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Abstract
In this study, some properties of soft Scott topology are examined and some relations between soft Scott topology and

way below soft set relations are shown. Also the notion of soft Scott continuous function on soft topological spaces, which is
equipped with soft Scott topology, is defined by focusing on the structure of the continuity of soft function and some examples
are illustrated. Besides these, least fixed point theorem is proved for soft Scott continuous functions. ©2017 All rights reserved.
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1. Introduction

In the real world, most of problems in economics, engineerings and environmental areas can be solved
approximately by using different mathematical theories. Besides these theories, Molodtsov [8] introduced
a new approach, the soft set theory, which approximates the initial universe for the problems. In the soft
set theory, one can use any parametrization with the help of words, sentences, real numbers, functions,
mappings, and so on. Maji et al. [7] introduced many operators for soft set theory. Furthermore, some
structures as cartesian product, soft set relation and orderings on soft sets was introduced by Babitha and
Sunil [2, 3]. Moreover, Tanay and Yaylalı improved orderings on soft sets by giving new definitions and
proving new theorems on some soft structures such as directed complete soft sets and way below soft
set relation [12, 17, 16, 13]. Çağman et al. [4] defined soft topology by modifying the definition of soft
set. After this study Roy and Samanta [10] strengthened the definition of soft topological spaces. Tanay
and Yaylalı [12] gave the definition of soft Scott topology by using orderings and soft topology on soft
sets. Wardowski [14] approached soft set as classical mathematics by giving definition of soft element. By
giving this definition, he strengthened the soft function and gave the continuity of soft functions.

According to all of these studies, in this study, firstly we define an ordering on soft elements, then
we use soft continuity to define and examine soft Scott continuous functions. Also, we prove least fixed
point theorem for soft Scott continuous functions. In order to refresh the fundamental concepts we refer
to [5, 6].
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2. Preliminaries and basic definitions

Definition 2.1 ([8]). Let U be an initial universe and E be the set of parameters. Let P(U) be the set of all
subsets of U and A be a subset of E. A pair (F,A) is called a soft set over U where F ∶ A Ð→ P(U) is a
set-valued function.

In some studies a soft set (F,A) was shown as (F,A) = {(a,F(a))∣a ∈ A}, but in some studies F(a)
was written instead of (a,F(a)) just as a notation for make it shorter. In this paper, we will use F(a) as a
notation instead of (a,F(a)).

All soft sets over the initial universe U is denoted by S(U) throughout this paper.

Definition 2.2 ([7]). A soft set (F,A) over U is said to be a null soft set denoted by Φ, if for every ε ∈ A,
F(ε) = ∅.

Definition 2.3 ([7]). For two soft sets (F,A) and (G,B) over a common universe U, we say that (F,A) is a
soft subset of (G,B) and is denoted by (F,A)⊂̃(G,B) if

i) A ⊂ B and,
ii) ∀ε ∈ A, F(ε) and G(ε) are identical approximations.

(F,A) is said to be a soft super set of (G,B), if (G,B) is a soft subset of (F,A).

Definition 2.4 ([7]). Union of two soft sets of (F,A) and (G,B) over the common universe U is the soft set
(H,C), where C = A∪B, and ∀e ∈ C,

H(e) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

F(e), ife ∈ A−B,
G(e), ife ∈ B−A,
F(e)∪G(e), ife ∈ A∩B.

Definition 2.5 ([9]). Intersection of two soft sets (F,A) and (G,B) over a common universe U is the soft
set (H,C), where C = A∩B, and ∀e ∈ C, H(e) = F(e)∩G(e). We write (F,A)∩̃(G,B) = (H,C).

Definition 2.6 ([1]). The complement of (F,A), denoted by (F,A)c, is defined by (F,A)c = (Fc,A), where
Fc ∶ A→ P(U) is a function given by Fc(x) = U− F(x) for all x ∈ A.

Definition 2.7 ([2]). Let (F,A) and (G,B) be two soft sets over U, then the Cartesian product of (F,A) and
(G,B) is defined as, (F,A) × (G,B) = (H,A ×B) where H ∶ A ×B → P(U ×U) and H(a,b) = F(a) ×G(b),
where (a,b) ∈ A×B, i.e., H(a,b) = {(hi,hj)∣hi ∈ F(a),hj ∈ G(b)}.

Definition 2.8 ([2]). Let (F,A) and (G,B) be two soft sets over U, then a soft set relation R from (F,A) to
(G,B) is a soft subset of (F,A)× (G,B). In other words, a soft set relation R from (F,A) to (G,B) is of the
form R = (H1,S)where S ⊂ A×B and H1(a,b) = H(a,b) for all (a,b) ∈ S, where (H,A×B) = (F,A)× (G,B).

Definition 2.9 ([2]). Let R be a soft set relation on (F,A), then

1. R is reflexive if H1(a,a) ∈ R, ∀a ∈ A.
2. R is symmetric if H1(a,b) ∈ R ⇒ H1(b,a) ∈ R.
3. R is transitive if H1(a,b) ∈ R, H1(b, c) ∈ R ⇒ H1(a, c) ∈ R for every a,b, c ∈ A.

Definition 2.10 ([3]). A binary soft set relation R on (F,A) is an antisymmetric if F(a) × F(b) ∈ R and
F(b)× F(a) ∈ R for every F(a),F(b) ∈ (F,A) imply F(a) = F(b).

