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Abstract: In this study, we present an epidemic model that characterizes the behavior of a financial network of
globally operating stock markets. Since the long time series have a global memory effect, we represent our model
by using the fractional calculus. This model operates on a network, where vertices are the stock markets and edges
are constructed by the correlation distances. Thereafter, we find an analytical solution to commensurate system and
use the well-known differential transform method to obtain the solution of incommensurate system of fractional
differential equations. Our findings are confirmed and complemented by the data set of the relevant stock markets
between 2006 and 2016. Rather than the hypothetical values, we use the Hurst Exponent of each time series to
approximate the fraction size and graph theoretical concepts to obtain the variables.
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1 Introduction

Economic interactions of financial institutes can form a network and the analysis of it allows us to explain certain
economic phenomena better. The use of network theory can enrich our understanding of financial systems as complex
systems. For instance, the network theory can be used to explain freezes in the interbank market and can improve
investment decisions and corporate governance [1, 2].

The vast amount of virus models are based on the classification of the individuals or hosts. The structure of
the network of the individuals allows models to determine the characteristics of the epidemic dynamics at any
scale. Hence, these characteristics have become important to enhance the understanding and predicting the epidemic
patterns [3, 4]. Beside the huge literature on the virus spreading on biological networks [5–7], and the references
therein, the epidemics of the financial crisis also have been studied by several researchers. The pioneering study of
the analysis of contagion directly in financial systems is that of [8], where authors modelled financial contagion as
an equilibrium phenomenon. When the speed of the shocks propagate is given, the transmission of the shocks in the
network needs to by analyzed. In [9], authors take this into financial systems by introducing the concepts from the
complex networks. They develop a model of contagion in arbitrary financial networks.

Differential equation models assume homogeneity and perfect mixing within compartments [10]. In this manner,
the susceptible-infected-susceptible (SIS) model expressed as a system of ordinary differential equations plays a
key role [11]. The SIS model is two-state model with healthy and active phases. In an active phase the infection
rapidly disappears. An active phase is a stationary endemic state that is characterized by a finite fraction of infected
individuals. The several variations of SIS models such as stochastic [12], with backward bifurcation [13], with
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variable population size and a delay [14] have been studied by several researchers. In several studies on computer
virus epidemiology [15–17], continuous state models are used to represent degradation. This approach has numerous
advantages to two-state models such as SIS [18].

In this study, we consider the economic crisis or stress as a virus contagious on a financial network of globally
operating stock markets, and represent it by the fractional order differential equation system as

D˛t0—i.t/ D

NX
jD1

wij�j .t/ � di�i .t/; �i .t0/ D �i0; i D 1; : : : ; N: (1)

Since fractional order derivatives emerge as a powerful tool to describe the memory and hereditary properties, they
are frequently used in various areas such as fluid mechanics, biology, physics, and economics. Fractional calculus is
an effective way of incorporating memory effects. The kernel of power-law defining the fractional relaxation equation
presents a long-term memory [19, 20]. For the analytical and numeric solutions of fractional order differential
equations and their systems, numerous methods such as Laplace transform method [21–23], iteration methods
[24, 25], differential transform method [26, 27], Adomian decomposition method [28], and the Fourier transform
method [29, 30] are proposed by several researchers.

The paper is organised as follows: In Section 2, we give the basics of the graph theory to construct stock market
network and preliminaries about the fractional calculus. For more details on the graph theory we refer readers to
[31]. In Section 3, we first construct the network with respect to correlation distance of each stock market’s daily
logarithmic return. For the edge forming, we introduce a method to determine threshold value. The model (1) can be
studied in two ways: commensurate and incommensurate systems. In the case of the equality of the fraction sizes we
obtain the commensurate system, and the case of the inequality of different fraction sizes yields the incommensurate
system. For the commensurate system we use an analytical method that is based on Mittag-Leffler functions applied
for the fraction size ˛ D 0:5 in Section 4. By choosing ˛ D 0:5, we discard the autocorrelation of each time series.
Again in Section 4, we apply the differential transform method for the solution of the incommensurate system. For
the commensurate system, we determine the fraction sizes with respect to Hurst exponent of each time series. The
concluding remarks on this study are given in Section 5.

