,A) and (G,B) be two soft modules over M . Then
(G,B) is soft submodule of (F,A) if

(i) B ⊂ A.
(ii) G(x) ≤ F (x) for all x ∈ B.
This is denoted by (G,B)≤̃(F,A).
If (G,B)≤̃(F,A) and (F,A)≤̃(G,B), two soft sets (F,A) and (G,B) over M are

called soft equal and is written (G,B) = (F,A).

Definition 2.8. [10] Let (G,B)≤̃(F,A) be soft modules over a module M . (G,B)
is called maximal soft submodule of (F,A) if G(x) is a maximal submodule of F (x)
for all x ∈ B.

Definition 2.9. [11] A soft module (F,A) over a module M is called whole (resp.,
trivial) if F (a) =M (resp., F (a) = {0}) for every a ∈ A.

It is easy to show that every soft module has a trivial soft submodule.
Türkmen and Pancar [12] developed soft module theory, and introduced the sum

and direct sum of soft submodules. They also defined the direct summand of soft
modules. The following definitions and a theorem, which will be necessary for our
next discussions, are taken from them.
Let M be an R-module and Ni (i ∈ I) be a set of submodules Ni of M . The

submodule, denoted by < ∪i∈INi >, and defined by
< ∪i∈INi > = {ni1 + ni2 + ...+ nir : nik ∈ Nik ,

for some r ∈ N},
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is called the sum of the submodules which is denoted by
∑

i∈I Ni. Note that
< ∅ >= {0}.

Definition 2.10. [12] Let (F,A) be a soft module over M and let {(Fi, Ai)}i∈I be
any collection of soft submodules (Fi, Ai)≤̃ (F,A), where I is a nonempty set. The
sum of the soft submodules (Fi, Ai) of (F,A) is defined as∑

i∈I
(Fi, Ai) = (H,∪i∈IAi)

such that, for all a ∈ ∪i∈IAi, H(a) =
∑

i∈I(a) Fi(a) where I(a) is the set of all
elements i ∈ I such that a ∈ Ai.

Definition 2.11. [12] Let (F,A) be a soft module over a moduleM and (G,B)≤̃(F,A).
If there exists a soft submodule (T,C) of (F,A) such that (G,B)+̃(T,C) = (F,A)
and (G,B) e (T,C) is trivial, then (G,B) is said to be a direct summand of (F,A)
and denoted by (G,B)⊕̃(T,C) = (F,A).

Theorem 2.12. [12] (The Soft Modular Law) Let (F,A), (G,B) and (T,C) be
soft modules of a soft module over a module M with (G,B)≤̃(F,A) and A∩C 6= ∅.
Then

(F,A) e [(T,C)+̃(G,B)] = [(F,A) e (T,C)]+̃(G,B).

3. Essential and complement of soft submodules

In Dung et al. [13] essential submodules and complements are defined as follows,
respectively:
Let M be a module. A submodule N of M is called essential in M , denoted by

N ≤e M , if N ∩K 6= 0 for every non-zero submodule K of M .
Let N be any submodule of M . A submodule H of M is called a complement

of N (in M) if H is maximal in the collection of submodules Q of M such that
Q ∩N = 0M where 0M is an identity element of (M. +).
In this section we extend the above definitions to the soft module theory. We first

define essential soft submodules and complement of a submodule in a soft module.
Then we develop various properties of such soft submodules.

Definition 3.1. Let (F,A) be a soft module over M . A nontrivial soft sub-
module (G,B) of (F,A) is called essential soft submodule in (F,A), denoted by
(G,B)≤̃e(F,A), if (G,B)e(T,C) is nontrivial for every nontrivial submodule (T,C)
of (F,A) such that B ∩ C 6= ∅.

Clearly, if (F,A) is a nontrivial soft module over a module M , then (F,A) is an
essential soft submodule of (F,A).

Example 3.2. Consider left Z- module M =Z Z. Let (F,A) be a soft set over
the module M , where A = Z and F : A → P (M) is a set-valued function defined
by F (n) = M for all n ∈ A. Thus, (F,A) is a whole soft module over M. Let
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B = 2Z and G : B → P (M) is a function defined by G(n) = 6Z. Then (G,B) is a
soft submodule of (F,A). For every nontrivial submodule (T,C) of (F,A) such that
B ∩ C 6= ∅, (G,B) e (T,C) is nontrivial since T (x) ∩G(x) 6= 0 for all x ∈ B ∩ C.
Thus (G,B)≤̃e(F,A).

Lemma 3.3. Let (F,A) be a soft module overM . If (K,B) and (L,C) are essential
soft submodules of (F,A) such that B ∩ C 6= ∅, then

(K,B) e (L,C)≤̃e(F,A).

