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Muğla Sıtkı Koçman University, Faculty of Science, Department of Mathematics, 48000 Menteşe-Muğla, Turkey.
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Abstract

The main goal of this paper is to introduce and investigate a new class of functions called almost
e∗-continuous functions containing the class of almost e-continuous functions defined by Özkoç and
Kına. Several characterizations concerning almost e∗-continuous functions are obtained. Further-
more, we investigate the relationships between almost e∗-continuous functions and separation axioms
and almost e∗-closedness of graphs of functions. c©2016 all rights reserved.
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1. Introduction

The notion of continuity on topological spaces, as significant and fundamental subject in the
study of topology, has been researched by many mathematicians. Several investigations related to
almost continuity which is a generalization of continuity have been published. The study of almost
continuity was initiated by Singal and Singal [17] in 1968. Next, almost α-continuous functions
were introduced and investigated by Thakur and Paik [19]. In 1998, Noiri and Popa [11] defined the
concept of almost β-continuous functions. Later, almost b-continuous functions introduced by Şengül
[15] and almost e-continuous functions defined by Özkoç and Kına [12] and studied these concept.
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In this paper, we introduce some new types of continuity such as almost e∗-continuity, weakly
e∗-continuity and faintly e∗-continuity via e∗-open set defined by Ekici [5]. Also we look into several
properties of these new concepts. Moreover, we investigate not only some of their properties but also
their relationships with other types of already existing topological function.

2. Preliminaries

In this section let us recall some definitions and results which are used in this paper. All through
this paper, X and Y represent topological spaces. For a subset A of a space X, cl(A) and int(A)
denote the closure of A and the interior of A, respectively. The family of all closed (open) sets of X
is denoted by C(X) (O(X)). A subset A is said to be regular open [18] (resp. regular closed [18])
if A = int(cl(A)) (resp. A = cl(int(A))). A point x ∈ X is said to be δ-cluster point [20] of A if
int(cl(U)) ∩ A 6= ∅ for each open neighborhood U of x. The set of all δ-cluster points of A is called
the δ-closure [20] of A and is denoted by clδ(A). If A = clδ(A), then A is called δ-closed [20], and
the complement of a δ-closed set is called δ-open [20]. The set {x|(U ∈ O(X, x))(int(cl(U)) ⊂ A)}
is called the δ-interior of A and is denoted by intδ(A).

A subset A is called α-open [9] (resp. semiopen [7], δ-semiopen [13], preopen [8], δ-preopen
[14], b-open [1], e-open [4], e∗-open [5], a-open [3]) if A ⊂ int(cl(int(A))) (resp. A ⊂ cl(int(A)),
A ⊂ cl(intδ(A)), A ⊂ int(cl(A)), A ⊂ int(clδ(A)), A ⊂ cl(int(A)) ∪ int(cl(A)), A ⊂ cl(intδ(A)) ∪
int(clδ(A)), A ⊂ cl(int(clδ(A))), A ⊂ int(cl(intδ(A)))). The complement of an α-open (resp.
semiopen, δ-semiopen, preopen, δ-preopen, b-open, e-open, e∗-open, a-open) set is called α-closed
[9] (resp. semiclosed [7], δ-semiclosed [13], preclosed [8], δ-preclosed [14], b-closed [1], e-closed [4],
e∗-closed [5], a-closed [3]). The intersection of all e∗-closed (resp. a-closed, semi-closed, δ-semi-closed,
pre-closed, δ-pre-closed) sets of X containing A is called the e∗-closure [5] (resp. a-closure [3], semi-
closure [7], δ-semi-closure [13], pre-closure [8], δ-pre-closure [14]) of A and is denoted by e∗-cl(A)
(resp. a-cl(A), scl(A), δ-scl(A), pcl(A), δ-pcl(A)). The union of all e∗-open (resp. a-open, semiopen,
δ-semiopen, preopen, δ-preopen) sets of X contained in A is called the e∗-interior [5] (resp. a-interior
[3], semi-interior [7], δ-semi-interior [13], pre-interior [8], δ-pre-interior [14]) of A and is denoted by
e∗-int(A) (resp. a-int(A), sint(A), δ-sint(A), pint(A), δ-pint(A)).

A point x of X is called a θ-cluster [20] point of A if cl(U) ∩ A 6= ∅ for every open set U of X
containing x. The set of all θ-cluster points of A is called the θ-closure [20] of A and is denoted by
clθ(A). A subset A is said to be θ-closed [20] if A = clθ(A). The complement of a θ-closed set is
called a θ-open [20] set. A point x of X is said to be a θ-interior [20] point of a subset A, denoted
by intθ(A), if there exists an open set U of X containing x such that cl(U) ⊂ A.

The family of all e∗-open (resp. e∗-closed, regular open, regular closed, δ-open, δ-closed, θ-open,
θ-closed, semiopen, semiclosed, preopen, preclosed, δ-semiopen, δ-semiclosed, δ-preopen, δ-preclosed,
a-open, a-closed) subsets of X is denoted by e∗O(X) (resp. e∗C(X), RO(X), RC(X), δO(X), δC(X),
θO(X), θC(X), SO(X), SC(X), PO(X), PC(X), δSO(X), δSC(X), δPO(X), δPC(X)), aO(X),
aC(X)). The family of all e∗-open (resp. e∗-closed, regular open, regular closed, δ-open, δ-closed,
θ-open, θ-closed, semiopen, semiclosed, preopen, preclosed, δ-semiopen, δ-semiclosed, δ-preopen, δ-
preclosed, a-open, a-closed) sets of X containing a point x of X is denoted by e∗O(X, x) (resp.
e∗C(X, x), RO(X, x), RC(X, x), δO(X, x), δC(X, x), θO(X, x), θC(X, x), SO(X, x), SC(X, x),
PO(X, x), PC(X, x), δSO(X, x), δSC(X, x), δPO(X, x), δPC(X, x), aO(X, x), aC(X, x)).