2 Preliminaries

In this section, we present mathematical preliminaries and concepts of fractional calculus and graph theory that we
used throughout the paper. For constructing the financial network we use undirected simple graphs and some of their
classes, and spectrum to determine threshold boundaries. For the epidemic model acting on a network, we use the
Caputo fractional derivatives. Throughout the paper � represents the Gamma function which is an extension of the
factorial function.

2.1 Fractional calculus

Fractional calculus generalizes the notions of integer-order differentiation and integration to the fractional order
[22, 32]. Here, we give some basic definitions and properties of fractional calculus theory that will be used throughout
the paper.

Definition 2.1 ([33]). For f .x/ 2 C.a; b/ and n � 1 < ˛ � n, we let

C
a D

˛
t f .t/ D

1

�.n � 1/

tZ
a

f .n/.�/

.t � �/˛C1�n
d�

which is called the Caputo fractional derivative operator of order ˛.
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There are several generalization of the fractional derivatives. The most common ones are the Riemann-Liouville and
Caputo senses. When solving fractional differential equations, the Caputo’s definition does not require fractional
order initial conditions [22]. We have chosen to use the Caputo fractional derivative because it allows traditional
initial conditions to be included the formulation of the problem.

The fractional differentiation in the Riemann-Liouville sense is defined by

RL
a D˛t f .t/ D

1

�.n � ˛/

dn

dtn

24 tZ
a

f .t/

.t � �/1C˛�n
d�

35
for n � 1 � ˛ < n. The relation between the Riemann-Liouville and Caputo operators can be given by

C
a D

˛
t f .t/ D

RL D˛t

"
f .t/ �

n�1X
kD0

1

kŠ
.t � a/kf .k/.a/

#
(2)

for n 2 ZC [22].
For the sake of simplicity, we denote the Caputo operator as Ca D

˛
t D D˛a throughout the study. Since our

formulation involves only the initial conditions we choose a D 0.
As the solutions of integer order differential equations are expressed in the terms of exponential functions, the

solutions of fractional order differential equations can be expressed in the terms of Mittag-Leffler functions. More
details on Mittag-Leffler functions can be found in [22, 34] and the references therein.

2.2 Graph theory

One of the most powerful tools to represent real world problems which involve relationships is a simple graph.
A simple graph is the tuple G D .V;E/ where V is the set of vertices (or the nodes representing the agents in
interaction) and E is the set of edges (or the links representing the interactions). Elements of E are the unordered
pairs of vertices; i.e., E D fe D .vi ; vj /jvi ; vj 2 V g.

A path between any vertices vi and vj can be defined as the sequence of edges whose end points are vi and vj .
The graph G D .V;E/ is called connected if there is a path between any vertices. The complete graph is an
undirected graph with every pair of apart vertices connected by an edge. A k-clique is a subset of k-vertices of
an undirected graph such that its induced subgraph is complete. In the case of real world data representation, each
edge in E may be assigned by a non–negative numerical value. This value is called as a weight. The triple .V;E;w/
is called as a weighted graph for the mapping w W E ! RC.

To represent simple and undirected graph, we use a binary matrix whose elements are

AG.i; j / D

(
1; if .vi ; vj / 2 E
0; otherwise:

This matrix is called adjacency matrix and is symmetric by the definition.
For a vertex v in an undirected graph G, the number of edges incident to that vertex is called a degree and let us

denote it by dv . For the graph G D .V;E/, the Laplacian Matrix of G is the matrix whose entries are

LG.i; j / D

8̂<̂
:
dvi ; if i D j
�1; if AG.i; j / D 1
0; otherwise:

The graph Laplacian does not depend on an ordering of the vertices of G. For the spectrum of the Laplacian SG D
f�1; : : : ; �mg, it is well known that all of the eigenvalues are positive semi-definite; i.e. �i � 0 with the least one 0.
For a graph with nonnegative weights, the multiplicity k of the eigenvalue 0 of LG equals the number of connected
components in the graph [35].

