
SYSTEMS-LEVEL QUALITY IMPROVEMENT

A decision support system to improve medical diagnosis using
a combination of k-medoids clustering based attribute
weighting and SVM

Musa Peker1

Received: 13 July 2015 /Accepted: 15 March 2016 /Published online: 21 March 2016
# Springer Science+Business Media New York 2016

Abstract The use of machine learning tools has become
widespread in medical diagnosis. The main reason for this is
the effective results obtained from classification and diagnosis
systems developed to help medical professionals in the diag-
nosis phase of diseases. The primary objective of this study is
to improve the accuracy of classification in medical diagnosis
problems. To this end, studies were carried out on 3 different
datasets. These datasets are heart disease, Parkinson’s disease
(PD) and BUPA liver disorders. Key feature of these datasets
is that they have a linearly non-separable distribution. A new
method entitled k-medoids clustering-based attribute
weighting (kmAW) has been proposed as a data preprocessing
method. The support vector machine (SVM) was preferred in
the classification phase. In the performance evaluation stage,
classification accuracy, specificity, sensitivity analysis, f-mea-
sure, kappa statistics value and ROC analysis were used.
Experimental results showed that the developed hybrid system
entitled kmAW+SVM gave better results compared to other
methods described in the literature. Consequently, this hybrid
intelligent system can be used as a useful medical decision
support tool.

Keywords Medical diagnosis . k-medoids clustering based
attribute weighting . Support vector machine . Hybrid
classificationmethod . Decision support system

Introduction

Medical diagnosis refers to the process of identifying a partic-
ular disease by analyzing the symptoms. From a biomedical
informatics aspect, a medical diagnosis is a classification op-
eration incorporating a decision-making process that is based
on available medical data. From this aspect, automatic medi-
cal diagnostic systems provide the advantages of structural
computing power when large amounts of data are used. For
example, with these systems, it is possible to learn from sim-
ilar cases from a large database of patient records. Using this
information, it can be possible to reach a decision quickly in
terms of the current patient. This can be useful in helping the
specialist. Moreover, these systems aim to minimize the pos-
sibility of physician error. The benefits of using such intelli-
gent systems include increased diagnostic accuracy and a re-
duction in the time and cost associated with treatment [1–3].

Many researchers have been working on new computer-
aided systems and technologies in order to help doctors diag-
nose particular diseases. Most of the newly-developed sys-
tems are tested on data with regard to diseases that has been
gathered in the medical field and are open for use by all sci-
entists. In this context, the performance of these systems is
compared.

One of the most popular databases used for this purpose is
the UCI machine learning repository [4]. The method pro-
posed in this study was tested on heart disease, Parkinson’s
disease and BUPA liver disorders datasets obtained from this
database and the results obtained were compared with studies
in the literature. When selecting these datasets, diseases with
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high mortality rates that affect the majority of society were
selected. The summary of the information in the literature
regarding studies that have been implemented on these
datasets is presented below.

In the literature, there are studies carried out on Statlog
heart disease dataset with the purpose of the diagnosis of heart
disease. Duch et al. [5] have made comparative analyses using
k-nearest neighbour (kNN), Manhattan with kNN, feature
space mapping (FSM), and separability split value (SSV) al-
gorithms. They obtained highest accuracy rate as 85.1 % with
kNN algorithm. Sahan et al. [6] have presented a novel clas-
sification algorithm named as feature weighted artificial im-
mune system (AWAIS). With the proposed method, they ob-
tained 82.59 % classification accuracy. Polat and Gunes [7]
have proposed a novel system based on a combination of
attribute selection, artificial immune recognition system
(AIRS) classifier and fuzzy weighted pre-processing. As a
result, they obtained a classification accuracy of 92.59 %.
Polat et al. [8] have developed a new system based on kNN
based weighting pre-processing and AIRS with fuzzy re-
source allocation mechanism. They achieved 87 % classifica-
tion accuracy. Ozsen and Gunes [9] have achieved 83.95 %
classification accuracy with a new classifier called artificial
immune system (AIS) with hybrid feature vectors.
Kahramanli and Allahverdi [10] have used fuzzy neural net-
work (FNN) algorithm for this problem. As a result, they
obtained 86.8 % classification accuracy. Polat and Gunes
[11] have proposed an attribute selection method named as
kernel f-score feature selection (KFFS). In the study in which
LS-SVM algorithm was used as a classification algorithm,
83.70 % classification accuracy was obtained. Das et al. [12]
have proposed an ensemble method with three neural net-
works for diagnosis of heart disease. 89.01 % accuracy rate
was achieved with the method. Subbulakshmi et al. [13] have
proposed a novel learning algorithm for training of single
layer feed-forward neural networks. They achieved classifica-
tion accuracy of 87.50 % in diagnosis of heart disease with the
method called as Extreme Learning Machine (ELM). Mantas
and Abellán [14] have proposed a decision tree algorithm
related to imprecise probabilities. They applied the algorithm
called as Credal-C4.5 on different data sets. Researchers ob-
tained 64.53 % classification accuracy for Statlog heart dis-
ease data set.

In the literature, numerous studies conducted on PD data
set for diagnosis of PD. Shahbaba and Neal [15] have pro-
posed a non-linear system based onDirichlet mixtures. 87.7%
classification accuracy was obtained with the proposed meth-
od. Das [16] has applied 4 different methods for the diagnosis
of PD. These methods are respectively, ANN, DMneural re-
gression and decision trees. The highest accuracy rate was
achieved with the ANN method. With this method, the accu-
racy rate of 92.9 % was achieved. Guo et al. [17] have devel-
oped a method based on genetic programming (GP) and

