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Abstract

We introduce and investigate a new class of functions called almost strongly θ-e-continuous functions,
containing the classes of almost strongly θ-precontinuous [J. H. Park, S. W. Bae, Y. B. Park, Chaos Soli-
tons Fractals, 28 (2006), 32–41], almost strongly θ-semicontinuous [Y. Beceren, S. Yüksel, E. Hatir, Bull.
Calcutta Math. Soc., 87 (1995), 329–334] and strongly θ-e-continuous functions [M. Özkoç, G. Aslım,
Bull. Korean Math. Soc., 47 (2010), 1025–1036]. Several characterizations concerning almost strongly
θ-e-continuous functions are obtained. Also we investigate the relationships between almost strongly θ-e-
continuous functions and separation axioms and almost strongly e-closedness of graphs of functions. c©2016
All rights reserved.
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1. Introduction

The concept of continuity is the most important subject in topology. In 2008, the notion of e-continuous
functions was introduced and studied by Ekici [8] and in 2010, the notion of strongly θ-e-continuous functions
was introduced by Özkoç and Aslım [19]. In 1984, Noiri and Kang introduced the notion of almost strong
θ-continuity. Recently, three generalizations of almost strong θ-continuity are obtained by Beceren et al.
[4], Park et al. [21] and Noiri and Zorlutuna [18]. The aim of this paper is to introduce and investigate a
new class of functions, called almost strongly θ-e-continuous functions, which contains the classes of almost
strongly θ-semicontinuous functions, almost strongly θ-precontinuous functions and strongly θ-e-continuous
functions.
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We introduce and investigate some fundamental properties of almost strongly θ-e-continuous functions
defined via e-open sets introduced by Ekici [8] in a topological space. It turns out that almost strong θ-
e-continuity is stronger than θ-e-continuity [11] and weaker than strong θ-e-continuity [19], almost strong
θ-semicontinuity [4] and almost strong θ-precontinuity [21]. Moreover, we obtain some results related to
separation axioms and graphs properties.

2. Preliminaries

Throughout the paper, X and Y always mean topological spaces on which no separation axioms are
assumed, unless explicitly stated. Let X be a topological space and A a subset of X. The closure and interior
ofA are denoted by cl(A) and int(A), respectively. A subsetA is said to be regular open (resp. regular closed)
if A = int(cl(A)) (resp. A = cl(int(A))). A point x ∈ X is said to be δ-cluster point of A if int(cl(U))∩A 6= ∅
for each open neighborhood U of x. The set of all δ-cluster points of A is called the δ-closure [25] of A and
is denoted by δ-cl(A). If A = δ-cl(A), then A is called δ-closed, and the complement of a δ-closed set is
called δ-open. A subset A is called semiopen [12] (resp. b-open [3], e-open [8], preopen [13], α-open [15],
a-open [7], β-open [1]) if A ⊂ cl(int(A)) (resp. A ⊂ cl(int(A)) ∪ int(cl(A)), A ⊂ cl(intδ(A)) ∪ int(clδ(A)),
A ⊂ int(cl(A)), A ⊂ int(cl(int(A))), A ⊂ int(cl(intδ(A))), A ⊂ cl(int(cl(A)))). The complement of a
semiopen (resp. b-open, e-open, preopen, α-open, a-open, β-open) set is called semiclosed (resp. b-closed,
e-closed, preclosed, α-closed, a-closed, β-closed). The intersection of all e-closed sets of X containing A is
called the e-closure [8] of A and is denoted by e-cl(A). The semiclosure, preclosure, b-closure and α-closure
are similarly defined and are denoted by scl(A), pcl(A), bcl(A) and α-cl(A), respectively. The union of all
e-open sets of X contained in A is called the e-interior [8] of A and is denoted by e-int(A). A subset A is
said to be e-regular [19] if it is e-open and e-closed.

A point x of X is called an e-θ-cluster point of A if e-cl(U)∩A 6= ∅ for every e-open set U containing x.
The set of all e-θ-cluster points of A is called the e-θ-closure [19] of A and is denoted by e-clθ(A). A subset
A is said to be e-θ-closed if A = e-clθ(A). The complement of an e-θ-closed set is called an e-θ-open set.
Also it is noted in [19] that

e-regular⇒ e-θ-open⇒ e-open.