One of the best known graph problems is to find a tree structure that has minimum weight. There are several
approaches to solve this problem and the resulting tree is known as Minimum Spanning Tree (MST) [36–38]. MST
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is also known to bring hierarchical structures in complex networks [39, 40]. The latter studies show that the tree
like structures that involves cliques serve more efficiently to bring hierarchies [41, 42]. Planar graphs have the
same hierarchical structure as MST but they contain a larger amount of edges, loops and cliques. The idea of the
construction of planar graphs is based on connecting the most correlated agents iteratively while constraining the
resulting network to be embedded on a surface with genus g. In [42], authors briefly studied the special case for
g D 0; i.e., the graph embedded on a sphere, and called it as the Planar Maximal Filter Graph (PMFG). PFMG can
be seen as the topological triangulation of the sphere, henceforth it is only allowed to have three or four cliques [43].

3 The model

In this study, a financial network of globally operating stock markets are modelled by a simple undirected graph
G D .V;E/, where V is the set of stock markets and E are the edges determined by the Pearson Correlation
amongst the markets of Holland (AEX), Austria (ATX), Turkey (BIST), France (CAC), Germany (DAX), USA
(DOW, NASDAQ, SP500), European Union (EUROSTOXX), UK (FTSE), Mexica (IPC), South Korea (KOSPI),
Argentina (MERVAL), Japan (NIKKEI), Switzerland (SMI), Israel (TELAVIV), and Taiwan (TSEC). The data
we used is obtained from the daily logarithmic return of the closure price of each market between the dates from
02.01.2006 to 15.02.2016.

For the daily closure price Cli of the i -th stock market, the daily logarithmic return Ri is calculated as

Ri D log
�
CliC1

Cli

�
and to obtain links between the stock markets, we use the Pearson correlation of each stock market as

�ij D
< RiRj > � < Ri >< Rj >q

.< R2
i
> � < Ri >2/.< R

2
j
> � < Rj >2/

where < :: > is a temporal average performed on the trading days.
To avoid the non-positive weights on edges, we introduce the distance function involving correlations as

CorrDist WD
p
2.1 � �ij /=2. While correlation coefficients vary between �1 to 1, the values of CorrDist vary

0 to 1.
To determine the links, we use the following formation rule:

.vi ; vj / 2 E iff CorrDist.vi ; vj / � T hV:

Here, T hV is an empirical threshold value. Our method to determine the network initially starts with a complete
graph. The spectrum of this complete graph involves only one 0 eigenvalue. Then, we subdivide Œ0; 1� closed interval
with 1=h step. The natural candidate to threshold value is i=h for i D 0; : : : ; h. Hence the lower boundary for
threshold value is 0; i.e., the initial complete graph. At certain point between 0 and 1, the graphs formed by the
forementioned formation rule will have more than one component. To check this, counting the 0 eigenvalues of each
graph spectrum will reduce the computational complexity.

In this study, we let h D 100 and determined the boundaries for T hV as Œ0; 0:86�. The multiplicity of the 0
eigenvalues of each graph for i=100; i D 0; : : : ; 100 is given in Figure 1.

To determine the convenient T hV in boundary, we need to introduce a concept called the disparity measure. For
each graph with respect to T hV 2 Œ0; 0:86�, it is possible to obtain PMFGs. An analysis on all of the 4-cliques in
the PMFG reveals a high degree of homogeneity with respect to the 17 globally operating stock markets. The mean
of disparity measure < y > can be defined analogously to [42] as the mean of

y.i/ D
X

j¤i;j2clique

�
CorrDist.i; j /

si

�2
over the clique, where i is a generic element of the clique and

si D
X

j¤i;j2clique

CorrDist.i; j /:
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Fig. 1. The multiplicity of the 0 eigenvalues of each graph with respect to threshold values. For the threshold values bigger than 0.86,
the number of components of graphs exponentially grows.

It should be noted that this measure is only valid for the connected graphs [42], henceforth we computed it only for
T vH 2 Œ0; 86�. More interestingly, local boundaries occur for the mean disparity measure. For T hV 2 Œ0:81; 0:86�,
the formed graphs yield infinite disparity measures since the si values tend to 0. Therefore, we choose the T hV as
0:8 to model the network more efficiently. In Figure 2, the values of the disparity measure for the T hV 2 Œ0; 0:8� are
given.