expectation maximization (EM). 93.1 % classification accura-
cy was obtained with the proposed method. Sakar and Kursun
[18] have proposed a mutual information based attribute se-
lection and a SVM based method and the accuracy rate of
92.75 % was obtained. Ozcift and Gulten [19] have proposed
a method that combines 30 machine learning algorithms with
rotation forest (RF) ensemble classifier. 87.13 % classification
accuracy was obtained in the study in which the correlation
based feature selection (CFS) algorithm was used as a feature
selection algorithm. Aström and Koker [20] have obtained
91.2 % classification accuracy using a parallel neural network
model for the diagnosis of Parkinson’s disease. Luukka [21]
has proposed a novel method based on fuzzy entropy mea-
sures and similarity classifier. 85.03 % classification accuracy
was achieved with the proposed method. Li et al. [22] have
used a non-linear fuzzy-based conversion method with SVM
and have achieved 93.47 % classification accuracy. Ozcift
[23] has used SVM attribute selection based rotation forest
ensemble classifiers. With this method, the classification ac-
curacy of 87.13 % was obtained. Polat [24] has applied k-
nearest neighbor algorithm and fuzzy c-means based feature
weighting method (FCMCBAW) and has achieved 97.93 %
classification accuracy. Daliri [25] has proposed a method
called as chi-square distance kernel-based SVM and obtained
91.2 % classification accuracy with this method. Zuo et al.
[26] have presented a new method based on particle swarm
optimization (PSO) which is one of heuristic optimization
algorithms, and have obtained 97.47 % accuracy rate with
the proposedmethod. Chen et al. [27] have proposed amethod
based on fuzzy kNN and principal component analysis (PCA).
They obtained 96.07 % accuracy rate with the proposed meth-
od. Ma et al. [28] have proposed a method for this problem
using a subtractive clustering based attribute weighting
(SCBAW) and an extreme learning machine. High accuracy
rates were obtained with the proposed method.

Some brief information about the studies in the literature on
BUPA liver disorder data set for the detection of hepatic im-
pairment is as follows. Pham et al. [29] have achieved 55.90%
classification accuracy by using the RULES-4 algorithm. Van
Gestel et al. [30] have achieved 69.20 % accuracy rate with
SVM algorithm. Goncalves et al. [31] have proposed a novel
neuro-fuzzy model called as inverted hierarchical neuro-fuzzy
BSP system (HNFB). The accuracy rate of 73.33 % was ob-
tained for liver disorder data set. Polat et al. [32] have pro-
posed AIRS with performance evaluation by fuzzy resource
allocation mechanism for this problem. With the proposed
method, they have achieved 83.36 % classification accuracy.
Jin et al. [33] have developed a SVM with genetic-fuzzy fea-
ture transformation and achieved classification accuracy of
70.80 % with the proposed method. Ozsen and Gunes [34]
have applied GA-AWAIS hybrid method and achieved
85.21 % classification accuracy. Lee and Mangarissan [35]
have proposed two methods to classify this problem. These
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methods are smooth SVM (SSVM) classifier and reduced
SVM (RSVM) classifier. With these methods, they obtained
70.33 and 74.86 % classification accuracy, respectively. Li
et al. [22] have proposed a non-linear fuzzy based conversion
method with SVM. Classification accuracy of this method is
70.85 %. Chen et al. [36] have developed a method which
uses 1-NN method and PSO algorithm together. The classifi-
cation accuracy of this method is 68.99 % for this problem.
Dehuri et al. [37] have proposed an improved PSO based
evolutionary functional link ANN (ISO-FLANN) model for
this problem. With the proposed model, they obtained 76.8 %
classification accuracy. Shaoa and Deng [38] have proposed a
coordinate descent margin based-twin SVM for classification.
With the proposed model, they obtained 73.67 % accuracy
rate. Savitha et al. [39] has proposed fully complex-valued
RBF (FC-RBF) classifier for classification problems. They
obtained 74.6 % classification accuracy with the proposed
method. In order to classify noisy data, Mantas and Abellán
[14] have proposed a decision tree algorithm which depends
on imprecise probability. They applied the algorithm called as
Credal-C4.5 on different data sets. Researchers have obtained
classification accuracy of 64.53 % for BUPA liver disorder
data set. López et al. [40] have carried out the training of
SVM algorithm with multivariate normalization. With the
proposed method, they obtained 72.17 % classification
accuracy.

In this study a new data pre-processing method entitled k-
medoids clustering-based attribute weighting has been pro-
posed. Gunes et al.’s [41] work was an inspiration when this
method was being developed. In their study, a k-means algo-
rithm was preferred as the weighting method. K-means meth-
od is an effective method which also has some disadvantages.
The major disadvantage is the sensitivity towards the objects
referred to as outliers in the clustering phase [42]. An object
with a huge value can significantly change the center point
and the average of the cluster in which that subject is included.
This change may disrupt the sensitivity of the cluster. To re-
solve this issue, instead of taking the average of the objects in
the cluster, the closest object to the center point - called the
medoid - can be used. This operation is performed by using
the k-medoids method. In terms of this aspect, the proposed
feature weighting method is expected to be effective. The
purposes of kmAW are as follows: (i) to convert a non-linear
separable dataset to a linear separable dataset and (ii) to gather
similar or close data points. As a result of numerous trials
using different algorithms, the SVM algorithm was preferred
because it offers better performance with regard to kmAW.

The rest of this paper is organized as follows. In the
BMethods^ section, information is given about the methods
used in this study. In the BExperimental design^ section, in-
formation is presented about the datasets used and the exper-
imental setup. In the BExperimental results and discussions^
section, the experimental results and the discussion are

presented. Comparative analyses of the results obtained using
the proposed method with the studies in the literature are also
given in this section. Results and further targeted studies are
shared in the BConclusions^ section.

Methods

Data preprocessing

Preprocessing methods are applied to input data in order clas-
sification algorithm to produce more effective results and to
reduce the calculation load of algorithms used. Thanks to data
preprocessing techniques, a data set with linearly non-
separable distribution is converted into a data set with linearly
separable data set [11]. In the literature, there have been sev-
eral studies carried out on data preprocessing or transforma-
tion. Polat and Gunes [43] have proposed kNN based attribute
weighting method to reduce changes in features in the data set
and applied it to medical data sets. Tahir et al. [44] have pro-
posed a hybrid method for feature weighting by utilizing kNN
and tabu search algorithms. Sun [45] has proposed a novel
feature weighting method based on RELIEF algorithm.
Effective results were obtained with the study called as itera-
tive RELIEF (I-RELIEF). Polat et al. [46] have proposed a
new feature weighting method based on similarity measure
between attributes and have implemented this method in clas-
sification of the Doppler signals to identify Atherosclerosis
disease. As a data preprocessing method, Dua et al. [47] have
presented an algorithm based on bonded component theory to
extract the signs from the image and to reduce the image to
appropriate size. Polat and Durduran [48] have proposed a
new feature weighting called as feature weighting based on
subtractive clustering to detect traffic accidents. Unal et al.
[49] have presented pairwise fuzzy c-means based attribute
weighting for improved classification.