The family of all e-open (resp. e-closed, e-regular, e-θ-open, e-θ-closed) subsets of X is denoted by eO(X)
(resp. eC(X), eR(X), eθO(X), eθC(X)). The family of all e-open (e-closed, e-regular, e-θ-open, e-θ-closed)
sets of X containing a point x of X is denoted by eO(X,x) (resp. eC(X,x), eR(X,x), eθO(X,x), eθC(X,x)).

Lemma 2.1 ([2]). Let X be a topological space. If A is a preopen set in X, then scl(A) = int(cl(A)).

Lemma 2.2 ([19]). Let X be a topological space and A ⊂ X and {Aα|α ∈ Λ} ⊂ P (X). Then the following
statements hold:

(1) A ∈ eO(X) if and only if e-cl(A) ∈ eR(X).
(2) A is e-θ-open in X if and only if for each x ∈ A, there exists W ∈ eR(X,x) such that W ⊂ A.
(3) If Aα is e-θ-open in X for each α ∈ Λ, then ∪

α∈Λ
Aα is e-θ-open in X.

(4) A ∈ eR(X) if and only if A is e-θ-open and e-θ-closed.

Lemma 2.3 ([17]). Let X be a topological space. Then the following statements hold:
(1) α-cl(V ) = cl(V ) for each β-open set V of X.
(2) pcl(V ) = cl(V ) for each semi-open set V of X.

Lemma 2.4. Let A be a subset of a space X. The set A is e-θ-open in X if and only if for each x ∈ A,
there exists a U ∈ eO(X) containing x such that x ∈ e-cl(U) ⊂ A.

Proof. It can be proved directly using Lemma 2.2.

Lemma 2.5 ([11]). Let X be a topological space and A ⊂ X. Then:
(1) e-clθ(X \A) = X \ e-intθ(A).
(2) e-intθ(X \A) = X \ e-clθ(A).
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Lemma 2.6. Let X be a topological space. Then the following statements hold:
(1) V ∈ βO(X)⇒ α-cl(V ) ∈ SO(X).
(2) V ∈ SO(X)⇒ α-cl(V ) = pcl(V ).

Proof. (1) Let V ∈ βO(X). We have

V ∈ βO(X)⇒ V ⊂ cl(int(cl(V )))

⇒ α-cl(V ) ⊂ α-cl(cl(int(cl(V ))))

Lemma2.3
=⇒ α-cl(V ) ⊂ cl(int(cl(V ))) = cl(int(α-cl(V ))).

(2) Let V ∈ SO(X). We have

α-cl(V ) = V ∪ cl(int(cl(V )))
V ∈ SO(X)⇒ V ⊂ cl(int(V ))

}
⇒ α-cl(V ) ⊂ V ∪ cl(int(V )) = pcl(V )

V ⊂ X ⇒ pcl(V ) ⊂ α-cl(V )

}
⇒ α-cl(V ) = pcl(V ).

Lemma 2.7 ([20]). In a space X, the intersection of an a-open set and an e-open set is an e-open set.

3. Almost Strongly θ-e-continuous Functions

Definition 3.1. A function f : X → Y is said to be almost strongly θ-e-continuous (briefly, a.st.θ.e.c.) if
for each x ∈ X and each open set V containing f(x), there exists an e-open set U in X containing x such
that f [e-cl(U)] ⊂ int(cl(V )).