Proof. Let (N,E) be a nontrivial soft submodule of (F,A) such that E ∩ (B ∩
C) 6= ∅. Then, E ∩ B 6= ∅. Since (K,B) is an essential soft submodule of (F,A),
the soft submodule (N,E) e (K,B) is nontrivial. It follows from hypothesis that
[(N,E) e (K,B)] e (L,C) is nontrivial. Therefore, (N,E) e [(K,B) e (L,C)] =
[(N,E)e (K,B)]e (L,C). Hence, (K,B)e (L,C) is an essential soft submodule of
(F,A). �

Corollary 3.4. Let (F,A) be a soft module over M . If (K,B) is an essential soft
submodule and (T,C) is nontrivial soft submodule of (F,A) such that B ∩ C 6= ∅,
then K(x) is an essential submodule of F (x) for every x ∈ B ∩ C.

Lemma 3.5. Let (F,A) be a soft module over M and (G,B), (L,C), (X,E) and
(T, S) are soft submodules of (F,A) with B∩E 6= ∅ and C∩S 6= ∅. If (G,B)≤̃e(L,C)
and (X,E)≤̃e(T, S), then

(G,B) e (X,E)≤̃e(L,C) e (T, S).

Proof. Let (K,D) be a nontrivial soft submodule of (L,C) e (T, S) such that
D ∩ B ∩ E 6= ∅. Then, D ∩ B 6= 0. Hence (K,D) e (G,B) is nontrivial, since
(G,B)≤̃e(L,C). Also D ∩B ⊆ D ⊆ C ∩ S ⊆ S and (K,D) e (G,B)≤̃(T, S). Since
(X,E)≤̃e(T, S), the soft submodule [(K,D)e (G,B)]e (X,E) is nontrivial. Hence
(G,B) e (X,E)≤̃e(L,C) e (T, S). �

We now generalize the above result in the following corollary.

Corollary 3.6. Let (F,A) be a soft module over M and (Gi, Bi) and (Xi, Ei)
are soft submodules of (F,A) for every 1 ≤ i ≤ t with Bi ∩ Ei 6= ∅. If every
(Gi, Bi)≤̃e(Xi, Ei), then (G1, B1)e (G2, B2)e ...e (Gt, Bt)≤̃e(X1, E1)e (X2, E2)e
... e (Xt, Et).

Lemma 3.7. Let (F,A) be a soft module overM and (L,C) be a nontrivial soft sub-
module of (F,A). If (K,B)≤̃e(F,A) and B ∩C 6= ∅, then (K,B)e (L,C)≤̃e(L,C).
In particular, (K,B) is a nontrivial soft submodule of (L,C), then (K,B)≤̃e(L,C).

Proof. Let (K,B)≤̃e (F,A) and (L,C)≤̃(F,A). For every nontrivial (T,E)≤̃(F,A)
withB∩E 6= ∅, (K,B)e(T,E) is nontrivial. Therefore, for every (X, I)≤̃(L,C)≤̃(F,A)
with I ∩ B 6= ∅, (K,B) e (X, I) is nontrivial. Hence (X, I) e ((K,B) e (L,C)) =
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((X, I)e(K,B))e(L,C) is nontrivial, since I∩(B∩C) 6= ∅. Thus (K,B)e(L,C)≤̃e
(L,C). �

In the next lemma we consider the transitive property of essential soft submod-
ules.

Lemma 3.8. Let (F,A) be a soft module over M . (K,B)≤̃e(F,A) if and only if

(K,B)≤̃e(N,E)≤̃e(F,A).

Proof. Assume that (K,B)≤̃(N,E)≤̃(F,A) and (K,B)≤̃e (F,A). It follows from
Lemma 3.7 that (K,B)≤̃e(N,E). Now, suppose that (T, L) is nontrivial soft sub-
module of (F,A) such that E ∩ L 6= ∅. Since (K,B) e (T, L) is nontrivial, the soft
submodule (N,E) e (T, L) is nontrivial. Thus (N,E)≤̃e(F,A).
Conversely, let (K,B)≤̃e(N,E)≤̃e(F,A), and (T, L) be a nontrivial soft sub-

module of (F,A) such that L ∩ B ∩ E 6= ∅. It can be seen that (K,B) e (T, L) =
(K,B) e ((N,E) e (T, L)). Since (N,E)≤̃e(F,A), the soft submodule (K,B) e
((N,E) e (T, L)) is nontrivial. Thus (K,B) e (T, L) is a nontrivial soft submodule
of (F,A). Hence, (K,B)≤̃e(F,A). �

Definition 3.9. Let (F,A) be a soft module over M and (G,B) ≤̃(F,A). If
(T,C)≤̃(F,A) with B ∩ C 6= ∅ is soft maximal w.r.t. (G,B) e (T,C) is trivial,
then (T,C) is called complement of (G,B) in (F,A).