Definition 2.11. [12] Consider a soft set (F,A) equipped with reflexive, transitive soft set relation ≤. This
relation is called preorder and (F,A) is a preordered soft set.

Definition 2.12 ([3]). A binary soft set relation ≤ on (F,A) which is reflexive, antisymmetric and transitive
is called a partial ordering of (F,A). The triple (F,A,≤) is called a partially ordered soft set.
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Definition 2.13 ([3]). Let ≤ be an ordering of (F,A) and F(a), F(b) be any two elements in (F,A). We say
that F(a) and F(b) are comparable in the ordering if F(a) ≤ F(b) or F(b) ≤ F(a). We say that F(a) and
F(b) are incomparable if they are not comparable.

Definition 2.14 ([3]). Let ≤ be a partially ordering on the soft set (F,A). Then ≤ is called a total or linear
ordering on (F,A) if every element in (F,A) is comparable in the ordering ≤.

Definition 2.15 ([15]). Let ≤ be a soft set relation on (F,A), then restriction of a soft set relation ≤ to a soft
subset (G,B) is defined by:

G(a) ≤(G,B) G(b) ∶⇔ F(a) ≤ F(b) for all a,b ∈ B.

Definition 2.16 ([14]). Let (F,A) ∈ S(U). We say that α = (p,u) is a nonempty soft element of (F,A) if
p ∈ E and u ∈ F(p). The pair (p,∅), where p ∈ E, will be called an empty soft element of (F,A). Nonempty
soft elements of (F,A) and empty soft elements of (F,A) will be called the soft elements of (F,A). The
fact that α is a soft element of (F,A) will be denoted by α∈̃(F,A).

Remark 2.17. A soft element α = (p,u) of a soft set (F,A) can be considered as a soft set (Hu,B) on U
where B = {p} ⊆ E and Hu(p) = {u} ⊆ U. Then for a soft set (F,A) = {(p,F(p))∣p ∈ A} we can deduce

{(p,F(p))} = ⋃̃u∈F(p)(Hu,{p}).

for F(p) where p ∈ A. Indeed ⋃̃u∈F(p)(Hu,{p}) = (K,C) where C = ⋃{p} and K(p) = ⋃u∈F(p){u} = F(p).

Definition 2.18. Let (F,A) be a soft set and ≤ be a soft set relation on it. If (G,B) is an another soft
set where B ⊆ A and G(x) ⊆ F(x) for all x in B then we can define a soft set relation ≤G→F on (G,B)
induced from ≤ as follows: (p,u) is a soft element of ≤G→F where u ∈ G(p) ×G(p) ∶⇔ (p,u)̃∈ ≤ and
(p,u)̃∈(G,B)× (G,B).

Example 2.19. Let U = {u1,u2,u3,u4u5} be a universal set and A = {a,b, c}, B = {a,b} be parameter sets.
Let us define soft sets (F,A) and (G,B) as F(a) = {u1,u3,u5}, F(b) = {u2,u4}, F(c) = {u2,u3,u4}, and
G(a) = {u1,u3}, G(b) = {u2}, respectively. Consider the soft set relation ≤ on (F,A) as follows

≤ = {F(a)× F(a),F(b)× F(b),F(c)× F(c),F(a)× F(b)}
= {{((a,a), (1, 1)), ((a,a), (1, 3)), ((a,a), (1, 5)), ((a,a), (3, 1)), ((a,a), (3, 3)),
((a,a), (3, 5)), ((a,a), (5, 1)), ((a,a), (5, 3)), ((a,a), (5, 5))},{((b,b), (2, 2)),
((b,b), (2, 4)), ((b,b), (4, 4)), ((b,b), (4, 2))},{((a,b), (1, 2)), ((a,b), (1, 4)),
((a,b), (3, 2)), ((a,b), (3, 4)), ((a,b), (5, 2)), ((a,b), (5, 4))}}.

Then we obtain a soft set relation on (G,B) according to ≤

≤(G,B) = {{((a,a), (1, 1)), ((a,a), (1, 3)), ((a,a), (3, 1)), ((a,a), (3, 3))},
{((b,b), (2, 2))},{((a,b), (1, 2)), ((a,b), (3, 2))}}

= {G(a)×G(a),G(b)×G(b),G(a)×G(b)}.

Definition 2.20 ([12]). Let ≤ be an ordering of (F,A), and let (G,B)⊂̃(F,A).

• For a ∈ A, F(a) is a lower bound of (G,B) in the ordered soft set (F,A,≤) if F(a) ≤ G(x) for all x ∈ B.

• For a ∈ A, F(a) is called infimum of (G,B) in (F,A,≤) (or the greatest lower bound) if it is the
greatest element of the set of all lower bounds of (G,B) in(F,A,≤).

Similarly,

• For a ∈ A, F(a) is an upper bound of (G,B) in the ordered soft set (F,A,≤) if G(x) ≤ F(a) for all
x ∈ B.
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• For a ∈ A, F(a) is called supremum of (G,B) in (F,A,≤) (or the least upper bound) if it is the least
element of the set of all upper bounds of (G,B) in (F,A,≤).

Definition 2.21 ([12]). Let (F,A) be a preordered soft set. A soft subset (G,B) of (F,A) is directed soft set
provided it is nonnull and every finite soft subset of (G,B) has an upper bound in (G,B).