When the literature is reviewed, it is seen that clustering
methods are used for weighting method [43, 48, 49]. Themost
commonly used clustering methods are as follows, respective-
ly: k-means clustering [50], k-medoids clustering, mountain
clustering [51], subtractive clustering [52] and fuzzy c-means
clustering [53]. In this study, feature weighting process is per-
formed by using k-medoids clustering method which is one of
effective clustering methods with low computational load.

K-medoids clustering

The k-medoids clustering algorithm has been proposed to re-
move the noise and extreme sensitivity of k-means algorithm
to the exceptional data. The foundation of k-medoids algo-
rithm is based on finding k representing objects representing
various structural features of the data [54]. Representative
object is the most central object of the cluster that minimizes
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the average distance to other objects. Therefore, the division
method is based on the logic of minimization of total of the
uniqueness between each object and its reference point. The
representative objects are mostly called as medoids in cluster-
ing literature [55]. Process steps of the k-medoids clustering
algorithm are as follows.

Step 1. Determination of the k cluster number.
Step 2. The selection of k objects as initial medoids.
Step 3. Assigning the remaining objects to the nearest cluster

with medoid x.
Step 4. Calculating the objective function. (Error squares

criteria: the sum of the distances of whole objects
for nearest medoids)

Step 5. Random selection of non medoid y point.
Step 6. Replacement of x and y point, If the replacement of x

and y would minimize the objective function.
Step 7. Processes between Step 3 and Step 6 are repeated

until there is no change. Objective function specified
in step 4 is calculated using Eq. (1).

Cost N ; Yð Þ ¼
Xx

i¼1

y
min
j ¼ 1

d n j; pi
� �� � ð1Þ

N denotes the set of medoids, Y denotes data set, x represents
the number of patterns, y denotes the number of sets, nj is j th
medoid, pi is i th pattern and d is a distance function.

K-medoids clustering based attribute weighting (kmAW)

Attributes weighting method is based on the principle of
reducing the change in features that form data set. Similar
data in the same feature is collected and differentiation
ability of the classifier is increased via this weighting
method. The name of the proposed feature weighting meth-
od in this study is the kmAW. The kmAW works as fol-
lows: Initially, cluster medoids are found by k-medoids
clustering method. The average values of the features are
then calculated according to clusters. Two ratios are ob-
ta ined at the fol lowing stage. The fi rs t ra t io is
medoid value / mean value. The other ratio is mean value /
medoid value. Each data in the dataset is multiplied by one
of these ratios. If the data value is larger than the medoid
value, then it is multiplied by the ratio with the small value.
If the data value is smaller than the medoid value, it is then
multiplied by the ratio with the large value. If the data
value is equal to the medoid value, then it will be multi-
plied by 1. Consequently, we ensure that the weighted data
will be closer to the medoid value. In Fig. 1, the flow chart
of the kmAW method is presented.

In Fig. 2, processing steps of the kmAW method are ex-
plained on a simple data set which hasm sample and n feature.
The explanation is on the weighting of the values belong to f1
feature. In the figure, f1, f2, f3, …, fn refers to the features.
Features and their values are presented in the field number 1.
In the field number 2, process of allocation to the classes is
carried out as a result of the implementation of k-medoids
algorithm. x1 and x2 classes are given as an example.
Weighting coefficients (wc1 and wc2) are calculated with
kmAW and obtained values are multiplied by feature values.
New values of feature are given in the field number 3.wc1 and
wc2 weighting coefficients are calculated as follows. The cal-
culation of weighting coefficient (wc1) according to the x1
class. The calculation of wc1 is based on x1 class is performed
according to Eqs. (2) and (3).

k1 ¼
X y

x¼1
ax

y
ð2Þ

wc1 ¼ k1
l1

OR wc1 ¼ l1
k1

OR wc1 ¼ 1 ð3Þ

where x=1,2,…, ay, are the values of f1 feature. For example,
the values of f1 feature based on x1 class in Fig. 2/area no 2 are
a1 and a3. y shows how many values the related feature has in
x1 class, while k1 is the average feature value. l1 represents the
medoid value of the related feature in x1 class as a result of the
implementation of k-medoids clustering method. wc1 is the
weighting coefficient. If the feature value is less than the
medoid value, then wc1 with the large value is used, but if
the feature value is greater than medoid value, then wc1 with
the small value is used. If the feature value is equal to the
medoid value, then the wc1=1 equation is used. Calculation
of wc2 based on x2 class is performed according to Eqs. (4)
and (5).

k2 ¼
X b

a¼1
aa

b
ð4Þ

wc2 ¼ k2
l2

OR wc2 ¼ l2
k2

OR wc2 ¼ 1 ð5Þ

where a= 1, 2,…, ab, are the values of f2 feature. For ex-
ample, the values of f1 feature are based on x2 class in
Fig. 2/area no 2 are a2 and am. b shows how many values
the related feature has in x2 class, k2 is the average feature
value, while l2 represents the medoid value of the related
feature in x2 class as a result of the implementation of the
k-medoids clustering method. wc2 is the weighting coeffi-
cient. If the feature value is less than the medoid value,
then wc2 with the large value is used, while if the feature
value is greater than the medoid value, then wc2 with the
small value is used. If the feature value is equal to the
medoid value, then the wc2 = 1 equation is used.
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Support vector machine (SVM)

SVM was developed first by Vapnik [56] for regression and
classification studies. This algorithm is an efficient classifica-
tion algorithm based on statistical learning theory.