The following basic properties of e∗-closure and e∗-interior are useful in the sequel:

Lemma 2.1 ([5]). Let A be a subset of a space X, then the following hold:

(a) e∗-cl(X \ A) = X \ e∗-int(A);
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(b) x ∈ e∗-cl(A) if and only if A ∩ U 6= ∅ for every U ∈ e∗O(X, x);
(c) A is e∗C(X) if and only if A = e∗-cl(A);
(d) e∗-cl(A) ∈ e∗C(X);
(e) e∗-int(A) = A ∩ cl(int(clδ(A))).

Lemma 2.2 ([3, 10, 13]). Let A be a subset of a space X, then the following properties hold:

(a) If A is preopen, then scl(A) = int(cl(A));
(b) a-cl(A) = A ∪ cl(int(clδ(A)));
(c) δ-scl(A) = A ∪ int(clδ(A)).

Lemma 2.3. Let A be a subset of a space X. If A ∈ e∗O(X), then clδ(A) ∈ RC(X).

Proof. Let A be any e∗-open set of X.

A ∈ e∗O(X)⇒ A ⊂ cl(int(clδ(A)))

⇒ clδ(A)

⊂ clδ(cl(int(clδ(A))))

= clδ(clδ(int(clδ(A)))) = clδ(int(clδ(A))) = cl(int(clδ(A))) . . . ,

(2.1)

A ⊂ X ⇒ int(clδ(A)) ⊂ clδ(A)⇒ cl(int(clδ(A))) ⊂ cl(clδ(A)) ⊂ clδ(clδ(A)) = clδ(A) . . . , (2.2)

(2.1), (2.2)⇒ clδ(A) = cl(int(clδ(A)))⇒ clδ(A) ∈ RC(X).

3. Almost e∗continuous functions

Definition 3.1. A function f : X → Y is said to be

(1) almost e∗-continuous (briefly a.e∗.c.) at x ∈ X if for each open set V containing f(x), there
exists an e∗-open set U in X containing x such that f [U ] ⊂ int(cl(V )).

(2) weakly e∗-continuous (briefly w.e∗.c.) at x ∈ X if for each open set V containing f(x), there
exists an e∗-open set U in X containing x such that f [U ] ⊂ cl(V ).

(3) almost e∗-continuous (resp. weakly e∗-continuous) if it is almost e∗-continuous (resp. weakly
e∗-continuous) at every point of X.

(4) e∗-continuous [5] (briefly e∗.c.) if f−1[V ] ∈ e∗O(X) for each open set V of Y .

Theorem 3.2. Let f : (X, τ)→ (Y, σ) be a function. Then the following are equivalent:

(a) f is a.e∗.c. at x ∈ X;
(b) for each open neighborhood V of f(x), x ∈ cl(int(clδ(f−1[scl(V )])));
(c) for each open neighborhood V of f(x) and each open neighborhood U of x, there exists a

nonempty open set G ⊂ U such that G ⊂ clδ(f
−1[scl(V )]);

(d) for each open neighborhood V of f(x), there exists U ∈ SO(X, x) such that U ⊂ clδ(f
−1[scl(V )]).

Proof. (a)⇒ (b): let V be any open neighborhood of f(x).

V ∈ O(Y, f(x))
(a)

}
⇒ (∃U ∈ e∗O(X, x))(f [U ] ⊂ int(cl(V )) = scl(V ))

⇒ (∃U ∈ e∗O(X, x))(U ⊂ f−1[scl(V )])

⇒ (∃U ∈ e∗O(X, x))(cl(int(clδ(U))) ⊂ cl(int(clδ(f
−1[scl(V )]))))

⇒ (∃U ∈ e∗O(X, x))(U ⊂ cl(int(clδ(U))) ⊂ cl(int(clδ(f
−1[scl(V )]))))

⇒ x ∈ cl(int(clδ(f−1[scl(V )]))).
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(b)⇒ (c): let V be any open neighborhood of f(x) and U an open set of X containing x.

V ∈ O(Y, f(x))
(b)

}
⇒ x ∈ cl(int(clδ(f−1[scl(V )])))

U ∈ O(X, x)

}
⇒ U ∩ cl(int(clδ(f−1[scl(V )]))) 6= ∅

⇒ cl(U ∩ int(clδ(f−1[scl(V )]))) 6= ∅ ⇒ U ∩ int(clδ(f−1[scl(V )])) 6= ∅
G := U ∩ int(clδ(f−1[scl(V )]))

}
⇒

⇒ (G ∈ τ \ {∅})(G ⊂ U)(G ⊂ clδ(f
−1[scl(V )])).

(c)⇒(d): let V be any open neighborhood of f(x) and U an open set of X containing x.

(V ∈ O(Y, f(x)))(U ∈ O(X, x))
(c)

}
⇒ (GU ∈ τ \ {∅})(GU ⊂ U)(GU ⊂ clδ(f

−1[scl(V )]))
U0 := ∪{GU |U ∈ O(X, x)}

}
⇒ (U0 ∈ SO(X, x))(U0 ⊂ clδ(f

−1[scl(V )])).

(d)⇒ (a): Let V be any open neighborhood of f(x).

V ∈ O(Y, f(x))
(d)

}
⇒ (G ∈ SO(X, x))(G ⊂ clδ(f

−1[scl(V )]))

⇒ (G ∈ SO(X, x))(f−1[V ] ∩G ⊂ f−1[V ] ∩ cl(int(G))

⊂ f−1[scl(V )] ∩ cl(int(G))

⊂ f−1[scl(V )] ∩ cl(int(clδ(f−1[scl(V )])))

= e∗-int(f−1[scl(V )]))

⇒ (U := e∗-int(f−1[scl(V )]) ∈ e∗O(X, x))(f [U ] ⊂ scl(V ) = int(cl(V ))).