Definition 2.22 ([12]). Let (F,A) be a preordered soft set. We call a nonnull soft subset (G,B) of (F,A)
filtered soft set if every finite soft subset of (G,B) has a lower bound.

Definition 2.23. Let (F,A) be a soft set with a preorder soft set relation ≤. For (G,B)⊂̃(F,A)

i) ↓ (G,B) = (H,C) where C = {a ∈ A ∶ F(a) ≤ G(b) for some b ∈ B} and H = F∣C [12].

ii) ↑ (G,B) = (K,D) where D = {a ∈ A ∶ G(b) ≤ F(a) for some b ∈ B} and K = F∣D [12].

We also say

iii) (G,B) is a lower soft set iff (G,B) =↓ (G,B) [12].

iv) (G,B) is an upper soft set iff (G,B) =↑ (G,B) [12].

v) (G,B) is a soft ideal iff it is a directed lower soft set [12].

vi) (G,B) is a soft filter iff it is a filtered upper soft set [17].

Definition 2.24 ([17]). A soft inf-semilattice is a partially ordered soft set (F,A,≤) in which F(a),F(b) have
infimum for any two elements a,b ∈ A.

A soft sup-semilattice is a partially ordered soft set (F,A) in which any F(a),F(b) in (F,A) have a
supremum.

A partially ordered soft set (F,A) which is both soft inf-semilattice and soft sup-semilattice is called a
soft lattice.

Definition 2.25 ([12]). A posset is said to be directed complete soft sets if every directed soft subset has a
supremum.

Definition 2.26 ([14]). Let (F,A), (G,B) ∈ S(U). A soft relation T ⊆̃(F,A) × (G,B) is called a soft function
from (F,A) to (G,B), which is denoted by T ∶ (F,A)→̃(G,B), if the following two conditions are satisfied:

SM1 for each soft element α∈̃(F,A), there exists only one soft element β∈̃(G,B) such that αTβ (which will
be noted as T(α) = β);

SM2 for each empty soft element α∈̃(F,A), T(α) is an empty soft element of (G,B).

Note that, from the fact (F,A) = ⋃̃p∈A(p,F(p)) = ⋃̃p∈A⋃̃u∈F(p)(p,{u}), one can easily check that

T((F,A)) = T(⋃̃p∈A{(p,F(p))}) = ⋃̃p∈AT({(p,F(p))}) = ⋃̃p∈AT({(p, ⋃
u∈F(p)

{u})})

= ⋃̃p∈AT(⋃̃u∈F(p){(p,{u})}) = ⋃̃p∈A(⋃̃u∈F(p){T(p,{u})})⊆̃(G,B).

Definition 2.27 ([16]). A soft set function f ∶ (F,A,≤A)→ (G,B,≤B) between two partially ordered soft set
is called order preserving or monotone iff for all F(a),F(b) in (F,A), F(a) ≤A F(b)⇒ f(F(a)) ≤B f(F(b)).

Definition 2.28 ([10]). A soft topology τ̃ on a soft set (F,A) is a family of soft subsets of (F,A) satisfying
the following properties

i) Φ, (F,A) ∈ τ̃;
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ii) if (G,B), (H,C) ∈ τ̃, then (G,B)∩̃(H,C) ∈ τ̃ ;

iii) if (F,Aα) ∈ τ̃ for all α ∈ Λ, an index set, then ⋃̃α∈Λ(F,Aα) ∈ τ̃.

If τ̃ is a soft topology on a soft set (F,A), (F,A, τ̃) is called the soft topological space.

Definition 2.29 ([10]). If τ̃ is a soft topology on (F,A), then the member of τ̃ is called soft open set in
(F,A, τ̃).

Definition 2.30 ([4]). Let (F,A, τ̃) be a soft topological space and (G,B)⊂̃(F,A). Then, (G,B) is said to be
soft closed if the soft set (G,B)c is soft open.

Definition 2.31 ([4]). Let (F,A, τ̃) be a soft topological space and (F,B)⊆̃(F,A) . Then, the soft interior of
(F,B), denoted by (F,B)o, is defined as the soft union of all soft open subsets of (F,B).

Note that (F,B)o is the biggest soft open set that is contained by (F,B).

Definition 2.32 ([10]). A collection β̃ of some soft subsets of (F,A) is called a soft open base or simply a
base for some soft topology on (F,A) if the following conditions hold:

i) Φ ∈ β̃;

ii) ⋃̃β̃ = (F,A), i.e., for each e ∈ A and x ∈ F(e), there exits (G,B) ∈ β̃ such that x ∈ G(e), where B ⊆ A;

iii) if (G,B), (H,C) ∈ β̃ then for each e ∈ B ∩C and x ∈ G(e) ∩H(e) there exists (I,D)⊆̃β̃ such that
(I,D)⊆̃(G,B)∩̃(H,C) and x ∈ I(e), where D ⊆ B∩C.

Definition 2.33 ([4]). Let (F,A, τ̃) be a soft topological space and (F,B)⊆̃(F,A). Then, the soft closure of
(F,B), denoted by (F,B), is defined as the soft intersection of all soft closed supersets of (F,B).

Note that (F,B) is the smallest soft closed set that contains (F,B).

Definition 2.34. We say that a soft topological space (F,A, τ̃) is T0 soft topological space if for each
α,β∈̃(F,A), α ≠ β, there exists soft open (G,B) such that α∈̃(G,B) and β∉̃(G,B) or β∈̃(G,B) and α∉̃(G,B).