The soft submodule (T,C) given above does not have to be unique. The following
theorem states that every soft submodules of a soft module have a complement soft
submodule.

Theorem 3.10. Let (F,A) be a soft module over M . If (G,B) and (T,C) are soft
submodules of (F,A) with B ∩C 6= ∅ such that (G,B)e (T,C) is trivial, then there
exists a complement (K,D) of (G,B) in (F,A) such that (T,C)≤̃(K,D).

Proof. Let E ∩ B 6= ∅ and Z = {(X,E)≤̃(F,A) : (T,C)≤̃(X,E), and (X,E) e
(G,B) is trivial}. So Z 6= ∅ since (T,C) ∈ Z. Clearly (Z, ⊆̃) is a complete ordered.
Now, assume that {(Xi, Ei) : i ∈ I} is a chain in Z. Let (S, V ) = ∪i∈I(Xi, Ei)

such that V = ∪i∈IEi and V ∩ B 6= ∅. Then (S, V ) ≤̃(F,A). So, (T,C)≤̃(Xi, Ei)
is trivial for every i ∈ I. Therefore, ∪i∈I(Xi, Ei) e(G,B) is trivial and (S, V ) ∈ Z.
Hence (S, V ) is an upper bound of {(Xi, Ei) : i ∈ I} chain. So, by Zorn’s Lemma,
there exists a maximal element (K,D) of Z. It follows that (K,D) is a complement
of (G,B) in (F,A) such that (T,C)≤̃(K,D). �

Definition 3.11. Let (F,A) be a soft module over M . A soft submodule (N,E) of
(F,A) is called a complement (in (F,A)) if there exists a soft submodule (T,C) of
(F,A) such that (N,E) is a complement of (T,C) in (F,A), denoted by

(N,E)≤̃c(F,A).
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Proposition 3.12. Let (F,A) be a soft module over M . If (G,B) is a soft sub-
module of (F,A), then there exists a soft submodule (K,C) of (F,A), containing
(G,B), such that (G,B)≤̃e (K,C)≤̃c(F,A).

Proof. Let (G′, B′) be a complement of (G,B) in (F,A). By Theorem 3.10, there
exists a complement (K,C) of (G′, B′) in (F,A) with (G,B) ⊆ (K,C). Let (L, T )
be a nontrivial essential soft submodule of (K,C). Then (G′, B′) ⊆ (L, T )+(G′, B′).
Hence ((L, T ) + (G′, B′)) e (G,B) is nontrivial. Therefore (G,B) e ((L, T ) +
(G′, B′)) = (H, B ∩ (T ∪B′)) is nontrivial, where

H(a) =

 G(a) ∩ L(a) if a ∈ B ∩ (T\B′)
0 if a ∈ B ∩ (B′\T )
L(a) if a ∈ B ∩ (T ∩B′) .

Then (G,B)e (L, T ) is nontrivial since 0 6= H(a) ∈ (G,B)e (L, T ). Thus (G,B)≤̃e
(K,C). �

The soft submodule (K,C), the existence was proved in the above proposition,
is called the closure of (G,B) in (F,A).

Proposition 3.13. Let (F,A) be a soft module over M and (G,B) be a soft sub-
module of (F,A). (G,B)≤̃c(F,A) if and only if (G,B) = (N,C) whenever (G,B)
≤̃e(N,C)≤̃(F,A).

Proof. Let (G,B)≤̃c(F,A) and (G,B)≤̃e(N,C)≤̃(F,A). Then there exists (X,E)≤̃
(F,A) where (G,B) is complement of (X,E) in (F,A). By Lemma 3.5, (G,B) e
(X,E) ≤̃e(N,C) e (X,E). So (N,C) e(X,E) is trivial since (G,B) e (X,E) is
trivial. Therefore (G,B) is maximal with respect to the property (G,B) e (X,E)
is trivial. Hence (G,B) = (N,C).
Conversely, let (G,B)≤̃(F,A). By Proposition 3.13, there exists (N,C)≤̃(F,A)

such that (G,B)≤̃e(N,C)≤̃c(F,A). Hence (G,B)≤̃c(F,A) since (G,B) = (N,C).
�

In the next proposition we consider the transitive property of complement soft
submodules.

Proposition 3.14. Let (F,A) be a soft module over M and (K,C), (N,E) be soft
submodules of (F,A). If (K,C)≤̃c(N,E) and (N,E)≤̃c(F,A), then (K,C)≤̃c(F,A).