This shows that f is a.e∗.c. at x.

Theorem 3.3. Let f : (X, τ)→ (Y, σ) be a function. Then the following are equivalent:

(a) f is a.e∗.c.;

(b) e∗-cl(f−1[cl(int(clδ(B)))]) ⊂ f−1[clδ(B)] for every subset B of Y ;

(c) e∗-cl(f−1[cl(int(F ))]) ⊂ f−1[F ] for every δ-closed set F of Y ;

(d) e∗-cl(f−1[cl(V )]) ⊂ f−1[cl(V )] for every open set V of Y ;

(e) f−1[V ] ⊂ e∗-int(f−1[scl(V )]) for every open set V of Y ;

(f) f−1[V ] ⊂ cl(int(clδ(f
−1[scl(V )]))) for every open set V of Y .

Proof. (a)⇒ (b): let B be any subset of Y .

x ∈ X \ f−1[clδ(B)]⇒ f(x) ∈ Y \ clδ(B)

⇒ (∃V ∈ O(Y, f(x))(int(cl(V )) ∩B = ∅)
⇒ (∃V ∈ O(Y, f(x))(int(cl(V )) ∩ cl(int(clδ(B))) = ∅)

f is a.e∗.c.

}
⇒ (∃U ∈ e∗O(X, x))(f [U ] ⊂ int(cl(V )))(int(cl(V )) ∩ cl(int(clδ(B))) = ∅)
⇒ (∃U ∈ e∗O(X, x))(f [U ] ∩ cl(int(clδ(B))) = ∅)
⇒ (∃U ∈ e∗O(X, x))(U ∩ f−1[cl(int(clδ(B)))] = ∅)
⇒ x /∈ e∗-cl(f−1[cl(int(clδ(B)))])

⇒ x ∈ X \ e∗-cl(f−1[cl(int(clδ(B)))]).
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(b)⇒ (c): let F be any closed set of Y .

F ∈ δC(Y )⇒ clδ(F ) = F
(b)

}
⇒ e∗-cl(f−1[cl(int(F ))]) ⊂ f−1[F ].

(c)⇒(d): let V be any open set of Y .

V ∈ σ ⇒ cl(V ) ∈ RC(Y )⇒ cl(V ) ∈ δC(Y )
(c)

}
⇒ e∗-cl(f−1[cl(V )]) = e∗-cl(f−1[cl(int(cl(V )))]) ⊂ f−1[cl(V )].

(d)⇒ (e): let V be any open set of Y .

V ∈ σ ⇒ Y \ cl(V ) ∈ σ
(d)

}
⇒ X \ e∗-int(f−1[scl(V )]) = e∗-cl(f−1[Y \ int(cl(V ))]) ⊂ f−1[cl(Y \ cl(V ))] ⊂ X \ f−1[cl(V )].

(e)⇒ (f): let V be any open set of Y .

V ∈ σ
(e)

}
⇒ f−1[V ] ⊂ e∗-int(f−1[scl(V )])

Lemma 2.1 (e)
⊂ cl(int(clδ(f

−1[scl(V )]))).

(f)⇒(a): let x be any point of X and V any open set Y containing f(x).

V ∈ O(Y, f(x))
(f)

}
⇒ x ∈ f−1[V ] ⊂ cl(int(clδ(f

−1[scl(V )]))).

Then from Theorem 3.2 (b) f is a.e∗.c. at any point x ∈ X. Therefore f is a.e∗.c.

Theorem 3.4. Let f : (X, τ)→ (Y, σ) be a function. Then the following are equivalent:

(a) f is a.e∗.c.;

(b) for each x ∈ X and each regular open set V containing f(x), there exists an e∗-open set U in
X containing x such that f [U ] ⊂ V ;

(c) e∗-cl(f−1[V ]) ⊂ f−1[clδ(V )] for every e∗-open set V of Y ;

(d) e∗-cl(f−1[V ]) ⊂ f−1[clδ(V )] for every semi-open set V of Y ;

(e) f−1[V ] ⊂ e∗-int(f−1[int(cl(V ))]) for every preopen set V of Y ;

(f) f−1[V ] ∈ e∗O(X) for every regular open set V of Y ;

(g) f−1[V ] ∈ e∗C(X) for every regular closed set V of Y .

Proof. (a)⇔ (b): it is straightforward. (a)⇒ (c): let V be any e∗-open set of Y and x /∈ f−1[clδ(V )].

x /∈ f−1[clδ(V )]⇒ f(x) ∈ Y \ clδ(V ) = intδ(Y \ V )
(a)

}
⇒ (∃U ∈ e∗O(X, x))(f [U ] ⊂ int(cl(intδ(Y \ V ))))

⇒ (∃U ∈ e∗O(X, x))(f [U ] ∩ cl(int(clδ(V ))) = ∅)
V ∈ e∗O(Y )

}
⇒ (∃U ∈ e∗O(X, x))(f [U ] ∩ V = ∅)

⇒ (∃U ∈ e∗O(X, x))(U ∩ f−1[V ] = ∅)
⇒ x /∈ e∗-cl(f−1[V ]).
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(c)⇒ (d): this is obvious since SO(Y ) ⊂ e∗O(Y ).
(d)⇒ (e): let V be any preopen set of Y .

V ∈ PO(Y )⇒ cl(int(Y \ V )) ∈ SO(Y )
(d)

}

⇒e∗-cl(f−1[cl(int(Y \ V ))]) ⊂ f−1[clδ(cl(int(Y \ V )))] ⊂ f−1[cl(int(Y \ V ))]
f−1[cl(int(Y \ V ))] ⊂ e∗-cl(f−1[cl(int(Y \ V ))])

}
⇒ X \ f−1[int(cl(V ))] = X \ e∗-int(f−1[int(cl(V ))])

⇒ f−1[V ] ⊂ f−1[int(cl(V ))] = e∗-int(f−1[int(cl(V ))]).