Definition 2.35 ([14]). Let (F,A, τ̃), (G,B, ṽ) be soft topological spaces and let T ∶ (F,A)→̃(G,B) be a soft
function. We say that T is a soft continuous function (with respect to the soft topologies τ̃ and ṽ) if for
each (H,C) ∈ ṽ, T−1((H,C)) ∈ τ̃ (i.e., the inverse of a soft open set is a soft open set).

3. The way-below soft set relation

We may call meet (Resp. join) operation instead of taking infimum (Resp. supremum) of the elements,
and we may use multiplication notation for meet operation.

Definition 3.1 ([13]). A soft inf-semilattice (F,A) is called soft meet continuous if it is directed complete
soft set and satisfying

F(x) sup(G,B) = sup(F(x)(G,B)),
for all x ∈ A and all directed soft subsets (G,B)⊂̃(F,A).

Definition 3.2 ([13]). Let (F,A,≤) be a partially ordered soft set. We say that F(a) way-below F(b) iff
all directed soft subsets (G,B)⊂̃(F,A) for which sup(G,B) exists, the soft set relation F(b) ≤ sup(G,B)
always implies the existence of a G(d) in (G,B) with F(a) ≤ G(d). F(a) way-below F(b) is denoted by
F(a)≪ F(b).

This definition was expressed simultaneously by Sayed [11] as ”Let (F,A) be a posset. For any two
elements F(x),F(y) ∈ (F,A). F(x) is approximate to F(y), and write F(x) ≪ F(y), if for any directed
soft subset (G,B) ⊂ (F,A) with ∨(G,B) existing and F(y) ≤ ∨(G,B), there exists G(z) ∈ (G,B) such that
F(x) ≤ G(z). ”
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Remark 3.3 ([13]). We write

↡ F(a) = {F(b)∣b ∈ AwithF(b)≪ F(a)},

↟ F(a) = {F(b)∣b ∈ AwithF(a)≪ F(b)}.

Definition 3.4 ([13]).

i) A partially ordered soft set (F,A,R) is called soft continuous if it satisfies the axiom of approximation:

(∀F(a) ∈ (F,A)) F(a) =⋁ ↑ ↡ F(a),

i.e., for all F(a) in (F,A), the soft set ↡ F(a) which is (H,C) such that C = {b ∈ A∣F(b) ≪ F(a)} and
H = F∣C, is directed and F(a) = sup (H,C).

ii) A directed complete partially ordered soft set is soft continuous as a partially ordered soft set will be
called soft domain.

Theorem 3.5 ([13]). In a partially ordered soft set (F,A) the following statements hold for all F(a),F(b),F(c),F(d)
in (F,A).

i) F(a)≪ F(b)⇒ F(a) ≤ F(b);

ii) F(u) ≤ F(a)≪ F(b) ≤ F(v)⇒ F(u)≪ F(v);

iii) F(a)≪ F(c) and F(b)≪ F(c)⇒ F(a)∨ F(b)≪ F(c) whenever the least upperbound F(a)∨ F(b) exists;

iv) Whenever (F,A) has a smallest element F(0); F(0)≪ F(a).

Theorem 3.6 ([13]).

i) In a partially ordered soft set (F,A), the following conditions are equivalent;

1 F(a)≪ F(b),
2 F(a) ∈ (I,B) for every soft ideal (I,B) of (F,A) such that F(b) ≤ sup (I,B).

If (F,A) is a soft meet continuous soft semilattice, then conditions (1) and (2) are equivalent to
3 F(a) ∈ (I,B) for every soft ideal (I,B) of (F,A) such that F(b) = sup (I,B).

ii) Suppose that there exists a directed soft set (D,C)⊆̃ ↡ F(a) with sup (D,C) = F(a). Furthermore, F(b)≪ F(a)
if F(b)≪ F(a) in a partially ordered soft set ↓ F(a) with the induced order.

Theorem 3.7 ([13]).

i) If F(a) ≪ F(c) and F(c) ≤ sup (D,C) for a directed soft set (D,C) in a continuous partially ordered soft set
(F,A), then F(a)≪D(e) for some D(e) in (D,C).

ii) [11] In a continuous partially ordered soft set (F,A), the way-below soft set relation satisfies the soft interpolation
property

F(a)≪ F(c) Ô⇒ (∃F(b))F(a)≪ F(b)≪ F(c) (SINT).

4. Soft Scott topology

Definition 4.1 ([12]). Let (F,A) be a directed complete partially ordered soft set and (G,B)⊆̃(F,A). Then
(G,B) is called a Scott soft open set iff the following two conditions are satisfied:

i) (G,B) =↑ (G,B);

ii) sup (D,C) ∈ (G,B) implies (D,C)∩̃(G,B) ≠Φ for all directed complete soft sets (D,C)⊂̃(F,A).
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Theorem 4.2 ([12]). The collection of all Scott soft open sets of (F,A) is a soft topology.

Definition 4.3 ([12]). The collection of all Scott soft open sets of (F,A) is called soft Scott topology on (F,A)
and this topology will be denoted by σ(F,A).

Remark 4.4. We say that a soft subset (G,B) of a directed complete partially ordered soft set (F,A) has the
property (S) provided that the following condition is satisfied.