Fig. 2. The mean disparity measures < y > of each graph with respect to threshold values.

The network under consideration is given in Figure 3 as the triple G D .V;E;w/. Each vertices represent the
corresponding stock market. The set of edges are formed with respect to CorrDist � 0:8. The natural weight
defined on network is the CorrDist value. The central stock markets, that have the minimal greatest graph
distance to other vertices, are DOW, KOSPI, NIKKEI, and SMI. The rest serve as peripheral nodes. Also DOW,
EUROSTOXX, KOSPI and ATX, DOW, MERVAL form 3-cliques, respectively.

In our study, the vertices of the network are considered as the infectious components of the virus epidemic
model. The spreading of the virus is through the noninfectious components, that are the edges of the network.
Hence, the components of the network are assumed to be nonhomogeneous. This infection can be seen as the global
economic crisis or stress analogously in financial networks. Once an economic crisis occurs in a stock market, the
crisis replicate itself into other stock markets that are the adjacent to infectious one in the network. Progressively,
more and more stock markets will be influenced by the crisis exponentially, and then the vertices of whole connected
network will be under crisis immediately. In most cases, all vertices would be affected before the recovering process
of an individual vertex. Hence, a two-state model is not sufficient to model the crisis phenomena in the financial
network.

An advantageous alternative to a two-state model is the continuous-state model where the state of each vertex
takes real values to represent the crisis state. The continuous state model is defined on the state space� 2 Œ0; 1�. The
"0" state is representing the perfect functioning that is there is no crisis, and "1" is the complete crisis state. �i .t/
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Fig. 3. The network amongst the 17 stock markets that build with the formation rule CorrDist � 0:8. The markets DOW and
NIKKEI have the highest vertex degree 7, and the markets with degree 6 are EUROSTOXX, KOSPI, SMI.

denotes the state index of vertex i at time t . The fractional process plays key role to capture long-range memory and
self-similarity behaviour in complex systems. Therefore, we describe our model for financial crisis spreading as an
epidemic fractional differential equation. By the aforementioned assumptions, we set �i .t/ D 0 if the vertex vi is at
healthy state. The fractional deviation from the normal state represents the level of crisis occuring in the vertex. The
weight wij is the strength of the interaction between the vertices vi and vj . As we represent our network with the
weighted graph G D .V;E;w/, the weights are computed by wij D CorrDist.vi ; vj /. For the vertex vi 2 G, its
state is affected by the total impact of neighboring vertices vj 2 G. Hence the ability of the vertex vi to overcome
a crisis is proportional to its vertex degree dvi . Taking all these assumptions into consideration, the status change of
the vertex vi can be expressed as the following epidemic fractional differential equation:

D˛t0.�i .t// D
X
j2Ni

wij�j .t/ � dvi�i .t/: (3)

where Ni is the set of the neighboring vertices of the vertex vi and the ˛ is the fractional dimension.
In our model we use the Hurst exponent (H ) to determine the fractional dimension empirically.H is a statistical

measure of long-term memory of time series. Basically, it relates the autocorrelations of the time series. The
measurement can be done by

E

�
R.n/

S.n/

�
D CnH as n!1

where EŒx� is the expected value, R.n/ is the range of the first n values, S.n/ is their standard deviation, C is a
constant. The value ofH varies on .0; 1/ by the definition [44].H can be referred to as the index of dependence and
quantifies the relative tendency of a time series either to regress strongly to the mean or to a cluster in a direction.
If 0:5 < H < 1 the time series has a long-term positive autocorrelation while for 0 < H < 0:5 it has a long-term
negative autocorrelation. For H D 0:5 can indicate a completely uncorrelated series [44]. The computed H values
of the stock market time series used in this study are given in Table 1.