Theorem 3.2. For a function f : X → Y , the followings are equivalent:

(1) f is a.st.θ.e.c.,

(2) for each x ∈ X and each regular open set V containing f(x), there exists an e-open set U in X
containing x such that f [e-cl (U)] ⊂ V ,

(3) for each x ∈ X and each regular open set V containing f(x), there exists an e-regular set U in X
containing x such that f [U ] ⊂ V ,

(4) for each x ∈ X and each regular open set V containing f(x), there exists an e-θ-open set U in X
containing x such that f [U ] ⊂ V ,

(5) f−1[G] ∈ eθO(X) for every regular open set G of Y ,

(6) f−1[F ] ∈ eθC(X) for every regular closed set F of Y ,

(7) f−1[G] ∈ eθO(X) for every δ-open set G of Y ,

(8) f−1[F ] ∈ eθC(X) for every δ-closed set F of Y ,

(9) f [e-clθ(A)] ⊂ clδ(f [A]) for every subset A of X,

(10) e-clθ(f
−1[B]) ⊂ f−1[clδ(B)] for every subset B of Y ,

(11) e-clθ(f
−1[cl(int(cl(B)))]) ⊂ f−1[cl(B)] for every subset B of Y ,

(12) e-clθ(f
−1[V ]) ⊂ f−1[cl(V )] for every β-open set V of Y ,

(13) e-clθ(f
−1[V ]) ⊂ f−1[cl(V )] for every semi-open set V of Y ,

(14) e-clθ(f
−1[V ]) ⊂ f−1[α-cl(V )] for every β-open set V of Y ,
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(15) e-clθ(f
−1[V ]) ⊂ f−1[pcl(V )] for every semi-open set V of Y ,

(16) e-clθ(f
−1[cl(int(V ))]) ⊂ f−1[F ] for every closed set F of Y ,

(17) e-clθ(f
−1[cl(int(V ))]) ⊂ f−1[cl(V )] for every closed set V of Y ,

(18) f−1[V ] ⊂ e-intθ(f−1[scl(V )]) for every open set V of Y ,

(19) f−1[V ] ⊂ e-intθ(f−1[int(cl(V ))]) for every preopen set V of Y ,

(20) f−1[V ] ⊂ e-intθ(f−1[scl(V )]) for every preopen set V of Y ,

(21) f−1[V ] ⊂ e-intθ(f−1[int(cl(V ))]) for every open set V of Y ,

(22) f : X → Ys is st.θ.e.c., where Ys denotes the semi regularization of Y .

Proof. (1) ⇒(2): Let x ∈ X and V ∈ RO(Y, f(x)). We have

(x ∈ X)(V ∈ RO(Y, f(x)))
RO(Y, f(x)) ⊂ U(Y, f(x))

}
⇒ (x ∈ X)(V ∈ U(Y, f(x))

Hypothesis

}
⇒

⇒ (∃U ∈ eO(X,x))(f [e− cl (U)] ⊂ int(cl(V )) = V ).

(2)⇒(3): Let x ∈ X and V ∈ RO(Y, f(x)). We have

(x ∈ X) (V ∈ RO(Y, f(x)))
Hypothesis

}
⇒ (∃U ′ ∈ eO(X,x))(f [e− cl (U)] ⊂ V ), (3.1)

U
′ ∈ eO(X,x)⇒ U = e− cl(U) ∈ eR(X,x) (3.2)

(3.1),(3.2)⇒ (∃U ∈ eR(X,x))(f [U ] ⊂ V ).

(3)⇒(4): Let x ∈ X and V ∈ RO(Y, f(x)). We have

(x ∈ X)(V ∈ RO(Y, f(x)))
Hypothesis

}
⇒ (∃U ∈ eR(X,x))(f [U ] ⊂ V )

eR(X,x) ⊂ eθO(X,x)

}
⇒ (∃U ∈ eθO(X,x))(f [U ] ⊂ V ).

(4)⇒(5): Let G ∈ RO(Y, f(x)) and x /∈ f−1[G]. We have

(G ∈ RO(Y, f(x))) (x /∈ f−1[G])
Hypothesis

}
⇒ (∃U ∈ eθO(X,x))(f [U ] ⊂ G)

⇒ (∃U ∈ eθO(X,x))(x ∈ U ⊂ f−1[G])
Lemma2.2

}
⇒

⇒

( ⋃
x∈f−1[G]

U ∈ eθO(X)

)( ⋃
x∈f−1[G]

U = f−1[G]

)
⇒ f−1[G] ∈ eθO(X).