(S) If sup(D,C) ∈ (G,B) for any directed soft set (D,C), then there is a D(c) ∈ (D,C) such that G(b) ∈
(G,B) for all D(e) ∈ (D,C) with G(b) ≥D(e).

Definition 4.5 ([12]). Let (F,A, τ̃) be a soft Scott topology, and (G,B)⊆̃(F,A). Then (G,B) is called Scott
soft closed set if (G,B)c is Scott open soft set.

Theorem 4.6. In any soft directed complete partially ordered set (FA), we have the following conclusions.

i) a soft set is soft Scott closed iff it is a lower soft set under directed sups;

ii) ↓ F(a) = ¯{F(a)} for all F(a) in (F,A);

iii) every upper soft set is the soft intersection of Scott soft open neighborhoods;

iv) a soft set is a soft Scott open if and only if it is a soft upper set satisfying S.

Proof.

i) (D,C)⊆̃(F,A) is a lower soft set iff (F,A) − (D,C) is an upper soft set and (F,A) − (D,C) satisfies
Definition 4.1 (ii) iff (D,C) is closed under directed sups.

ii) ↓ F(a) is the smallest lower soft set containing F(a) and closed under directed sups.

iii) Every upper soft set (G,B) is the soft intersection of (F,A)− ↓ F(a) where F(a) is in (F,A)− (G,B).
These sets are soft open by (ii).

iv) (G,B) is soft Scott open if and only if ↑ (G,B) = (G,B) and satisfying S.

Note that, soft Scott topology is not a T0 soft topological space although the classical Scott topology is
a T0 topological space. This situation is illustrated in the following example.

Example 4.7. Let U = {u1,u2,u3} be a universal set and E = {p1,p2,p3} be a parameter set. Lets define
a soft set (F,A) where A = {p2,p3} such that F(p2) = {u1}, F(p3) = {u1,u3} and soft set relation ≤=
{F(p3)× F(p3),F2(p3)× F(p2),F(p2)× F(p2)}. Then, soft Scott topology is τ̃ = {Φ, (F,A),{F(p2)}}, which is
not a T0 soft topological space since for α = (p3,u1) and β = (p3,u3) are different soft elements but there
is no soft open (G,B) satisfying α∈̃(G,B) and β∉̃(G,B) or β∈̃(G,B) and α∉̃(G,B).

Theorem 4.8. If (F,A) is a soft domain, then all ↟ F(a) for F(a) in (F,A) are soft Scott open. Conversely, if (F,A)
is a directed complete partially ordered soft set and F(b) ∈ int(↑ F(a)) then F(a)≪ F(b).

Proof. Let (D,C) be a soft directed set with sup(D,C) ∈↟ F(a). Then Theorem 3.7 implies the existence of
D(c) in (D,C) such that F(a)≪D(c). Hence ↟ F(a) is open by Definition 4.1.

Suppose (F,A) is a directed complete partially ordered soft set and F(b) ∈ int(↑ F(a)). If (D,C)
is a soft directed set with F(b) ≤ sup(D,C), then sup(D,C) ∈ int(↑ F(a)) by Definition 4.1 and hence
D(c) ∈ int(↑ F(a)) for some D(c) in (D,C) by Definition 4.1. Thus F(a) ≤D(c) then F(a)≪ F(b).

Theorem 4.9. Let (F,A) be a soft domain.



G. Yaylalı, B. Tanay, J. Nonlinear Sci. Appl., 10 (2017), 1183–1194 1190

i) An upper soft set (G,B) is soft Scott open iff for every G(b) in (G,B) there is G(b ′) in (G,B) such that
G(b ′)≪ G(b).

ii) The soft sets of the form ↟ F(a), F(a) in (F,A), form a soft basis for soft Scott topology.

iii) With respect to σ(F,A), int(↑ F(a)) =↟ F(a).
Proof.

i) Let (G,B) be a soft Scott open and G(b) in (G,B). As in a soft domain ↡ G(b) is a soft directed and
G(b) = sup ↡ G(b). We conclude that there is G(b ′) ≪ G(b) with G(b ′) in (G,B) by Definition 4.1.
If conversely for every G(b) in (G,B) there is G(b ′) in (G,B) such that (G,B) is the soft union of
↟ G(b ′), G(b ′) in (G,B) which is soft Scott open by Theorem 4.8, hence (G,B) is Scott open.

ii) This follows directly from (i).

iii) If G(b) is in int(↑ F(a)), then by (i) there is G(c) in ↑ F(a), G(c) ≪ G(b). Then G(b) is in ↟ F(a).
Obviously ↟ F(a)⊆̃int(↑ F(a)).

5. Soft Scott continuous functions

Theorem 5.1. For a soft function T from a directed complete partially ordered soft set (F,A) into directed complete
partially ordered soft set (G,B). Then the followings are equivalent:

i) T is soft continuous function with respect to the soft Scott topology, i.e.,

T−1((D,C)) ∈ σ((F,A)) for all (D,C) ∈ σ((G,B)).

ii) T preserves suprema of directed soft sets, i.e., T is order preserving and T(sup(D,C)) = sup T((D,C)), for all
directed soft subsets (D,C) of (F,A).

If (F,A) and (G,B) are soft domains, then i, ii are equivalent to each of the following two conditions:

iii) G(b) ≪ T(F(a)) iff for some F(a ′) ≪ F(a) one has G(b) ≪ T(F(a ′)) for all F(a) in (F,A) and G(b) in
(G,B).

iv) T(F(a)) = sup{T(F(a ′)) ∶ F(a ′)≪ F(a)} for all F(a) in (F,A).
Proof.

i ⇒ ii We need to show T is order preserving.