In this study, we examine two cases for the fractional dimension ˛. First case is for ˛ D 0:5, that is the model
discarding the autocorrelation of each stock market. Then, the commensurate linear fractional order system can be
expressed as

D˛t0—.t/ D .W � Dv/—.t/; —.0/ D R0; (4)

where t 2 �, — D Œ�1; : : : ; �N �, W is the correlation distance matrix, Dv is the diagonal matrix with T r.Dv/ DPN
iD1 dvi , and R0 � RN is the vector whose i -th entry is Ri .0/, and N is the number of vertices in the network.
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Table 1. The H values of each stock market. TELAVIV and SP500 have the strongest positive and negative autocorrelations,
respectively. AEX, DAX, IPC, KOSPI, and NIKKEI are almost uncorrelated.

Stock Market H Stock Market H

AEX 0.5085 KOSPI 0.5024
ATX 0.5144 MERVAL 0.5463
BIST 0.5269 NASDAQ 0.4652
CAC 0.4732 NIKKEI 0.5044
DAX 0.4918 SMI 0.4794
DOW 0.4629 SP500 0.4422
EUROSTOXX 0.4648 TELAVIV 0.5526
FTSE 0.4704 TSEC 0.5302
IPC 0.5061

The stability of such system is studied in [45] where necessary and sufficient conditions are derived. The following
theorem is an analogues to similar results.

Theorem 3.1. The autonomous fractional order linear system (4) is asymptotically stable iff j arg.spec.W�Dv/j >

˛�=2. In this case the components of the state decay towards 0 like t�˛

For the case ˛ D 1; if no poles of the system (4) lie in the closed right-half plane, then the stability occurs. Hence,
this is consistent with the results for ordinary systems [46].

The second case is ˛i D Hi , that is the fractional rate of change is equal to Hurst exponent of each stock
market. In this case our model includes the autocorrelation, positive or negative, into consideration. Then, the
incommensurate linear fractional order system can be expressed as

D˛—.t/ D .W � Dv/—.t/; —.0/ D R0: (5)

In this system, only the matrix D˛ differs from the system (4). Here D˛ D
�
D
˛1
t0
; : : : ;D

˛N
t0

�
and D˛it0 indicates the

Caputo fractional derivative of �i of order ˛i . For the positive rational numbers ˛i , i D 1; : : : ; N , the following
stability result is proposed in [47], and similar results can be derived as follows:

Theorem 3.2. Suppose that ˛i are rational numbers in .0; 1/ for i D 1; : : : ; N . Let  D 1=m where m is the
least common multiple of the denominators mi of ˛i ’s where ˛i D ki=mi , ki ; mi 2 N. Then the system (5) is
asymptotically stable if all roots � of the equation

det
�
diag

�
�m˛1 ; �m˛2 ; : : : ; �m˛N

�
C Dv �W

�
D 0

satisfy j arg.�/j > �=2.

4 Solution

In this section, we give two solutions for the systems (4) and (5). The existence and uniqueness of the solution of such
commensurate system (4) is studied in [21] and the analytical solution is presented in the terms of Mittag-Leffler
functions. For the incommensurate system (5), the approximate solution is obtained by using a differential transform
method. This method is presented in [27] and the solutions are obtained accurately.

Since we consider 17 globally operating stock markets, we set jV j D N D 17. The state functions of each stock
market are defined on � D Œ0; 1� and are named in alphabetical order to improve readability. That is, AEX.t/ D
�1.t/; : : : ;DOW.t/ D �6.t/; : : : ; NASDAQ.t/ D �12.t/; : : : ; TSEC.t/ D �17.t/.

The degree matrix Dv is obtained with respect to vertex degrees of each stock market in the network as diagonal
matrix

Dv D diagŒ4; 3; 4; 3; 5; 7; 6; 5; 4; 6; 5; 5; 7; 6; 5; 4; 3�:
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The matrix W with each entry is the correlation distance of each adjacent stock market and is represented in Figure 4.

Fig. 4. The matrix W obtained by the CorrDist of each adjacent stock market. The matrix is plotted with the temperature mapping
and each ticks are mapped to stock markets in alphabetical order.