(e)⇒ (f): let V be any regular open set of Y .

V ∈ RO(Y )⇒ V ∈ PO(Y )
(e)

}
⇒ f−1[V ] ⊂ e∗-int(f−1[int(cl(V ))]) = e∗-int(f−1[V ])

⇒ f−1[V ] ∈ e∗O(X).

(f)⇒ (g): it is straightforward.
(f)⇒ (a): let x be any point of X and V any open set Y containing f(x).

V ∈ O(Y, f(x))⇒ Y \ int(cl(V )) ∈ RC(Y )
(f)

}
⇒ f−1[Y \ int(cl(V ))] ∈ e∗C(X)

⇒ f−1[int(cl(V ))] ∈ e∗O(X, x)
U := f−1[int(cl(V ))]

}
⇒ (U ∈ e∗O(X, x))(f [U ] ⊂ int(cl(V ))).

Theorem 3.5. Let f : (X, τ)→ (Y, σ) be a function. Then the following are equivalent:

(a) f is a.e∗.c.;

(b) f [e∗-cl(A)] ⊂ clδ(f [A]) for every subset A of X;

(c) e∗-cl(f−1[B]) ⊂ f−1[clδ(B)] for every subset B of Y ;

(d) f−1[F ] ∈ e∗C(X) for every δ-closed set F of Y ;

(e) f−1[V ] ∈ e∗O(X) for every δ-open set V of Y .

Proof. (a)⇒ (b): let A be a subset of X.

A ⊂ X ⇒ clδ(f [A]) =
⋂
{F |(f [A] ⊂ F )(F ∈ RC(Y ))} ∈ δC(Y )

(a)

}
⇒ f−1[clδ(f [A])] =

⋂
(f [A]⊂F )(F∈RC(Y ))

f−1[F ] ∈ e∗C(X)

A ⊂ f−1[clδ(f [A])]⇒ e∗-cl(A) ⊂ e∗-cl(f−1[clδ(f [A])])

}
⇒ e∗-cl(A) ⊂ f−1[clδ(f [A])]

⇒ f [e∗-cl(A)] ⊂ clδ(f [A]).

(b)⇒ (c): let B be a subset of Y .

B ⊂ Y ⇒ f−1[B] ⊂ X
(b)

}
⇒ f [e∗-cl(f−1[B])] ⊂ clδ(f [f−1[B]]) ⊂ clδ(B)
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⇒ e∗-cl(f−1[B]) ⊂ f−1[clδ(B)].

(c)⇒(d): let F be any δ-closed set of Y .

F ∈ δC(Y )
(c)

}
⇒ e∗-cl(f−1[F ]) ⊂ f−1[clδ(F )] = f−1[F ]⇒ f−1[F ] ∈ e∗C(X).

(d)⇒ (e): it is straightforward.
(e)⇒ (a): let V be any regular open set of Y .

V ∈ RO(Y )⇒ V ∈ δO(Y )
(e)

}
⇒ f−1[V ] ∈ e∗O(X).

Lemma 3.6. Let A be a subset of a space X, then the following hold:

(1) a-cl(A) = clδ(A) for every A ∈ e∗O(X);

(2) a-cl(A) = δ-pcl(A) = clδ(A) for every A ∈ δSO(X);

(3) A ∈ RO(X)⇒ A = int(cl(A)) = int(clδ(A)).

Proof. (1) Let A be any e∗-open set of X.

A ∈ e∗O(X)⇒ A ⊂ cl(int(clδ(A)))

⇒ clδ(A) ⊂ clδ(int(clδ(A))) = cl(int(clδ(A)))

⇒ clδ(A) ⊂ A ∪ cl(int(clδ(A)))

⇒ clδ(A) ⊂ a-cl(A) . . . ,

(3.1)

A ⊂ X ⇒ a-cl(A) ⊂ clδ(A) . . . , (3.2)

(3.1), (3.2)⇒ a-cl(A) = clδ(A).

(2) Let A be any δ-semiopen set of X.

A ∈ δSO(X)⇒ A ⊂ cl(intδ(A))

⇒ clδ(A) ⊂ clδ(intδ(A)) = cl(intδ(A))

⇒ clδ(A) ⊂ A ∪ cl(intδ(A))

⇒ clδ(A) ⊂ δ-pcl(A) . . . ,

(3.3)

A ⊂ X ⇒ δ-pcl(A) ⊂ clδ(A) . . . , (3.4)

(3.3), (3.4)⇒ δ-pcl(A) = clδ(A).

(3)

A ⊂ X ⇒ int(cl(A)) ⊂ int(clδ(A)) . . . , (3.5)

x ∈ int(clδ(A))⇒ (∃U ∈ U(x))(U ⊂ clδ(A))
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⇒ (∃U ∈ U(x))(U ∩ (X \ clδ(A)) = ∅)
⇒ (∃U ∈ U(x))(U ∩ (intδ(X \ A)) = ∅)

A ∈ RO(X)⇒ X \ A ∈ RC(X)

}
⇒ (∃U ∈ U(x))(U ∩ int(X \ A) = ∅)

⇒ (∃U ∈ U(x))(U ⊂ cl(A))

⇒ x ∈ int(cl(A)).

Then we have

int(clδ(A)) ⊂ int(cl(A)) . . . , (3.6)

(3.5), (3.6)⇒ A = int(cl(A)) = int(clδ(A)).