Mathematical algorithms of SVM were originally designed
for classification problem of two-class linear data, and then
generalized for classification of multi-class non-linear data.
The working principle of SVM is based on the fact that esti-
mating the optimal decision function that can separate the two

Load dataset 

Use k-medoids clustering 

algorithm to calculate the 

cluster medoids of each feature 

Obtain the weighted features 

Calculate the mean values of 

each feature 

_ _

_

(

>

Calculate the two ratios for weight coefficient: 

or 

__ Yes No 

Fig. 1 The flow chart of the
kmAW

Fig. 2 Weighting of values of a
feature (f1) with kmAW
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classes from each other, in other words, identifying of the
hyperplane that can most properly separate the two classes
from each other [56, 57].

In the classification with SVM, separating of the sam-
ples of two classes which are generally shown as {−1, +1}
with class labels is aimed with the help of a decision func-
tion obtained by training data. Hyperplane which can sep-
arate training data most properly is determined using said
decision function. As shown in Fig. 3a, many hyperplane
that can separate two-class data from each other can be
plotted. However, the aim of SVM is to find hyperplane
that maximizes the distance between the nearest points to
it. As shown in Fig. 3b, hyperplane which makes optimum
differentiation with maximizing the limit is called as opti-
mum hyperplane. The points limiting the width of the limit
are referred as the support vectors.

In a two-class linearly separable classification problem, if
training data consisting of k numbers of samples for SVM
training is assumed as {xi, yi}, i=1, 2,… , k then inequalities
of optimum hyperplane are as follows:

For yi ¼ þ1;w:xi þ b≥ þ 1
For yi ¼ −1; w:xi þ b≤−1 ð6Þ

xϵRN and indicates N-dimensional space, y ϵ {−1, +1} indi-
cates class labels, w indicates weight vector (normal to hyper-
plane) and b indicates trend value. In order to determine the
optimal hyperplane, it is necessary to determine two hyper-
planes parallel to this plane (Fig. 3b). Points which form these
hyperplanes called as support vectors and these planes are
denoted as w. xi+b=±1

To maximize the limit of the optimum hyperplane, w
should be minimized. In the case, determining of optimal hy-
perplane requires the solution of the following constrained
optimization problem.

min
1

2
w2

� �
ð7Þ

Accordingly, the restrictions are denoted as follows;

yi w:xi þ bð Þ≥ þ 1andy ϵ −1; þ 1f g ð8Þ

This optimization problem can be solved using Lagrange
equations. After this operation, Eq. (9) is obtained.

L w; b; αð Þ ¼ 1

2
wk k2−

Xk
i¼1

αiyi w:xi þ bð Þ þ
Xk
i¼1

αi ð9Þ

As a result, decision function for a linearly separable two-
class problem can be calculated by using Eq. (10).

f xð Þ ¼ sign
Xk
i¼1

λiyi x:xið Þ þ b

 !
ð10Þ

In many problems, linearly separation of the data is not
possible (Fig. 3c). In this case, the problem caused by being
some of training data on the other side of hyperplane is solved
by defining a positive artificial variable (ξi). The balance be-
tween maximizing the limit and minimizing the misclassifica-
tion errors can be controlled by defining parameter (0<C<∞)
to a plane (denoted with C) which has positive values [59].
Optimization problem for data that cannot be separated line-
arly using adjustment parameter and artificial variable:

Fig. 3 Geometric illustration of
SVM [58]. a Hyperplanes for
two-class problems (b) Optimal
separating hyperplane and
support vectors (c) Data that
cannot be separated linearly (d)
Determination of the hyper plane
for data that cannot be separated
linearly
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min
wk k2
2

þ C:
Xr

i¼1

ξi

" #
ð11Þ

Accordingly, the limitations are expressed by Eq. (12);

yi w:φ xið Þ þ bð Þ−1 ≥ 1−ξi
ξi≥0 and i ¼ 1; 2; … ; N

ð12Þ

As can be seen on Fig. 3d, for the solution of the optimi-
zation problem expressed in Eqs. (11) and (12), linearly insep-
arable data which is in the input space is displayed in a high
dimensional space defined as feature space. Thus, data can be
separated linearly and interclass hyperplane can be identified.

Nonlinear transformations can be done in SVM with
the help of a kernel function mathematically expressed
as K(xi, xj) =φ(xi).φ(xj), in this way, linear separation of
high dimension data is enabled. As a result, decision rule
related to the solution of a two class problem which can-
not be separated linearly using kernel function can be
written as follows:

f xð Þ ¼ sign
X

i

αiyiφ xið Þ:φ x j
� �þ b

 !
ð13Þ

Kernel function and determination of optimum parameters
of kernel function is essential for a classification problem to be
carried out with SVM. In this study, radial basis kernel func-
tion (RBF) is used as kernel function. RBF kernel function can
be defined as Eq. (14)

K xi; x j
� � ¼ exp −γjjxi−x jjj2

� �
; γ > 0 ð14Þ

where γ is the kernel parameter.

The proposed kmAW+SVM hybrid method

Figure 4 gives the flow chart of the proposed method. In the
first phase, data pre-processing step is performed. In this
phase, attribute weighting was performed with the kmAW
method. The obtained features were presented as input to
SVM algorithm. Detailed information about these algorithms
is presented in previous sections.

Experimental design

Data description

In this study, experiments were performed on three differ-
ent data sets to determine the effectiveness of the proposed
method. These data sets are: heart disease, PD and BUPA
liver disorders. Brief information about these data sets is
presented below.

Statlog heart disease data set

Statlog heart disease data set consists of a total of 270 data
collected from patients with heart disease and healthy people
[4]. 150 of these data belong to patients, while the remaining
120 belong to healthy individuals. Each data consists of 13
features listed in Table 1. Class information is recorded as 1
(no disease) and 2 (existence of disease) as the 14th feature of
the data sequences.