4.1 Analytical solution to commensurate system

To obtain general solution of the commensurate fractional order linear system (4), we seek solutions of the form

—.t/ D uE˛.�t˛/; (6)

where the constant � and the vector u need to be determined and E˛ is the Mittag-Leffler function. Substituting the
equation (6) into the system (4) yields

u�E˛.�t˛/ D .W � Dv/uE˛.�t˛/ (7)

and upon cancelling the matrix equation
.Dv �W � �I/u D 0; (8)

where the I is the N � N identity matrix. Hence, the vector u given by equation (6) is the solution to the system
(4). For this solution it is provided that � is an eigenvalue and u is an associated eigenvector of the matrix Dv �W.
Henceforth, the general solution to commensurate system (4) is given by

—.t/ D c1u
.1/E˛.�1t

˛/C c2u
.2/E˛.�2t

˛/C : : :C cnu
.n/E˛.�nt

˛/ (9)

where c1; : : : ; cn are arbitrary constants, �1; : : : ; �n are the eigenvalues, and u.1/; : : : ; u.n/ are the corresponding
eigenvectors.

To determine the coefficients c1; : : : ; cn we use the initial condition matrix

R0 D Œ1:80631; 2:10551; 2:36004; 2:13617; 2:15215; 1:62705; 2:1029; 2:15569; 2:28177; 1:97914

1:99465; 2:00506; 2:2724; 2:1905; 1:96653; 1:90839; 2:17176� :

By the determination of the unknown terms, the analytical solutions of the system (4) operating on the stock market
network presented in Section 3 are given in Figure 5–7. In these figures, horizontal axis represents the time variable
t 2 Œ0; 1� and vertical axis represents the state function �.t/. We need to note that our solution in the form of
Equation (9) of the system (4) does not include complex or multiple eigenvalues.
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In Figure 5, we first study the state function for t 2 Œ0; 0:1�. In the very first steps the crisis affects all stock
markets. However, some of them resist to crisis at certain point and start to recover their state. Hence we group
stock markets as descending (Figure 5a) and ascending (Figure 5b) states. In Figure 5a; EUROSTOXX, SMI, and
TELAVIV are the most vulnerable stock markets in the time of crisis and DOW, NASDAQ, and SP500 are the first
stock markets resisting the crisis as seen in In Figure 5b. In Figure 5b, it can also be seen that after KOSPI resist to
crisis, it is again affected in Œ0:09; 0:1� and loose its healthy state. Another Asian stock market NIKKEI is acting in
opposite way; it first get affected by the crisis, then strongly resists. In Figure 6, the similar resistances and effects
can be seen. In Figure 6a, AEX and BIST resist to crisis and recover their state. In Figure 6b, DAX, IPC, and TSEC
get affected by the crisis while others remain in healthy state. While t tends to 1, the stock markets exponentially get
affected or resist crisis as can be seen in Figure 7.

Fig. 5. The first states of stock markets. The descending group (a) are stock markets affected by the crisis and the ascending group (b)
are stock markets resisting the crisis within the time interval Œ0; 0:1�.

(a) t 2 Œ0; 0:1� (b) t 2 Œ0; 0:1�

Fig. 6. The second phase of the state of the stock markets. In (a) two stock markets recover their affected states, and in (b) three stock
markets stop resisting and get affected by the crisis.

(a) t 2 Œ0; 0:15� (b) t 2 Œ0; 0:15�

Fig. 7. The last phase of the state of the stock markets. There happens no resisting nor getting affected, the healthy and unhealthy
states of the stock markets grow exponentially.

(a) t 2 Œ0; 0:6� (b) t 2 Œ0; 0:6�
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4.2 Differential transform solution to incommensurate system

In this section, we apply the differential transform method introduced in [27] to obtain the approximate solutions for
the incommensurate system (5). It shall be noted that the fractional degrees are different, hence an analytical solution
to the system (5) cannot be obtained.

The differential transform method a is numerical method based on the series expansion. If we expand the
analytical and continuous function f .t/ in terms of a fractional power series, then we obtain

�.t/ D

1X
kD0

M.k/.t � t0/
k=˛

where ˛ is the fractional degree and M.i/ is the fractional differential transform of �.t/ [26].
For the Caputo sense fractional differential equations initial conditions are not restricted to fractional orders.