(5)⇒(6): Let F ∈ RC(Y ). We have

F ∈ RC(Y ) ⇔ X \ F ∈ RO(Y )
⇔ f−1[X \ F ] ∈ eθO(X)
⇔ X \ f−1[F ] ∈ eθO(X)
⇔ f−1[F ] ∈ eθC(X).
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(6)⇒(7): Let V ∈ δO(Y ). We have

V ∈ δO(Y ) ⇒ X \ V ∈ δC(Y )
⇒ X \ V = clδ(X \ V )
⇒ X \ V =

⋂
{F |(W ⊂ F )(F ∈ RC(Y ))}

Hypothesis

}
⇒

⇒ (X \ V ⊂ F ∈ RC(Y )⇒ f−1[F ] ∈ eθC(X))

(
f−1[X \ V ] =

⋂
X\V⊂F∈RC(Y )

f−1[F ]

)
⇒ f−1[X \ V ] ∈ eθC(X)

⇒ X \ f−1[V ] ∈ eθC(X)

⇒ f−1[V ] ∈ eθO(X).

(7)⇒(8): Let F ∈ δC(Y ). We have

F ∈ δC(Y ) ⇒ X \ F ∈ δO(Y )
⇒ f−1[X \ F ] ∈ eθO(X)
⇒ X \ f−1[F ] ∈ eθO(X)
⇒ f−1[F ] ∈ eθC(X).

(8)⇒(9): Let A ⊂ X. We have

A ⊂ X ⇒ clδ(f [A]) ∈ δC(Y )
Hypothesis

}
⇒ f−1[clδ(f [A])] ∈ eθC(X)

x /∈ f−1[clδ(f [A])]

}
⇒

⇒ (∃U ∈ eO(X,x))(e− cl (U) ∩ f−1[clδ(f [A])] = ∅).
⇒ (∃U ∈ eO(X,x))(e-cl (U) ∩A = ∅).
⇒ x /∈ e-clθ(A).

Then e-clθ(A) ⊂ f−1[clδ(f [A])]⇒ f−1[e-clθ(A)] ⊂ clδ(f [A]).

(9)⇒(10): LetB ⊂ Y . We have

B ⊂ Y ⇒ f−1[B] ⊂ X
Hypothesis

}
⇒ f [e− clθ(f−1 [B])] ⊂ clδ(f [f−1 [B]]) ⊂ clδ(B)⇒ e-clθ(f

−1 [B]) ⊂ f−1 [clδ(B)]

.
(10)⇒(11): Let B ⊂ Y . We have

B ⊂ Y ⇒ cl(int(cl(B))) ∈ RC(Y )⇒ cl(int(cl(B))) ∈ δC(Y )
cl(int(cl(B))) ⊂ cl(B)

}
⇒

⇒ e-clθ(f
−1[cl(int(cl(B)))]) ⊂ f−1[clδ(cl(int(cl(B))))] ⊂ f−1[clδ(clδ

⇒ e-clθ(f
−1[cl(int(cl(B)))]) ⊂ f−1[clδ(int(cl(B)))] = f−1[cl(int(cl(B)))]

⇒ e-clθ(f
−1[cl(int(cl(B)))]) ⊂ f−1[cl(B)].

(11)⇒(12): Let V ∈ βO(Y ). We have

V ∈ βO(Y )
[2]⇒ cl(V ) ∈ RC(Y )

Hypothesis

}
⇒
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⇒ e-clθ(f
−1[V ]) ⊂ e-clθ(f−1[cl(V )]) = e-clθ(f

−1[cl(int(cl(V )))]) ⊂ f−1[cl(V )].

(12)⇒(13): This is obvious since every semiopen set is β-open.

(13)⇒(14): Let V ∈ βO(Y ). We have

V ∈ βO(Y )
Lemma 2.6⇒ α-cl(V ) ∈ SO(Y )

Hypothesis

}
⇒

⇒ e-clθ(f
−1[V ]) ⊂ e-clθ(f−1[α-cl(V )]) ⊂ e-clθ(f−1[cl(α-cl(V ))]) ⊂ f−1[cl(V )]

⇒ e-clθ(f
−1[V ]) ⊂ f−1[cl(V )]

Lemma2.3
= f−1[α-cl(V )].