Suppose T(F(a)) ≰ T(F(a ′)), then soft Scott open set (H,C) = (F,A)− ↓ T(F(a ′)) contains T(F(a)).
Thus (D,C) = T−1((H,C)) is soft Scott open set which contains F(a) not containing F(a ′). But
then F(a) ≰ F(a ′) as (D,C) is a soft upper set. Thus F(a) ≤ F(a ′) implies T(F(a)) ≤ T(F(a ′)).
Now we need to show T(sup(D,C)) = sup T((D,C)). Let (D,C) be directed soft subset of (F,A).
Then T((D,C)) is directed and sup T((D,C)) ≤ T(sup(D,C)), since T is order preserving. Set
F(a) = sup(D,C) andG(b) = sup T((D,C)). We claim T(F(a)) ≤ G(b). Suppose T(F(a)) ≰ G(b). The
soft Scott open set (G,B)− ↓ G(b) contains T(F(a)); thus T−1((G,B)− ↓ G(b)) is a soft Scott open set
which contains F(a). It follows that there is D(c) in (D,C) such that D(c) is in T−1((G,B)− ↓ G(b)).
Then T(D(c)) is in (G,B)− ↓ G(b), i.e., T(D(c)) ≰ G(b) = sup T((D,C)). This contradiction proves
our claim.

ii ⇒ i Let (H,C) be a soft Scott subset of (G,B). In order to show T−1((H,C)) is soft Scott closed in (F,A)
we take a soft directed subset (D,C) of T−1((H,C)). Then by ii since T(sup(D,C)) = sup T((D,C)).
But sup T((D,C)) is in (H,C) by Theorem 4.6 since (H,C) is soft Scott closed and T((D,C)) is
directed owing to the monotocity of T . Then T(sup(D,C)) is in (H,C) and hence sup(D,C) is in
T−1((H,C)). Then T−1((H,C)) is soft Scott closed by Theorem 4.6.
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ii ⇒ iv Since ↡ F(a) is directed and F(a) = sup ↡ F(a).

iv ⇒ iii From iv we can conclude that T is monotone. Indeed if F(a ′) ≤ F(a), then ↡ F(a ′) ⊆↡ F(a) and
consequently T(F(a ′)) = sup T(↡ F(a ′)) ≤ sup T(↡ F(a)) = F(a). Now let G(b) ≪ T(F(a ′)) = sup T(↡
F(a ′)); since T is monotone, T(↡ F(a ′)) is directed. Thus by Theorem 3.7 there is a F(a ′′) ≪ F(a ′)
with G(b) ≪ T(F(a ′′)). Conversely, if G(b) ≪ T(F(a ′′)) for some F(a ′′) ≪ F(a ′), then G(b) ≪
T(F(a ′)) by monotocity of T and Definition 4.1 for ≪.

iii ⇒ i Let (D,C) ∈ σ((G,B)) and F(a) ∈ T−1((D,C)). By Theorem 4.9 there is G(b) in (D,C) with
G(b) ≪ T(F(a)). By iii we find F(a ′) ≪ F(a) such that G(b) ≪ T(F(a ′)); we will finish the proof
if we show T(↟ F(a ′)) ⊆ (D,C). Now take F(a ′′) with F(a ′) ≪ F(a ′′). For every G(b ′) ≪ T(F(a ′))
we have G(b ′) ≪ T(F(a ′′)) by iii; and consequently T(F(a ′)) = sup ↡ T(F(a ′)) ≤ T(F(a ′′)). But
G(b) ≤ T(F(a ′)) by Theorem 3.5 and G(b) in (D,C); hence T(F(a ′′)) ∈ (D,C) by Definition 4.1.

Definition 5.2. A soft function T ∶ (F,A)→̃(G,B) between directed partially ordered soft sets is soft Scott
continuous if and only if it satisfies the equivalent conditions in Theorem 5.1 (i), (ii), (iii).

Example 5.3. Let U = {u1,u2,u3} be a universal set and E = {p1,p2,p3} be a parameter set. Let us define
a soft set (F1,A1) where A1 = {p1} such that F1(p1) = {u1,u2} and a soft set (F2,A2) where A2 = {p2,p3}
such that F2(p2) = {u1}, F2(p3) = {u1,u3} and soft set relations ≤1= {F1(p1) × F1(p1)} and ≤2= {F2(p3) ×
F2(p3),F2(p3) × F2(p2),F2(p2) × F2(p2)}, soft topologies τ̃1 = {Φ, (F1,A1)}, τ̃2 = {Φ, (F2,A2),{F(p2)}}, re-
spectively. A soft function T can be defined as follows:

T(p1,∅) = (p1,∅); T(p1,{u1}) = (p2,{u1}); T(p1,{u2}) = (p3,{u3}).

Since T−1(F2,A2) = (F1,A1) ∈ τ̃1 but T−2({F2(p2)}) = {p1,{u1}} is not in τ̃1, T is not continuous.