Therefore, the transformation of the initial conditions are defined in [26] as follows:

M.k/ D

8<: If k=˛ 2 ZC;
1

.k=˛/Š

h
D
k=˛
t0

.t0/
i

If k=˛ … ZC; 0;
(10)

where ˛ is the order of the fractional differential equation.
Let Ni be the differential transform of �i for i D 1; 2; : : :. The following theorems serve as the fundamentals to

the differential transform method we use in this study:

Theorem 4.1 ([26]). If �.t/ D �1.t/˙ �2.t/, then M.k/ D N1.k/˙N2.k/.

Theorem 4.2 ([27]). If �.t/ D Dqt0�.t/, then

M.i/ D
�.q C 1C k=˛/

�.1C k=˛/
N.k C ˛q/:

The incommensurate system (5) operating on the stock market network presented in Section 3 can be presented as
the linear system

D
Hi
0
�i .t/ D

17X
jD1

wij�j .t/ � di�i .t/; �i .0/ D Ri .0/; i D 1; : : : ; 17; (11)

where Hi is the Hurst exponent of �i , wij is the .i; j /-th entry of the weight matrix, and di is the i-th diagonal
entry of the degree matrix.

By considering Theorems 4.1–4.2, the system (11) can be transformed to

Mi .k C iHi / D
�.1C k=Hi /

�.i C 1C k=Hi /

24 17X
jD1

wijMj .k/ � diMi .k/

35 ; (12)

where i are the unknown values of the fractional order Hi for i D 1; : : : ; 17. By using the Equation 10, initial
conditions in the system (11) can be transformed into

Mi .0/ D Ri .0/; Mi .k/ D 0; for k D 1; : : : ; iHi � 1: (13)

The solution functions of the systems (12) with the initial conditions (13) can be obtained as follow:

�1.t/ D 1:80631C 17:1796t0:5 C 12:3386t0:94 C 25:1212t0:96 C 28:2682t0:97 C 11:9018t1:05 C : : :

�2.t/ D 2:10551C 19:272t0:51 C 9:8914t0:95 C 30:0842t0:97 C 25:2t0:98 C 9:25386t1:06 C : : :

�3.t/ D 2:36004C 14:588t0:52 C 12:6987t0:96 C 27:4381t0:98 C 29:319t0:99 C 9:61043t1:07 C : : :

�4.t/ D 2:13617C 19:3333t0:47 C 7:20519t0:91 C 29:0178t0:93 � 44:3861t0:94 C 12:3189t1:02 C : : :
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�5.t/ D 2:15215C 14:791t0:49 C 9:91185t0:93 C 27:3633t0:95 C 28:3221t0:96 C 12:9105t1:04 C : : :

�6.t/ D 1:62705C 14:8102t0:46 C 10:7412t0:9 � 79:5372t0:92 C 31:4378t0:93 C 14:7338t1:01 C : : :

�7.t/ D 2:1029C 11:2301t0:46 C 11:8982t0:9 � 37:5382t0:92 C 28:315t0:93 C 8:6656t1:01 C : : :

�8.t/ D 2:15569C 13:5695t0:47 C 6:82824t0:91 C 29:6966t0:93 � 44:9527t0:94 C 7:71607t1:02 C : : :

�9.t/ D 2:28177C 15:4333t0:5 C 13:2219t0:94 C 24:878t0:96 C 32:4388t0:97 C 11:8902t1:05 C : : :

�10.t/ D 1:97914C 12:574t0:5 C 5:0442t0:94 C 31:1931t0:96 C 19:1388t0:97 C 8:59049t1:05 C : : :

�11.t/ D 1:99465C 12:574t0:54 C 5:0442t0:94 C 31:1931t0:96 C 19:1388t0:97 C 8:59049t1:05 C : : :

�12.t/ D 2:00506C 16:6778t0:46 C 10:2758t0:9 � 61:4909t0:92 C 29:4435t0:93 C 14:0537t1:01 C : : :

�13.t/ D 2:2724C 8:42538t0:5 C 12:7442t0:94 C 23:9292t0:96 C 31:3504t0:97 C 12:6503t1:05 C : : :

�14.t/ D 2:1905C 10:4942t0:47 C 9:92782t0:91 C 29:5985t0:93 � 37:874t0:94 C 5:44193t1:02 C : : :