Parkinson’s disease dataset

PD data set is comprised of 195 biomedical sound measure-
ments received from 8 healthy people and 23 Parkinson pa-
tients [4]. Properties of the PD data set are as follows; average,
minimum and maximum sound fundamental frequency, dis-
order measured in fundamental frequency (Jitter (%), Jitter
(absolute), Jitter: RAP, Jitter: PPQ and Jitter: DDP), amplitude
irregularity measurements (Shimmer, Shimmer: APQ,
Shimmer:APQ3, Shimmer:APQ5, Shimmer: DDA,
Shimmer(dB)), the measurement of ratio between tone

Fig. 4 Flow chart of the proposed medical diagnosis system according to
10-fold cross validation
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components in the audio and noise (HNR and NHR), two
nonlinear dynamic complexity measurements (RPDE and
D2), three measure of fundamental frequency variation
(PPE, Spread1 and Spread2) and signal fractal scaling expo-
nent (DFA). Table 2 shows the attributes of PD dataset [60,
61].

BUPA liver disorders data set

BUPA liver disorders dataset prepared by BUPA Medical
Research Company contains 6 features and 345 samples con-
sist of two classes [4]. Data were obtained from the patients
with hepatic impairment and healthy subjects. 200 of this data
were taken from healthy people with no hepatic impairment.

The remaining 145 data were taken from the patients with
hepatic impairment. Each data consists of 6 properties. First
5 features of collected data samples are the blood test results
and the last feature includes daily alcohol consumption.
Table 3 shows statistical measurements of BUPA liver disor-
ders data set.

Experimental setup

In all the experiments, the selection of training and test data
was performed by the 10-fold cross-validation (CV) method
and 50–50 % hold out methods. The reason for using two
different data selection methods is for comparisons done by
the studies presented in the literature to be fairer. Because, in
the literature, in some studies 10-fold CV has been utilized,
while in other studies 50–50 % hold out method has been
used. For the determination of the stability and reliability of
results, experiments were repeated 10 times. And the averages
of obtained values were calculated.

In this study, determination of parameter of SVM algorithm
is made as follows. RBF kernel function which often preferred
on SVM applications was preferred as kernel function.
Parameter values of this function which gave good results
were found by using 10-fold CV on training data with grid
search mechanism. Grid search mechanism is one the most
commonly used methods for determining the regularization

Table 1 The features of the
Statlog heart disease dataset no Feature no Feature

1 Age 8 Exercise induced angina

2 Sex 9 Maximum heart rate achieved

3 Chest pain type (four values) 10 Number of major vessels (0–3) colored by
fluoroscopy

4 Serum cholesterol in mg/dl 11 The slope of the peak exercise ST segment

5 Resting blood pressure 12 Old peak= ST depression induced by exercise
relative to rest

6 Resting electrocardiographic results
(values 0, 1 and 2)

13 Thal: 3 = normal; 6 = fixed defect and
7 = reversible defect

7 Fasting blood sugar >120 mg/dl

Table 2 The features of the PD dataset

Feature Description

MDVP: Fo (Hz) Mean vocal fundamental frequency

MDVP: Flo (Hz) Minimum vocal fundamental frequency

MDVP: Fhi (Hz) Maximum vocal fundamental frequency

Shimmer: APQ 3
Shimmer: APQ 5
MDVP: Shimmer
MDVP: Shimmer (dB)
Shimmer: DDA
MDVP: APQ

Several measures of variation in amplitude

MDVP: RAP
MDVP: PPQ
MDVP: Jitter (%)
MDVP: Jitter (Abs)
Jitter: DDP

Several measures of variation in fundamental
frequency

NHR
HNR

Two measures of ratio of noise to tonal
components in the voice

DFA Signal fractal scaling exponent

RPDE
D2

Two non-linear dynamical complexity measures

Spread 1
Spread 2
PPE

Three non-linear measures of fundamental
frequency variation

Table 3 The features of the BUPA liver disorder dataset

no Features

1 MCV (mean corpuscular volume)

2 Alkphos (alkaline phosphatase)

3 SGPT (alanine aminotransferase)

4 Gamma GT (gamma-glutamyl transpeptidase)

5 SGOT (aspartate aminotransferase)

6 Drinks (number of half-pint equivalents of alcoholic
beverages drunk per day)
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parameter C and kernel parameter γ values [62].
Determination of effective parameter values by using 10-
fold CV with grid search is preferred for the following rea-
sons. First, cross-validation process may prevent overfitting
problem. Second, required calculation time is not very much
for determining the effective parameter values compared to
other methods. Moreover, the grid-search can be readily
parallelized because each (C, γ) is independent. In the grid
search, the regularization parameter C was explored on
C=2− 10, 2− 4, …, 210. The kernel parameter γ was explored
on γ=2− 10, 2− 9, …, 25. We use LIBSVM software [63] to
conduct SVM experiment.

Prediction performance of kmAW+SVM was measured
with five evaluation method. These are, respectively;
Accuracy, specificity, sensitivity, kappa statistic and f-
measure value. Formulas for these parameters are shown in
Eqs. (15)–(18).

Accuracy CAð Þ ¼ TP þ TN

TP þ FP þ FN þ TN
� 100% ð15Þ

Specificity ¼ TN

FP þ TN
� 100% ð16Þ

Sensitivity ¼ TP

TP þ FN
� 100% ð17Þ

f −measure ¼ 2� PrecisionxRecall

Precisionþ Recall
ð18Þ

where, true positive (TP) indicates the correct number of clas-
sification of disease data, False Negative (FN) indicates false
number of classification of healthy data. True Negative (TN)
indicates the correct number of classification of healthy data,
False Positive (FP) indicates false number of classification of
disease data. Precision is TP/(TP+FP) and Recall is TP/
(TP+FN).

F-measure value is calculated depending on harmonic
mean of precision and recall values of the classifier. This value
is used as a performance evaluation metric to measure the
classifier performance. F-measure takes values between 0
and 1 and it is expected for f-measure to take a value close
to 1 in a high performance classification.

Kappa statistics were developed as an alternative to accu-
racy ratio measure for evaluation of the classifiers [64]. This
value is used to calculate the compatibility between the eval-
uations made by two or more evaluators. Kappa statistic value
can be calculated as shown in Eq. (19).

KS ¼ P0−Pc

1−Pc
ð19Þ

P0 is the accuracy of the classifier, Pc represents the accuracy
value obtained by random estimation on the same data set.
Kappa statistic value is in the range of [−1, 1]. −1 represents
an unsuccessful classification, 1 represents that a successful
classification has been performed.