Theorem 3.7. Let f : (X, τ)→ (Y, σ) be a function. Then the following are equivalent:

(a) f is a.e∗.c.;

(b) e∗-cl(f−1[V ]) ⊂ f−1[a-cl(V )] for each V ∈ e∗O(Y );

(c) e∗-cl(f−1[V ]) ⊂ f−1[δ-pcl(V )] for each V ∈ δSO(Y );

(d) f−1[V ] ⊂ e∗-int(f−1[δ-scl(V )]) for each V ∈ δPO(Y ).

Proof. (a) ⇒ (b): let V be any e∗-open set of Y .

V ∈ e∗O(Y )
Theorem 3.4 (c)

}
⇒ e∗-cl(f−1[V ]) ⊂ f−1[clδ(V )]

Lemma 3.6 (1)

}
⇒ e∗-cl(f−1[V ]) ⊂ f−1[a-cl(V )].

(b) ⇒ (c): let V be any δ-semiopen set of Y .

V ∈ δSO(Y )⇒ V ∈ e∗O(Y )
(b)

}
⇒ e∗-cl(f−1[V ]) ⊂ f−1[a-cl(V )]

Lemma 3.6(2)

}
⇒ e∗-cl(f−1[V ]) ⊂ f−1[δ-pcl(V )].

(c) ⇒ (d): let F be any δ-preopen set of Y .

V ∈ δPO(Y )⇒ cl(intδ(Y \ V )) ∈ δSO(Y )
(c)

}
⇒ e∗-cl(f−1[cl(intδ(\V ))]) ⊂ f−1[δ-pcl(cl(intδ(\V )))]

⇒ f−1[V ] = f−1[δ-pint(V )] ⊂ f−1[δ-pint(int(clδ(V )))]

⊂ e∗-int(f−1[int(clδ(V ))])

⊂ e∗-int(f−1[V ∪ int(clδ(V ))])

= e∗-int(f−1[δ-scl(V )]).

(d)⇒ (a) : let V be any regular open set of Y .

V ∈ RO(Y )⇒ V ∈ δPO(Y )
(d)

}
⇒ f−1[V ] ⊂ e∗-int(f−1[δ-scl(V )]) = e∗-int(f−1[V ∪ int(clδ(V ))])

Lemma 3.6 (3)
= e∗-int(f−1[V ])

⇒ f−1[V ] ∈ e∗O(X).
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4. Some fundamental properties

Definition 4.1. A function f : X → Y is said to be faintly e∗-continuous (briefly f.e∗.c.) if for each
x ∈ X and each θ-open set V of Y containing f(x), there exists an e∗-open set U in X containing x
such that f [U ] ⊂ V.

Theorem 4.2. Let f : (X, τ)→ (Y, σ) be a function. Then the following are equivalent:

(a) f is f.e∗.c.;

(b) f−1[V ] ∈ e∗O(X) for every θ-open set V of Y ;

(c) f−1[V ] ∈ e∗C(X) for every θ-closed set V of Y.

Proof. (a)⇒ (b): let V be any θ-open set of Y and x ∈ f−1[V ].

(V ∈ θO(Y ))(x ∈ f−1[V ])⇒ V ∈ θO(Y, f(x))
(a)

}
⇒ (∃U ∈ e∗O(X, x))(f [U ] ⊂ V )

⇒ (∃U ∈ e∗O(X, x))(U ⊂ f−1[V ])

⇒ x ∈ e∗-int(f−1[V ]).

This shows that f−1[V ] is e∗-open in X.
(b)⇒ (a): let V be any θ-open set of Y.

V ∈ θO(Y, f(x))
(b)

}
⇒ f−1[V ] ∈ e∗O(X)

U := f−1[V ]

}
⇒ (U ∈ e∗O(X, x))(f [U ] ⊂ V ).

(b)⇒ (c) and (c)⇒(b): they are straightforward.

Theorem 4.3. Let f : (X, τ)→ (Y, σ) be a function. Then the implications (a)⇒ (b) ⇒ (c) ⇒ (d)
⇒ (e) hold for the following properties:

(a) f is e∗.c.;

(b) f−1[clδ(B)] is e∗-closed in X for every subset B of Y ;

(c) f is a.e∗.c.;

(d) f is w.e∗.c.;

(e) f is f.e∗.c.

Proof. (a)⇒ (b): let B be any subset of Y .

B ⊂ Y ⇒ clδ(B) ∈ C(Y )
(a)

}
⇒ f−1[clδ(B)] ∈ e∗C(X).

(b) ⇒ (c): let x be any point of X and V any open set Y containing f(x).

V ∈ O(Y, f(x))
(b)

}
⇒ f−1[clδ(V )] ∈ e∗C(X)⇒ e∗-cl(f−1[V ]) ⊂ e∗-cl(f−1[clδ(V )]) = f−1[clδ(V )].

Then from Theorem 3.5 (c) f is a.e∗.c.
(c) ⇒ (d): it is straightforward.
(d) ⇒ (e): let x be any point of X and V any θ-open set Y containing f(x).

V ∈ θO(Y, f(x))⇒ V ∈ O(Y, f(x))
(d)

}
⇒ (∃U ∈ e∗O(X, x))(f [U ] ⊂ cl(V ) = V ).
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Remark 4.4. If Y is regular, then the above five properties are equivalent. Suppose that Y is regular.
We prove that (e)⇒ (a). Let V be any open set of Y . Since Y is regular, V is θ-open in Y . By the
faint e∗-continuity of f , f−1[V ] is e∗-open in X. Therefore, f is e∗-continuous.

Definition 4.5. A space X is said to be:

(1) almost regular [16] if for any regular closed set F of X and any point x /∈ F there exist disjoint
open sets U and V such that x ∈ U and F ⊂ V.

(2) semi-regular [11] if for any open set U of X and each point x ∈ U there exists a regular open
set V of X such that x ∈ V ⊂ U.