�15.t/ D 1:96653C 15:5281t0:44 � 72:0098t0:88 C 29:8793t0:9 C 21:643t0:91 C 11:6018t0:99 C : : :

�16.t/ D 1:90839C 17:5713t0:55 C 10:2174t0:99 C 31:1809t1:01 C 22:6802t1:02 � 59:6992t1:1 C : : :

�17.t/ D 2:17176C 19:1863t0:53 C 8:33674t0:97 C 24:5671t0:99 C 27:0634t C 11:7631t1:08 C : : :

The results are shown in Figure 8. In the very first steps the crisis affects all stock markets. With the change in the
healthy state, the resistance occurs in two manners, that is high and low. In Figure 8a we show the stock markets
with low resistance. These are the stock markets that diverge from their equilibrium states. Amongst them, TSEC has
the lowest and KOSPI has the highest low resistance. In Figure 5b we show the stock markets with high resistance.
DOW is the only stock market that can rapidly recover its unhealthy state. Besides, SP500 and NASDAQ also resist
to crisis strongly. All stock markets represented in Figure 8b tend to seek an equilibrium state.

Fig. 8. The solution functions of the systems (12) with first 20 terms.

(a) Stock markets with low resistance (b) Stock markets with high resistance

5 Conclusions

Usually the real world problems are described by using ordinary differential equations. However, it is a hard task to
be completed to tackle these problems whenever the memory effect is included. The memory effect is an efficient
concept for the models of complex systems. In this study, we propose a nonlinear fractional order model in order to
explain and understand the epidemic behaviour of a global economic crisis.

Before introducing the model, we first construct the financial network of globally operating 17 stock markets
as an undirected graph. The links are formed by a distance function involving the correlation of each time series
of the stock markets operating from 02.01.2006 to 15.02.2016. To determine the boundaries of the threshold, we
introduce a method based on the spectrum of the graph. For the threshold value to form links we introduce an
analogous disparity measure involving the correlation distances in the cliques. The threshold value for the network is
determined as 0.8. Larger partitions would yield more accurate threshold value, however it would also exponentially
grew the time complexity. Hence, we determine the partition as h D 100.
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Afterwards, we introduce our epidemic model of fractional order with Caputo derivatives. The general form of
the model is presented as

D˛0—i.t/ D

17X
jD1

wij�j .t/ � di�i .t/; �i .0/ D Ri .0/; i D 1; : : : ; 17:

This model can be studied in two ways. First is the commensurate one that is ˛1 D : : : D ˛17 D ˛. The
commensurate system is the one discarding the autocorrelation of each time series when ˛ D 0:5. We need to
note that the commensurate system does not include multiple or complex eigenvalues in our network. The second
system is the one with different fractional order, that is the incommensurate system. Rather than the hypothetical
fractional orders, we use the Hurst exponent which is the measure of the autocorrelation of a time series. To solve
incommensurate system, we use the differential transform method. This method is convenient for our study because
its time complexity is low and it does not have any restriction on the time domain. By using differential transform
method, it is possible to forecast the future states of the model as in Figure 9.

Fig. 9. The behaviour of the stocks in Figure 8b for t 2 Œ0; 30�. The state of TELAVIV would be balanced with DOW, and FTSE with
CAC for the long time range.

Neo-classical economic theory states that markets always attempt to reach their equilibrium state. In the time of
crisis, this attempt is made through the adjustments done by the institutions. The commensurate system we present
in this study is discarding the autocorrelations. Hence, the solution let us to determine which markets can resist or
not in the time of crisis. The details on this resistance is explained in Section 4.1. Since the incommensurate system
we present in this study considers the autocorrelations, we assume there is no adjustment by the institutions. In this
case, some of the markets can converge to their equilibrium state while the rest diverge. By Section 4.2 it can be
concluded that the converging markets are with the negative autocorrelation and are globally strong markets, such as
DOW, SP500, NASDAQ, FTSE, and NIKKEI.

It is concluded that the fractional order epidemic models we present in this study produces results that agree very
well with the real data. Moreover, these models can provide useful information for the understanding, prediction,
and control of the global economic crisis.
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