(14)⇒(15): Let V ∈ SO(Y ). We have

V ∈ SO(Y )⇒ V ∈ βO(Y )
Hypothesis

}
⇒

⇒ e-clθ(f
−1 [V ]) ⊂ f−1 [α-cl(V )]

V ∈ SO(Y )
Lemma 2.6

=⇒ α-cl(V ) = pcl(V )

}
⇒ e-clθ(f

−1 [V ]) ⊂ f−1 [pcl(V )] .

(15)⇒(16): Let V ∈ C(Y ). We have

V ∈ C(Y )⇒ cl(int(V )) ∈ SO(Y )
Hypothesis

}
⇒ e-clθ(f

−1 [cl(int(V ))]) ⊂ f−1 [pcl(int(cl(V )))] ⊂ f−1[V ].

(16)⇒(17): Let V ∈ σ. We have
V ∈ σ ⇒ cl(V ) ∈ C(Y )

Hypothesis

}
⇒ e-clθ(f

−1 [cl(int(cl(V )))]) ⊂ f−1 [cl(V )] e-clθ(f
−1[cl(V )]) ⊂ f−1 [cl(V )].

(17)⇒(18): Let V ∈ σ. We have

V ∈ σ ⇒ Y \ cl(V ) ∈ σ Lemmas 2.1,2.5⇒

⇒ X \ e-intθ(f−1 [scl(V )]) = e-clθ(f
−1 [Y \ int(cl(V ))]) = e-clθ(f

−1 [cl(Y \ cl(V ))])
Hypothesis

}
⇒

⇒ X \ e-intθ(f−1 [scl(V )]) ⊂ f−1 [Y \ cl(V )] ⊂ X \ f−1 [V ]

⇒ f−1 [V ] ⊂ e-intθ(f−1 [scl(V )]).

(18)⇒(19): Let V ∈ PO(Y ). We have

V ∈ PO(Y )⇒ scl(V ) = int(cl(V ))
Hypothesis

}
Lemma 2.1⇒

⇒ f−1 [V ] ⊂ f−1[scl(V )] ⊂ e-intθ(f−1[scl(V )]) ⊂ e-intθ(f−1[int(cl(V ))]).

(19)⇒(20) and (20)⇒(21) are clear.

(21)⇒(22): Let x ∈ X and V ∈ O(YS , f(x)). We have
(x ∈ X) (V ∈ O(YS , f(x)))⇒ (∃G ∈ RO(Y ))(f(x) ∈ G ⊂ V )

Hypothesis

}
⇒ x ∈ f−1 [G] ⊂ e-intθ(f−1[G])

⇒ f−1[G] ∈ eθO(X)
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Lemma 2.2⇒ (∃U ∈ eO(X,x))(e-cl(U) ⊂ f−1 [G])

⇒ (∃U ∈ eO(X,x))(f [e-cl(U)] ⊂ G ⊂ V ).

(22)⇒(1): Let V ∈ O(Y ) and x ∈ f−1[V ]. We have
(V ∈ O(Y )) (x ∈ f−1 [V ])⇒ f(x) ∈ V ⊂ int(cl(V )) ∈ σ

Hypothesis

}
⇒ (∃U ∈ eO(X,x))(e-cl(U) ⊂ f−1 [int(cl(V ))])

⇒ (∃U ∈ eO(X,x))(f [e-cl(U)] ⊂ int(cl(V ))).

Definition 3.3. Let A be a subset of a topological space X. The e-θ-frontier of A is defined by e-Frθ(A) = e-
clθ(A) \ e-intθ(A).

Theorem 3.4. The set of all points x ∈ X at which a function f : X → Y is not a.st.θ.e.c. coincides with
the union of the e-θ-frontiers of the inverse images of regular open sets of Y containing f(x).