Lemma 4.6 ([16]). For a topological space (X, τ) the following are equivalent:

(a) (X, τ) is almost regular,
(b) for each point x ∈ X and each regular open set V containing x, there exists a regular open set

U such that x ∈ U ⊂ cl(U) ⊂ V,
(c) for each point x ∈ X and each neighborhood M of x, there exists a regular open neighborhood

V of x such that cl(V ) ⊂ int(cl(M)),
(d) for each point x ∈ X and each neighborhood M of x, there exists an open neighborhood V of x

such that cl(V ) ⊂ int(cl(M)),
(e) for every regular closed set A and each point x not belonging to A, there exist open sets U and

V such that x ∈ U , A ⊂ V and cl(U) ∩ cl(V ) = ∅,
(f) every regular closed set F is expressible as an intersection of some regular closed neighborhoods

of F ,
(g) every regular closed set F is identical with the intersection of all closed neighborhoods of F ,
(h) for every set A and every regular open set B such that A ∩ B 6= ∅, there exists an open set G

such that A ∩G 6= ∅ and cl(G) ⊂ B,
(i) for every non-empty set A and every regular closed set B satisfying A ∩ B 6= ∅, there exist

disjoint open sets G and H such that A ∩G 6= ∅ and B ⊂ H.

Theorem 4.7. If f : (X, τ) → (Y, σ) is a weakly e∗-continuous function and Y is almost regular,
then f is almost e∗-continuous.

Proof. Let x be any point of X and V any open set Y containing f(x).

V ∈ O(Y, f(x))
Y is almost regular

}
⇒ (∃G ∈ RO(X, x))(cl(G) ⊂ int(cl(V )))

f is w.e∗.c.

}
⇒ (∃U ∈ e∗O(X, x))(f [U ] ⊂ cl(G) ⊂ int(cl(V ))).

Theorem 4.8. If f : (X, τ) → (Y, σ) is an almost e∗-continuous and Y is semi-regular, then f is
e∗-continuous.

Proof. Let x be any point of X and V any open set Y containing f(x).

V ∈ O(Y, f(x))
Y is semi-regular

}
⇒ (∃G ∈ RO(Y, f(x)))(G ⊂ U)

f is a.e∗.c.

}
⇒ (∃U ∈ e∗O(X, x))(f [U ] ⊂ int(cl(G)) = G).
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Lemma 4.9. Let X be a topological space. Then X is regular iff X is almost regular and semi-regular.

Proof. Necessity. This is straightforward.
Sufficiency. Let X be almost regular and semi-regular.

x ∈ U ∈ τ
X is semi-regular

}
⇒ (∃V ∈ RO(X, x))(V ⊂ U)

X is almost regular

}
⇒ (∃W ∈ U(x))(cl(W ) ⊂ int(cl(V )) = V ⊂ U)

⇒ (∃W ∈ U(x))(cl(W ) ⊂ U).

Corollary 4.10. Let f : X → Y be a function. If Y is an almost regular and semi-regular space,
then the following are equivalent:

(a) f is e∗.c.;

(b) f is a.e∗.c.;

(c) f is w.e∗.c.

Definition 4.11. A function f : X → Y is said to be almost e∗-open if f [U ] ⊂ int(cl(f [U ])) for
every e∗-open set U of X.

Theorem 4.12. If f : (X, τ)→ (Y, σ) is an almost e∗-open and weakly e∗-continuous function, then
f is almost e∗-continuous.

Proof. Let x be any point of X and V any open set Y containing f(x).

V ∈ O(Y, f(x))
f is w.e∗.c.

}
⇒ (∃U ∈ e∗O(X, x))(f [U ] ⊂ cl(V ))

f is almost e∗-open

}
⇒ f [U ] ⊂ int(cl(f [U ])) ⊂ int(cl(V )).

Definition 4.13. The e∗-frontier [2] of a subset A of X, denoted by e∗-Fr(A), is defined by e∗-
Fr(A) = e∗-cl(A) ∩ e∗-cl(X \ A) = e∗-cl(A) \ e∗-int(A).

Theorem 4.14. The set of all points x of X at which a function f : (X, τ) → (Y, σ) is not almost
e∗-continuous is identical with the union of the e∗-frontiers of the inverse images of regular open sets
containing f(x).

Proof. Let A = {x|f is not a.e∗.c. at x}.

x ∈ A⇒ f is not a.e∗.c. at x

⇒ (∃V ∈ RO(Y, f(x))(∀U ∈ e∗O(X, x))(f [U ] * V )

⇒ (∃V ∈ RO(Y, f(x))(∀U ∈ e∗O(X, x))(U ∩
(
X \ f−1[V ]

)
6= ∅)

⇒ (x ∈ f−1[V ])(x ∈ e∗-cl(X \ f−1[V ]) = X \ e∗-int(f−1[V ]))

⇒ x ∈ e∗-Fr(f−1[V ]).

Then we have

A ⊂
⋃{

e∗-Fr(f−1[V ])|V ∈ RO(Y, f(x))
}
. . . , (4.1)
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x /∈ A⇒ f is a.e∗.c. at x
V ∈ RO(Y, f(x))

}
⇒ (∃U ∈ e∗O(X, x))(U ⊂ f−1[V ])

⇒ x ∈ e∗-int(f−1[V ])

⇒ x /∈ e∗-Fr(f−1[V ])

⇒ x /∈
⋃{

e∗-Fr(f−1[V ])|V ∈ RO(Y, f(x))
}
.

Then we have⋃{
e∗-Fr(f−1[V ])|V ∈ RO(Y, f(x))

}
⊂ A . . . , (4.2)

(4.1), (4.2)⇒ A =
⋃{

e∗-Fr(f−1[V ])|V ∈ RO(Y, f(x))
}
.

Definition 4.15. A function f : X → Y is said to be

(1) complementary almost e∗-continuous (briefly c.a.e∗.c.) if for each regular open set V of Y ,
f−1[Fr(V )] is e∗-closed in X, where Fr(V ) denotes the frontier of V .