Proof. Let (K,C) be a complement of (K ′, C ′) in (N,E) and (N,E) be a com-
plement of (N ′, E′) in (F,A). Suppose that (K,C)≤̃e(L, I)≤̃(F,A) such that
C ∩ I ∩ E′ 6= ∅. Therefore (K,C) e [(K ′, C ′) + (N ′, E′)] = (H1, C ∩ (C ′ ∪ E′))
where

H1(a) =

 0 if a ∈ C ∩ (C ′\E′)
0 if a ∈ C ∩ (E′\C ′)
K(a) ∩ (K ′(a) +N ′(a)) if a ∈ C ∩ (C ′ ∩ E′) .
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Assume that x ∈ K(a) ∩ (K ′(a) +N ′(a)). Then x = k′ + n′ where k′ ∈ K ′(a) and
n′ ∈ N ′(a). Therefore x−k′ = n′ ∈ N(a)∩N ′(a) = 0 and x = k′ ∈ K(a)∩K ′(a) = 0
since C ∩ (C ′ ∩ E′) ⊆ C ∩ C ′. Hence (K,C) e [(K ′, C ′) + (N ′, E′)] is trivial. By
Lemma 3.5, (K,C) e [(K ′, C ′) + (N ′, E′)]≤̃e(L, I) e [(K ′, C ′) + (N ′, E′)]. Then
(L, I) e [(K ′, C ′) + (N ′, E′)] is trivial. By Theorem 2.12,

[(N,E) e ((L, I) + (N ′, E′))] e (K ′, C ′) =

[((N,E) e (K ′, C ′))] e [(L, I) + (N ′, E′)] =

(K ′, C ′) e [(L, I) + (N ′, E′)]. (1)

As above, (K ′, C ′) e [(L, I) + (N ′, E′)] is trivial. Since (K,C) is a complement of
(K ′, C ′) in (N,E), (K ′, C ′) is soft maximal w.r.t (K,C) e (K ′, C ′) is trivial. Since
(K,C) ⊆ (N,E)e((L, I)+(N ′, E′)) and by (1) (N,E)e[(L, I)+(N ′, E′)] = (K,C).
Similarly, (N ′, E′) e [(N,E) + (L, I)] is trivial. Hence (N,E) + (L, I) = (N,E)

since (N,E) is a complement of (N ′, E′) in (F,A). So (L, I)≤̃(N,E). Therefore
(L, I) = (L, I) e [(L, I) + (N ′, E′)]≤̃(N,E) e [(L, I) + (N ′, E′)] = (K,C). Thus
(K,C)≤̃c(F,A) by Proposition 3.13. �

In light of the above information, we now prove that every direct summand is a
complement in soft modules.

Theorem 3.15. Let (F,A) be a soft module over M . Then every direct summand
of (F,A) is a complement in (F,A).

Proof. Let (G,B) be a direct summand of (F,A). Then there exist a soft submodule
(T,C) of (F,A) such that (G,B) e (T,C) is trivial and (G,B) ⊕̃(T,C) = (F,A).
Suppose (K,D)≤̃(F,A) such that (G,B) ⊆ (K,D) ⊆ (F,A) and (K,D)e (G,B) is
trivial. Using Theorem 2.12, it can be shown that (K,D) = (T,C). Hence (K,D)
is a maximal soft submodule of (F,A). Thus (K,D) is complement of (G,B) in
(F,A). �

In general, the converse of the above theorem is not true.

Example 3.16. Let R be a ring, K be a field, and V be a vector space with
dimension 2. Assume RR = {

[
k v
0 k

]
: k ∈ K, v ∈ V = (v1K ⊕ v2K)} is a R-module,

and I = {
[
0 v1k
0 0

]
: k ∈ K} and J = {

[
0 v2k
0 0

]
: k ∈ K} are submodules of RR.

We now define a soft set (F,A) over U = RR where A = {e1, e2} such that
F (ei) = RR, i = 1, 2. Given B = {e1, e2} = A, and a soft set (G,B) over U where

G(e1) = G(e2) = I,

and C = {e2}, soft set (T,C) over U where
T (e2) = J.

Then one can easily show that (G,B)≤̃(F,A) and (T,C)≤̃ (F,A). Therefore G(ei)∩
T (e2) = I ∩ J = {0}, for i = 1, 2. So (G,B) e (T,C) is trivial. Hence (G,B) is
a complement of (T,C) in (F,A). Similarly (T,C) is a complement of (G,B) in
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(F,A). But (G,B)⊕̃(T,C) 6= (F,A). It follows that (G,B) is not a direct summand
of (F,A).
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