ROC curve is often used for self-identification of diagnos-
tic test and to enable making a reliable comparison between
tests [65]. In the coordinate system where ROC curve to be
created, the actual positive value (sensitivity) of diagnostic test
is located in the Y-axis, the false positive value (−1 specificity)
is located in the X axis. ROC curve is plotted by combining
points corresponding true positive and false positive at each
intersection point. ROC curves show all the possible intersec-
tion points and allow for predictions about the frequency of
different results (TP, TN, FP and FN) at each intersection
point. The area under the ROC for a diagnostic test can take
values between 0.50 and 1.00 depending on the activity level.
When this area is greater the diagnostic test will have more
differentiation ability [66].

Experimental results and discussions

The results obtained by applying the proposed method to 3
different datasets are presented below. First, attributes in
the data set were weighted using the kmAW. Figures 5, 6
and 7 show the distribution of the original and weighted
samples (in two classes) created by the best 3 principle
components obtained by PCA for each database. As shown
in the figures, the differentiation capability of the original
dataset was significantly improved using the kmAW meth-
od. This is due to the gathering together of similar data after
weighting. With the implementation of the kmAW method,
it is observed that linearly inseparable datasets can be sep-
arated linearly.

The results obtained by applying the SVM algorithm are
presented in Tables 4, 5 and 6. The results obtained for the
Statlog heart disease dataset are given in Table 4.
Accordingly, in terms of the 10-fold CV method,
90.82 % classification accuracy was obtained using the
kmAW+SVM method. The accuracy rate obtained by the
application of the SVM method to the original dataset is
81.48 %. In the 50–50 % range, an 89.29 % accuracy rate
is obtained using the kmAW + SVM method, while
81.86 % classification accuracy is obtained with the orig-
inal dataset + the SVM method. The kmAW+SVM method
gave good results and this is also seen in the kappa statistic
values. The highest kappa value obtained using the 10-fold
CV and kmAW+SVM method is 0.8227. The effect of the
weighted features is positive for the Statlog heart disease
dataset.

The results obtained for the Parkinson disease dataset
are presented in Table 5. When the table is examined it
can be seen that a 98.95 % classification accuracy was
obtained using the kmAW+SVM according to the 10-
fold CV method. An 84.25 % classification accuracy was
achieved with the use of the original dataset and the SVM
method. In the 50–50 % range, the classification accuracy

J Med Syst (2016) 40: 116 Page 9 of 16 116



is 97.98 % using the kmAW+SVM method, and 81.75 %
with the original dataset + SVM method. It can also be seen
in the Kappa statistic values that the kmAW+SVM method
gives good results. The highest kappa statistic value of
0.9735 was obtained using the 10-fold CV and kmAW+
SVM method. The Kappa value was found to be 0.5870
with the original dataset + SVM method. Significant differ-
ences between the two methods is also observed with this
aspect. Weighted features gave effective results for the PD
dataset.

The results obtained for the BUPA liver disorder dataset
are presented in Table 6. When the table is examined, ac-
cording to the 10-fold CV method, it can be seen that
86.25 % classification accuracy was achieved using the
kmAW+SVM method, and a 68.85 % classification accu-
racy was obtained with the application of the SVM algo-
rithm to the original dataset. In the 50–50 % range, classi-
fication accuracy is 85.32 % using the kmAW+ SVM

method, and 66.75 % with the original dataset + SVM
method. In performance measurement metrics other than
classification accuracy, it can also be seen that good results
are obtained using the kmAW+SVM method. When kappa
statistic values are analyzed, it is seen that the highest
values are obtained with the kmAW+ SVM method.
Weighted features and the hybrid application of the SVM
algorithm gave effective results for the BUPA liver disor-
der dataset.

When Tables 4, 5 and 6 are analyzed in general, it can be
observed that the kmAW+SVM method gave better results
than the original dataset +SVMmethod. The highest accuracy
rate was obtained by implementing the 10-fold CV data dis-
tribution method.

ROC curves were also used for performance evaluation. A
comparison of the 10-fold CVwith the kmAW+SVM and the
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Fig. 6 Three-dimensional distribution (in two classes) of the original
samples created by the best 3 principle components obtained after
implementation of principal component analysis for the PD dataset, a)
for original features b) for weighted features
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Fig. 5 Three-dimensional distribution (in two classes) of the original
samples created by the best 3 principle components obtained after
implementation of principal component analysis for the Statlog heart
disease dataset, (a) for original features (b) for weighted features
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original dataset +SVM is presented using these curves. The
ROC graph obtained for the heart disease dataset is presented
in Fig. 8a. As seen on the ROC graph, there is a significant
difference between the areas calculated for the two methods
(AUC=0.9195 for kmAW+SVM, AUC=0.8125 for without
feature weighting+SVM).

The ROC graph obtained for the PD dataset is presented in
Fig. 8b. Accordingly, it is observed that there is a significant
difference between the areas under the ROC curve (AUC).
(AUC=0.9808 for kmAW+SVM, AUC=0.7955 for without
feature weighting + SVM). It can be observed that the
kmAW+SVM method gave better results.

The ROC graph obtained for the BUPA liver disorder
dataset is given in Fig. 8c. A significant difference is observed
between the two methods (AUC=0.8685 for kmAW+SVM,
AUC=0.6832 for without feature weighting+SVM).

Comparative analysis of the proposed method with the
methods found in the literature is presented in Tables 7, 8
and 9. Comparative analysis for the Heart disease dataset is
presented in Table 7.When Table 7 is examined, it can be seen
that accuracy rates generally ranging between 80 and 88 %
were obtained by other researchers. A 90.82 % classification
accuracy was achievedwith the proposedmethod for the same
dataset.