Example 5.4. Let U = {u1,u2,u3} be an initial universe, A = {a1,a2} and B = {b1,b2,b3} be parame-
ter sets and let define soft sets (F,A) = {(a1,{u2}), (a2,{u1,u3})} and (G,B) = {(b1,{u1}), (b2,{u3}),
(b3,{u2,u3})}. Consider soft set relations on (F,A) and (G,B), ≤1= {F(a1) × F(a1),F(a1) × F(a2),F(a1) ×
F(a2)} and ≤2= {G(b1)×G(b1),G(b2)×G(b2),G(b3)×G(b3),G(b3)×G(b1),G(b1)×G(b2),G(b3)×G(b2)},
respectively and soft Scott topologies τ1 = {(F,A),{F(a2)},Φ} and τ2 = {(G,B),Φ,{G(b2)},{G(b2),
G(b1)}} on (F,A) and (G,B), respectively. Now let us define soft function T ∶ (F,A)→̃(G,B) as follows:

T(a1,u2) = (b3,u2); T(a2,u1) = (b2,u3); T(a2,u3) = (b2,u3).

Continuity of the soft function T can be easily checked by part (i) of Theorem 5.1 as

T−1(Φ) =Φ; T−1(G,B) = (F,A); T−1({G(b2)}) = {F(a2); T−1({G(b2),G(b1)}) = {F(a2)},

so T is a continuous soft function, since it satisfies Theorem 5.1 (i).
Also part (ii) of Theorem 5.1 can be checked simultaneously by finding all directed soft set (F,A);

{F(a2)}, {F(a1)}; in (F,A) and examining their supremums images under the soft function T as

• T(sup(F,A)) = T({F(a2)}) = G(b2) = sup T(F,A),

• T(sup{F(a2)}) = T(F(a2)) = G(b2) = sup T({F(a2)}),

• T(sup{F(a1)}) = T(F(a1)) = (b3,{u2}) = sup T({F(a1)}).

Thus T is soft Scott continuous by Theorem 5.1.

Example 5.5. Let U = {u1,u2,u3,u4} and V = {v1,v2,v3} be the initial universes, A = {a1,a2,a3} and
B = {b1,b2,b3,b4} be parameter sets and let define soft sets (F,A) = {(a1,{u2,u3}), (a2,{u1,u4}), (a3,
{u1,u3,u4})} and (G,B) = {(b1,{v3}), (b2,{v1,v3}), (b3,{v2}), (b4,{v1,v2})}. Consider soft set relations on
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(F,A) and (G,B), by ≤(F,A)= {F(a1) × F(a1),F(a2) × F(a2),F(a3) × F(a3),F(a3) × F(a2),F(a1) × F(a2)} and
≤(G,B)= {G(b1)×G(b1),G(b2)×G(b2),G(b3)×G(b3),G(b4)×G(b4),G(b1)×G(b2),G(b2)×G(b4),G(b1)×
G(b4)}, respectively and soft Scott topologies τ1 = {(F,A),{F(a2),F(a3)}, {F(a1),F(a2)}, {F(a2)},Φ} and
τ2 = {(G,B),Φ,{G(b4)},{G(b1),G(b2),G(b4)},{G(b2),G(b4)}} on (F,A) and (G,B), respectively. Now
let us define soft function T ∶ (F,A)→̃(G,B) as follows:

T(a1,u2) = (b1,v3); T(a1,u3) = (b1,v3); T(a2,u1) = (b4,v2) T(a2,u1) = (b4,v2),
T(a2,u4) = (b4,v2), T(a3,u1) = (b2,v1), T(a3,u3) = (b2,v3), T(a3,u4) = (b2,v3).

Continuity of the soft function T can be easily checked by part (i) of Theorem 5.1 as

T−1(Φ) =Φ; T−1(G,B) = (F,A); T−1({G(b1),G(b2),G(b4)}) = (F,A),
T−1({G(b2),G(b4)}) = {F(a2),F(A3)} T−1({G(b4)}) = {F(a2)}.

So T is a continuous soft function, since it satisfies Theorem 5.1 (i).
Also part (ii) of Theorem 5.1 can be checked simultaneously by finding all directed soft sets (F,A);

{F(a2),F(a3)}, {F(a1),F(a2)}, {F(a2)}, {F(a3)}, {F(a1)}; in (F,A) and let us examine their supremums
images under the soft function T as followings

• T(sup(F,A)) = T({F(a2)}) = G(b2) = sup T(F,A).

• sup T({F(a2),F(a3)}) = sup{(b2,v1), (b2,v3), (b4,v2)}.
To find sup{(b2,v1), (b2,v3), (b4,v2)} we need to define (G ′

1,{b2,b4}) by G ′
1(b2) = {v1,v2} and

G ′
1(b4) = {v2}, then by using Definition 2.18, soft set relation ≤G ′1= {{((b2,b2), (v1,v1)), ((b2,b2),
(v1,v2)), ((b2,b2), (v2,v1)), ((b2,b2), (v2,v2))}, {((b4,b4), (v2,v2))},{((b2,b4), (v1,v2)), ((b2,b1), (v2,
v2))}} = {G ′

1(b2) ×G ′
1(b2),G ′

1(b4) ×G ′
1(b4),G ′

1(b2) ×G ′
1(b4)}, thus sup{(b2,v1), (b2,v3), (b4,v2)} =

(b4,{v2}) can be obtained. Also T(sup{F(a3),F(a2)}) = T(F(a2)) = {b4,{v2}} can be found. Hence
we show that sup{(b2,v1), (b2,v3), (b4,v2)} and T(sup{F(a3),F(a2)}) are equal.