(2) weakly a-continuous (briefly w.a.c.) if for each point x ∈ X and each open set V of Y containing
f(x), there exists U ∈ aO(X, x) such that f [U ] ⊂ cl(V ).

Remark 4.16. We have the following diagram from Definitions 3.1, 4.1, 4.15 and Theorem 4.3:

e∗-continuity −→ almost e∗-continuity −→ weakly e∗-continuity −→ faintly e∗-continuity
↑

weakly a-continuity

These implications above are not reversible as shown by the following examples.

Example 4.17. Let X = {a, b, c}, τ = {∅, X, {a}, {b}, {a, b}}. Define the function f : (X, τ) →
(X, τ) by f = {(a, a), (b, a), (c, b)}. Then f is f.e∗.c., but it is not w.e∗.c. at point c of X.

Example 4.18. Let X = {a, b, c}, τ = {∅, X, {a}, {b, c}}. Define the function f : (X, τ) → (X, τ)
by f = {(a, b), (b, c), (c, a)}. Then f is w.e∗.c., but it is not w.a.c. at point c of X.

Example 4.19. Let X = {a, b, c}, τ = {∅, X, {a}, {b}, {a, b}}. Define the function f : (X, τ) →
(X, τ) by f = {(a, c), (b, b), (c, a)}. Then f is both w.e∗.c. and c.a.e∗.c., but it is not a.e∗.c. at point
c of X.

Example 4.20. Let X = {a, b, c, d}, τ = {∅, X, {a}, {b}, {a, b}, {a, c}, {a, b, c}}. Define the function
f : (X, τ)→ (X, τ) by f = {(a, d), (b, d), (c, c), (d, a)}. Then f is a.e∗.c., but it is not e∗.c. at point d
of X.

Lemma 4.21. Let X be a topological space and A,B ⊂ X. If A is an a-open set and B is an e∗-open
set, then A ∩B is an e∗-open set in X.

Proof. Let A ∈ aO(X) and B ∈ e∗O(X).

A ∈ aO(X)⇒ A ⊂ int(cl(intδ(A)))
B ∈ e∗O(X)⇒ B ⊂ cl(int(clδ(B)))

}
⇒ A ∩B ⊂ int(cl(intδ(A))) ∩ cl(int(clδ(B)))

⇒ A ∩B ⊂ cl[int(cl(intδ(A))) ∩ int(clδ(B))]
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= cl[int[cl(intδ(A)) ∩ int(clδ(B))]]

= cl[int[cl(intδ(A)) ∩ intδ(clδ(B))]]

= cl[int[cl(intδ(intδ(A))) ∩ intδ(clδ(B))]]

= cl(int(cl(intδ(A)) ∩ clδ(B)))

⊂ cl(int(cl(clδ(intδ(A) ∩B))))

⊂ cl(int(clδ(clδ(A ∩B))))

⊂ cl(int(clδ(A ∩B))).

Then we have A ∩B is an e∗-open set in X.

Theorem 4.22. If f : (X, τ) → (Y, σ) is weakly a-continuous and complementary almost e∗-
continuous, then f is almost e∗-continuous.

Proof. Let x ∈ X and let V be a regular open set of Y containing f(x).

V ∈ RO(Y, f(x))
f is c.a.e∗.c.

}
⇒ f−1[Fr(V )] ∈ e∗C(X)⇒ X \ f−1[Fr(V )] ∈ e∗O(X, x)

(x ∈ X)(V ∈ O(Y, f(x))
f is w.a.c.

}
⇒ (∃G ∈ aO(X, x))(f [G] ⊂ cl(V ))


Lemma 4.21⇒ (U := G ∩ (X \ f−1[Fr(V )]) ∈ e∗O(X, x))

(f [U ] ⊂ f [G ∩ (X \ Fr(V ))] ⊂ cl(V ) ∩ (Y \ Fr(V )) = V )

⇒ (U ∈ e∗O(X, x))(f [U ] ⊂ f [G] ∩ f [X \ f−1[Fr(V )]] ⊂ cl(V ) ∩ (Y \ Fr(V )) = V ).

Theorem 4.23. If f : (X, τ) → (Y, σ) is almost e∗-continuous, g : (X, τ) → (Y, σ) is weakly
a-continuous and Y is Hausdorff, then the set {x|f(x) = g(x)} is e∗-closed in X.

Proof. Let A = {x|f(x) = g(x)}.

x /∈ A⇒ f(x) 6= g(x)
Y is Hausdorff

}
⇒ (∃U ∈ O(Y, f(x)))(∃V ∈ O(Y, g(x)))(U ∩ V = ∅)

⇒ (∃U ∈ O(Y, f(x)))(∃V ∈ O(Y, g(x)))(int(cl(U)) ∩ cl(V ) = ∅)
f is a.e∗.c. and g is w.a.c.

}
⇒ (∃G ∈ e∗O(X, x))(f [G] ⊂ int(cl(U)))(∃H ∈ aO(X, x))(g[H] ⊂ cl(V ))

W := G ∩H

}
⇒ (∃W ∈ e∗O(X, x))(f [W ] ∩ g[W ] ⊂ int(cl(U)) ∩ cl(V ) = ∅)
⇒ (∃W ∈ e∗O(X, x))(W ∩ A = ∅)
⇒ x ∈ e∗-int(X \ A) = X \ e∗-cl(A)

⇒ x /∈ e∗-cl(A).

Lemma 4.24. Let X and Y be topological spaces. Then the following properties hold:

(a) If G ⊂ X and H ⊂ Y, then clδ(G)× clδ(H) ⊂ clδ(G×H),

(b) If G ∈ e∗O(X) and H ∈ e∗O(Y ), then G×H ∈ e∗O(X × Y ).
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Proof. (a) It is straightforward.
(b) Let G ∈ e∗O(X) and H ∈ e∗O(Y ).