Comparative analysis carried out in terms of previous stud-
ies for the PD dataset is presented in Table 8. As shown in the
table, accuracy rates generally ranging between 83 and 98 %
have been obtained by other researchers. With 98.95 % accu-
racy values, the proposed method gives better results com-
pared to other studies.
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Fig. 7 Three-dimensional distribution (in two classes) of the original
samples created by the best 3 principle components obtained after
implementation of principal component analysis for the BUPA liver
disorder dataset, (a) for original features (b) for weighted features

Table 4 The results obtained based on the performance evaluation
criteria for the Statlog heart disease dataset

Features Performance
Metrics

10-fold CV 50–50 %
training–testing

All original
features

ACC 81.48 ± 5.99 81.86 ± 6.25

Sensitivity 84.72 ± 6.38 84.67 ± 5.44

Specificity 77.78 ± 7.05 74.44 ± 8.35

f-measure 0.8291 0.8083

Kappa 0.6269 0.5919

AUC 0.8125 0.7960

After feature
weighting

ACC 90.82 ± 3.25 89.29 ± 3.85

Sensitivity 93.95 ± 2.98 90.54 ± 3.05

Specificity 90.45 ± 4.42 87.88 ± 5.12

f-measure 0.9268 0.8993

Kappa 0.8227 0.7848

AUC 0.9195 0.8921

Table 5 The results obtained based on the performance evaluation
criteria for the PD dataset

Features Performance
Metrics

10-fold CV 50–50 %
training–testing

All original
features

ACC 84.25 ± 5.38 81.75 ± 5.75

Sensitivity 67.05 ± 7.85 62.20 ± 8.15

Specificity 91.05 ± 2.95 89.95 ± 3.76

f-measure 0.6955 0.6475

Kappa 0.5870 0.5230

AUC 0.7955 0.7625

After feature
weighting

ACC 98.95 ± 1.85 97.98 ± 2.35

Sensitivity 96.12 ± 3.56 94.25 ± 3.67

Specificity 100 ± 0 99.42 ± 1.15

f-measure 0.9795 0.9599

Kappa 0.9735 94.641

AUC 0.9808 96.845
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A comparative analysis for the BUPA liver disease dataset
is presented in Table 9. When the table is analyzed, it can be
seen that an 86.25 % classification accuracy was achieved in
this study, while accuracy values obtained by other re-
searchers generally range between 60 and 86 %.

When we evaluate the situation in general, it can be ob-
served that the developed method gave better results com-
pared to the methods proposed in previous studies.

There are numerous algorithms available in the litera-
ture that are presented as feature weighting and classifi-
cation algorithms. In terms of the 3 different datasets, a
large number of experiments were performed with

different methods to achieve the best results. As a result
of these experiments, it can be seen that the kmAW+
SVM hybrid method is more effective than the other
methods. In the experiments, FCMCBAW, SCBAW and
k -means c l u s t e r i ng -ba s ed a t t r i bu t e we igh t i ng
(KMCBAW) algorithms were used as the attribute
weighting method. SVM, ANN, Random Forest, C4.5
Decision Tree and Naive Bayes algorithms which are of-
ten preferred in the literature as classification algorithms
are selected. A comparative analysis based on hybrid
methods obtained by different combinations is presented
in Table 10. The results show that feature weighting
methods give effective results.

When the results were analyzed, it can be seen that
KMCBAW, FCMCBAW, SCBAW and kmAW feature
weighting methods give promising results in terms of the
classification of non-linear medical datasets. In general, it
can be seen that SVM algorithms give better results with
weighting methods. Similar results were obtained with re-
gard to the kmAW and SCBAW methods. The nearest ac-
curacy values to SVM were obtained using the ANN
method.

Conclusions

This study proposes a hybrid system aimed at improving
the classification accuracy of computer-aided medical di-
agnostic systems. Experiments were performed on data re-
lated to heart disease, PD and liver disorders. The main

Table 6 The results obtained based on the performance evaluation
criteria for the BUPA liver disorder dataset

Features Performance
Metrics

10-fold CV 50–50 %
training–testing

All original
features

ACC 68.85 ± 8.90 66.75 ± 9.10

Sensitivity 62.75 ± 9.85 60.80 ± 9.98

Specificity 73.88 ± 5.15 71.15 ± 6.23

f-measure 0.6301 0.6021

Kappa 0.3588 0.3153

AUC 0.6832 0.6598

After feature
weighting

ACC 86.25 ± 4.25 85.32 ± 5.35

Sensitivity 82.72 ± 5.88 82.50 ± 6.59

Specificity 88.90 ± 3.52 88.36 ± 3.66

f-measure 0.8501 0.8327

Kappa 0.7393 70.94

AUC 0.8685 0.8545
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Fig. 8 ROC graphs (a) for the
Statlog heart disease dataset (b)
for the PD dataset c) for the
BUPA liver disorder dataset

116 Page 12 of 16 J Med Syst (2016) 40: 116



Table 7 Performance comparison of various methods in terms of accuracy (%) for the Statlog heart disease dataset

Authors Method Classification
accuracy (%)

Duch et al. [5] k-NN, k = 28, 7 features (10-fold CV)
k-NN, k = 28, Manhattan (10-fold CV)
FSM, 27 fuzzy rules
SSV, 3 rules

84.6–85.6
82.2–83.4
82
80.2–83.4

Sahan et al. [6] AWAIS (10-fold CV) 82.59

Ozsen and Gunes [9] AIS algorithm with hybrid similarity measure (10-fold CV) 83.95

Kahramanli and Allahverdi [10] Hybrid system using ANN and FNN (10-fold CV) 86.8

Polat and Gunes [11] A hybrid of LS-SVM classifier and kernel f-score feature selection (50–50 % training–testing) 83.70

Subbulakshmi et al. [13] Extreme learning machine (70–30 % training–testing) 87.50

Mantas and Abellán [14] Decision tree based on imprecise probabilities (Credal C4.5)
(10 fold CV)

80.33

Shao and Deng [38] Coordinate descent margin based-twin SVM (10 fold CV) 84.44± 6.80

Ozsen et al. [67] Kernel based AIS (5-fold CV) 85.93

Tian et al. [68] Cooperative coevolutionary algorithm - elliptical basis function neural network (50–25–25 %
training-validation-testing)

82.45

Torun and Tohumoglu [69] Simulated annealing and fuzzy classifier (10 fold CV) 81.11 ± 5.91

Al-Obeidat et al. [70] Particle swarm optimization for PROAFT (10 fold CV) 84.27

Jaganathan and Kuppuchamy [71] Neural network threshold selection (10 fold CV) 85.19