• Let us find sup T{F(a1),F(a2)} = sup{(b1,v3), (b4,v2)} .

To find sup{(b1,v3), (b4,v2)} we need to define (G2,{b1,b4}) by G2(b1) = {v3} and G2(b4) =
{v2} then by using Definition 2.18 soft set relation ≤G2= {{((b1,b1), (v3,v3)), ((b4,b4), (v2,v2)),
{((b1,b4), (v3,v2)),}}}, then sup{(b1,v3), (b4,v2)} = (b4,v2). Also T(sup{F(a1),F(a2)}) = T(F(a2)) =
(b4,v2) which is equal to sup{(b1,v3), (b4,v2)}.

• Let us find sup T{F(a2)} = sup{(b4,v2)}.
To find sup{(b4,v2)} we need to define (G3,{b4}) by G3(b4) = {v2} then by using Definition 2.18
soft set relation ≤G3= {{((b4,b4), (v2,v2))} then sup{(b4,v2)} = (b4,v2). Also, T(sup{f(a2)}) =
T(F(a2)) = (b4,v2) which is equal to sup{(b4,v2)}.

• Let us find sup T{F(a3)} = sup{(b2,v1), (b2,v3)}.
To find sup{(b2,v1), (b2,v3)}we need to define G4,{b2} by G4(b2) = {v1,v3} then by using Definition
2.18 soft set relation≤G4={{((b2,b2), (v1,v1)), ((b2,b2), (v1,v3)), ((b2,b2), (v3,v1)), ((b2,b2), (v3,v3))}
then sup{(b2,v1), (b2,v3)} = {(b2,v1), (b2,v3)} = G4(b2). Also T(sup{F(a3)}) = T(F(a3)) = {(b2,v1),
(b2,v3)}, thus T(sup{F(a3)}) = sup{(b2,v1), (b2,v3)}.

• Let us find sup T{F(a1)} = sup{(b1,v3)}.
To find sup{(b1,v3)} we need to define (G5,{b1}) by G5(b1) = {v3} then by using Definition 2.18
soft set relation ≤G5= {{((b1,b1), (v3,v3))} then sup{(b1,v3)} = (b1,v3). Also, T(sup{F(a1)}) =
T(F(a1)) = (b1,v3) which is equal to sup{(b1,v3)}.

Thus T is soft Scott continuous by Theorem 5.1.
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Theorem 5.6 (Least fixed point theorem for soft Scott Continuous functions). Let (F,A) be a directed complete
partially ordered soft set with a least element F(a0).

i) Existence: Every soft Scott continuous self continuous T ∶ (F,A)→ (F,A) has a least fixed point LFP(T).

ii) Construction: The least fixed-point can be approximated by recursively defined Kleene chain:

K0 = F(a0), Kn+1 = T(Kn) = Tn+1(K0)

in the sense that
LFP(T) = sup

n

Kn = sup
n

Tn(K0).

iii) Preservation: Let (G,B) be a second directed complete partially ordered soft set with bottom and let

(F,A) (G,B)

(F,A) (G,B)

V

T S

V

be a commuting diagram of soft Scott continuous maps. Then V(LFP(T)) = LFP(S∣↑V(F0)).

Proof. K0 = F(a0) = T(F(a0)) = K1, since T is order preserving we have K1 = T(K0) ≤ T(K1) = K2 and
by induction we can obtain T(Kn) ≤ T(Kn+1) for all n. As Kn is increasing, it has a least upper bound
F(a) = supnKn in (F,A). By the continuity of T , we have T(F(a)) = T(supnKn) = supnKn+1 = F(a). Thus
F(a) is a fixed point of T . Actually it is the smallest fixed point of T . Indeed, let F(a ′) = T(F(a ′)) be
another fixed point. As K0 = F(a0) ≤ F(a ′), we have K1 ≤ T(F(a0)) ≤ T(F(a ′)) = F(a ′) and by induction,
for all n, Kn ≤ F(a ′), hence F(a) = supnKn ≤ F(a ′). This proves i and ii.

To prove (iii) we need to remark that ↑ V(F(a0)) is directed complete partially ordered soft set with a
smallest element V(F(a0)) and S maps ↑ V(F(a0)) into itself as V(F(a0)) ≤ G(b) implies

S(G(b)) = S(V(F(a0))) = V(T(F(a0))) ≥ V(F(a0)).

Hence the restriction of S to ↑ V(K0) has a least fixed point and

V(LFP(T)) = V(sup
n

T(Kn)), by (ii),

= sup
n

V(T(Kn)), as V Soft Scott continuous,

= sup
n

S(V(Fn)), as diagram commutes,

= LFP(S↑V(K0)), by (ii).

Note that, if V is strict, i.e., if V(K0) = H0, then V(LFP(T)) = LFP(S).

6. Conclusion

In this paper, an ordering on soft elements were defined and soft continuity on soft topological spaces
were examined. Furthermore, least fixed point theorem for soft Scott continuous functions was proved.
From this study, it can be seen that the most of properties of lattice, Scott topology, and Scott continuous
function in general can be satisfied by soft lattice, soft Scott topology, and soft Scott continuous function,
respectively. But there are some exceptions, for example, classical Scott topology is a T0 topological space
while soft Scott topology is not a T0 soft topological space. Moreover one can study categorical structures
according to this paper on soft sets.
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