G ∈ e∗O(X)⇒ G ⊂ cl(int(clδ(G)))
H ∈ e∗O(Y )⇒ H ⊂ cl(int(clδ(H)))

}
⇒ G×H ⊂ cl(int(clδ(G)))× cl(int(clδ(H)))

= cl(int[clδ(G)× clδ(H)])
(a)
⊂ cl(int(clδ(G×H))).

Theorem 4.25. If f : (X, τ) → (Z, η) is weakly a-continuous, g : (Y, σ) → (Z, η) is almost e∗-
continuous and Z is Hausdorff, then the set {(x, y)|f(x) = g(y)} is e∗-closed in X × Y .

Proof. Let A = {(x, y)|f(x) = g(y)}.

(x, y) /∈ A⇒ f(x) 6= g(y)
Z is Hausdorff

}
⇒ (∃U ∈ O(Z, f(x)))(∃V ∈ O(Z, g(y)))(U ∩ V = ∅)

⇒ (∃U ∈ O(Z, f(x)))(∃V ∈ O(Z, g(y)))(cl(U) ∩ int(cl(V ))=∅)
f is w.a.c. and g is a.e∗.c.

}
⇒ (∃G ∈ e∗O(X, x))(f [G]⊂ cl(U))(∃H ∈ e∗O(Y, y))(g[H]⊂ int(cl(V )))(cl(U) ∩ int(cl(V ))=∅)

Lemma 4.24 (b)⇒ (G×H ∈ e∗O(X × Y ))((x, y) ∈ G×H ⊂ (X × Y ) \ A)

⇒ (x, y) /∈ e∗-cl(A).

Definition 4.26. A space X is said to be e∗-T2 [6] if for any distinct points x, y of X, there exist
disjoint e∗-open sets U, V of X such that x ∈ U and y ∈ V.

Theorem 4.27. If for each pair of distinct points x and y in a space X, there exists a function f
of X into a Hausdorff space Y such that f(x) 6= f(y), f is weakly a-continuous at x and almost
e∗-continuous at y, then X is e∗-T2.

Proof. Let x, y ∈ X and x 6= y.

(x, y ∈ X)(f(x) 6= f(y))
Y is Hausdorff

}
⇒ (∃V1 ∈ O(Y, f(x)))(∃V2 ∈ O(Y, f(y)))(V1 ∩ V2 = ∅)

⇒ (∃V1 ∈ O(Y, f(x)))(∃V2 ∈ O(Y, f(y)))(cl(V1) ∩ int(cl(V2)) = ∅)
f is w.a.c. at x and f is a.e∗.c. at y

}
⇒ (∃U1 ∈ e∗O(X, x))(f [U1]⊂cl(V1))(∃U2 ∈ e∗O(X, y))(f [U2]⊂ int(cl(V2)))(cl(V1) ∩ int(cl(V2))=∅)
⇒ (∃U1 ∈ e∗O(X, x))(∃U2 ∈ e∗O(X, y))(f [U1 ∩ U2] ⊂ f [U1] ∩ f [U2] = ∅)
⇒ (∃U1 ∈ e∗O(X, x))(∃U2 ∈ e∗O(X, y))(U1 ∩ U2 = ∅).

Definition 4.28. A function f : X → Y has an e∗-closed graph if for each (x, y) ∈ (X × Y ) \G(f),
there exist U ∈ e∗O(X, x) and an open set V of Y containing y such that [U × cl(V )] ∩G(f) = ∅.

Lemma 4.29. A function f : X → Y has an e∗-closed graph if and only if for each (x, y) ∈ (X ×
Y )\G(f), there exist U ∈ e∗O(X, x) and an open set V of Y containing y such that f [U ]∩cl(V ) = ∅.
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Proof. Necessity. Let (x, y) ∈ (X × Y ) \G(f).

(x, y) ∈ (X × Y ) \G(f)
f has an e∗-closed graph

}
⇒ (∃U ∈ e∗O(X, x))(∃V ∈ O(Y, y))([U × cl(V )] ∩G(f) = ∅)

⇒ (∃U ∈ e∗O(X, x))(∃V ∈ O(Y, y))(f [U ] ∩ cl(V ) = ∅).

Sufficiency. Let (x, y) ∈ (X × Y ) \G(f).

(x, y) /∈ G(f)
Hypothesis

}
⇒ (∃U ∈ e∗O(X, x))(∃V ∈ O(Y, y))(f [U ] ∩ cl(V ) = ∅)

⇒ (∃U ∈ e∗O(X, x))(∃V ∈ O(Y, y))([U × cl(V )] ∩G(f) = ∅).

Theorem 4.30. If f : (X, τ)→ (Y, σ) is an almost e∗-continuous function and Y is Hausdorff, then
f has an e∗-closed graph.

Proof. Let (x, y) /∈ G(f).

(x, y) /∈ G(f)⇒ y 6= f(x)
Y is Hausdorff

}
⇒ (∃V ∈ O(Y, f(x)))(∃W ∈ O(Y, y))(V ∩W = ∅)

⇒ (∃V ∈ O(Y, f(x)))(∃W ∈ O(Y, y))(V ∩ cl(W ) = ∅)
⇒ f(x) ∈ Y \ cl(W ) ∈ RO(Y )

f is a.e∗.c.

}
⇒ (∃U ∈ e∗O(X, x))(f [U ] ⊂ Y \ cl(W ))

⇒ (∃U ∈ e∗O(X, x))(f [U ] ∩ cl(W ) = ∅).

This shows that f has an e∗-closed graph.

Corollary 4.31. If f : X → Y is an e∗-continuous function and Y is Hausdorff, then f has an
e∗-closed graph.
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