Lim and Chan [72] Bandler kohout-interval-valued fuzzy sets (BK-IVFS weighted)
(5 fold CV)

85.56

Yang et al. [73] Fuzzy class – label SVM (yi - SVM) and Fuzzy SVM (F-SVM) 85.19

Ahmad et al. [74] Improved hybrid genetic algorithm-multilayer perceptron network (75–25 % training–testing) 86.30

Ibrikci et al. [75] Combined Kernels with Support Vector Machine (65–35 % training–testing) 88.89

Proposed Method kmAW+SVM (50–50 % training–testing) 89.29

Proposed Method kmAW+SVM (10 fold CV) 90.82

Table 8 Performance comparison of various methods in terms of accuracy (%) for the PD dataset

Authors Method Classification
accuracy (%)

Shahbaba and Neal [15] Dirichlet process mixtures (5 fold CV) 87.70

Das [16] Variable selection +ANN (65–35 % training – testing) 92.90

Guo et al. [17] GP-EM (10-fold CV) 93.10

Sakar and Kursun [18] Mutual information + Support vector machine (booststrap with 50 replicates) 92.75

Ozcift and Gulten [19] CFS-RF (10-fold CV) 87.10

Aström and Koker [20] Parallel ANN 91.20

Spadoto et al. [21] OPF gravitational search + PSO+OPF harmony search +OPF (20–30–50 % training-validation-testing) 84.01

Luukka [21] Fuzzy entropy measures + Similarity classifier 85.03

Li et al. [22] SVM+Fuzzy-based non-linear transformation 93.47

Polat [24] kNN+FCMFW (50–50 % training–testing) 97.93

Daliri [25] A chi-square distance kernel-based SVM (50–50 % training - testing) 91.20

Zuo et al. [26] PSO-FKNN (10-fold CV) 97.47

Chen et al. [27] PCA-FKNN (10-fold CV) 96.07

Psorakis et al. [76] Multiclass multi-kernel relevance vector machines (10-fold CV) 89.47

Proposed Method kmAW+SVM (50–50 % training - testing) 97.98

Proposed Method kmAW+SVM (10-fold CV) 98.95
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innovation of this study lies in a hybrid system entitled
kmAW+SVM which combines an efficient clustering at-
tribute weighting method with a powerful classification
algorithm. In this study, the kmAW method was used as a
data preprocessing tool in order to improve the diagnosis
accuracy of a SVM classifier, and to reduce the variance of
the features in datasets. The classification accuracy of the
proposed system for the Statlog heart disease dataset, the
PD dataset and the BUPA liver disorder dataset reached
90.82, 98.95 and 86.25 %, respectively. Even a slight

increase in accuracy rates is very significant in a key sub-
ject such as medical diagnosis. Hence, the method pro-
posed here will contribute significantly to this field.
Based on the results, the proposed method provides good
results compared to the methods proposed in previous
studies, and it appears promising for use with regard to
medical diagnostic systems. As a result, an effective sys-
tem which can be used as a computerized decision support
system to help physicians in terms of medical diagnoses
has been developed.

Table 9 Performance comparison of various methods in terms of accuracy (%) for the BUPA liver disorder dataset

Authors Method Classification accuracy (%)

Ozsen and Gunes [9] AIS with hybrid similarity measure (10-fold CV) 60.57

Mantas and Abellán [14] Decision tree based on imprecise probabilities (Credal C4.5) 64.53

Li et al. [22] A fuzzy-based nonlinear transformation method+ SVM 70.85

van Gestel et al. [30] SVM with GP (10-fold CV) 69.7

Goncalves et al. [31] Inverted hierarchical neuro-fuzzy binary space partitioning system 73.33

Polat et al. [32] Fuzzy artificial immune recognition system (10-fold CV) 83.4

Lee and Mangasarian [35] Reduced SVMs (10-fold CV) 74.9

Dehuri et al. [37] Improved PSO and functional link artificial neural network (FLANN) (10-fold CV) 76.80

Shao and Deng [38] Coordinate descent margin based-twin SVM (10-fold CV) 72.80 ± 5.31

Savitha et al. [39] Fully complex valued RBF (10 fold CV) 74.6

López et al. [40] Mahalanobis SVM 72.17

Torun and Tohumoglu [69] Fuzzy classifier and Simulated annealing (10 fold CV) 74.13 ± 12.7

Al-Obeidat et al. [70] Particle swarm optimization for PROAFT (10 fold CV) 69.31

Yang et al. [73] Fuzzy class – label SVM (yi - SVM) and fuzzy SVM (F-SVM) 74.78

Lin and Chang [77] Case based reasoning+ Particle swarm optimization (5 fold CV) 78.18

Wang et al. [78] Spiking neural networks (SNNs) 56.6 ± 1.8

Ozsen and Yucelbas [79] Ellipsoidal-AIS (5 fold CV) 85.59 ± 1.32

Proposed Method kmAW+SVM (50–50 % training–testing) 85.32

Proposed Method kmAW+SVM (10 fold CV) 86.25

Table 10 Comparison of
classification accuracies using
different weighting methods and
classification algorithms

Dataset Hybrid Method (Feature Weighting Method +Classification Algorithm)

SVM ANN Random Forest C4.5 Decision
Tree

Naive
Bayes

Heart Disease SCBAW 90.25 89.75 83.35 84.12 82.05

FCMCBAW 89.65 89.05 82.75 82.15 83.44

KMCBAW 88.12 87.55 81.10 81.55 80.05

kmAW 90.82 88.56 84.42 85.12 81.15

Parkinson’s Disease SCBAW 97.96 96.50 92.65 94.05 88.80

FCMCBAW 97.55 95.45 91.35 93.45 90.50

KMCBAW 96.50 95.05 90.88 92.26 87.75

kmAW 98.95 96.75 92.46 93.82 89.95

BUPA liver disorder SCBAW 86.05 85.65 82.25 83.55 80.05

FCMCBAW 85.55 85.01 80.08 82.25 81.15

KMCBAW 84.32 83.95 78.65 79.90 80.12

kmAW 86.25 84.25 81.15 83.65 79.56
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