Proof. Let A := {x | f is not a.st.θ.e.c. at a point x of X}. Then

x ∈ A⇒ (∃V ∈ RO(Y, f(x)))(∀U ∈ eO(X,x))(f [e-cl(U)] 6⊂ V )

⇒ (∃V ∈ RO(Y, f(x)))(∀U ∈ eO(X,x))(e-cl(U) 6⊂ f−1[V ])

⇒ (∃V ∈ RO(Y, f(x)))(∀U ∈ eO(X,x))(e-cl(U) ∩
(
X \ f−1[V ]

)
6= ∅)

⇒ x ∈ e-clθ(X \ f−1[V ])

⇒ x ∈ X \ e-intθ(f−1[V ])

⇒ x /∈ e-intθ(f−1[V ]),

(3.3)

f(x) ∈ V ⇒ x ∈ f−1[V ] ⊂ e− clθ(f−1[V ])⇒ x ∈ e− clθ(f−1[V ]) (3.4)

(3.3), (3.4)⇒ x ∈ e-Frθ(f−1[V ]).
Then we have A ⊂

⋃{
e-Frθ(f

−1[V ])|f(x) ∈ V ∈ RO(Y )
}

.

x /∈ A⇒ f is a.st.θ.e.c. atx
f(x) ∈ V ∈ RO(Y )

}
⇒ x ∈ f−1[V ] ∈ eθO(X)

⇒ x ∈ e-intθ(f−1[V ])

⇒ x /∈ e-Frθ(f−1[V ])

⇒ x /∈
⋃{

e-Frθ(f
−1[V ])|f(x) ∈ V ∈ RO(Y )

}
.

Then we have
⋃{

e-Frθ(f
−1[V ])|f(x) ∈ V ∈ RO(Y )

}
⊂ A.

4. Comparisons and Some Properties

Definition 4.1. A function f : X → Y is called almost strongly θ-continuous [17] (resp. almost strongly
θ-semicontinuous [4], almost strongly θ-precontinuous [21], almost strongly θ-b-continuous [18]), if for each
x ∈ X and each open set V containing f(x), there is an open (resp. semi-open, preopen, b-open) set
U containing x such that f [cl(U)] ⊂ int(cl(V )) (resp. f [scl(U)] ⊂ int(cl(V )), f [pcl(U)] ⊂ int(cl(V )),
f [bcl(U)] ⊂ int(cl(V ))).

Definition 4.2. A function f : X → Y is called strongly θ-e-continuous [19] (resp. e-continuous [8]) if
for each x ∈ X and each open set V containing f(x), there is an e-open set U containing x such that
f [e-cl(U)] ⊂ V (resp. f [U ] ⊂ V ).
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Definition 4.3. A function f : X → Y is called θ-e-continuous [11] if for each x ∈ X and each open set V
containing f(x), there is an e-open set U containing x such that f [e-cl(U)] ⊂ cl(V ).

Remark 4.4. From Definitions 4.1, 4.2 and 4.3, we have the following diagram.

a.st.θ.p.c. st.θ.e.c.
↗ ↓ ↘ ↓

a.st.θ.c. a.st.θ.b.c. a.st.θ.e.c. e.c.
↘ ↑ ↗ ↓ ↗

a.st.θ.s.c. θ.e.c.

However, none of these implications is reversible as shown by the following examples.

Example 4.5. Let X = {a, b, c, d}, τ = {∅, X, {c}, {a, b}, {a, b, c}} and σ = {∅, X, {a}, {c}, {a, b}, {a, c},
{a, b, c}, {a, c, d}}.

(a) Define the function f : (X, τ)→ (X,σ) by f(a) = f(b) = a, f(c) = f(d) = c. Then f is a.st.θ.e.c. on
X, but it is not a.st.θ.p.c. at the point d of X.

(b) Define the function f : (X, τ) → (X,σ) by f(a) = a, f(b) = c, f(c) = f(d) = d. Then f is a.st.θ.e.c.
on X, but it is not a.st.θ.s.c. at the point a of X.

Example 4.6. LetX = {a, b, c, d}, τ = {∅, X, {a}, {c}, {a, c}, {c, d}, {a, c, d}} and σ = {∅, X, {c}, {d}, {c, d},
{a, c, d}, {b, c, d}}.

(a) Define a function f : (X, τ)→ (X,σ) by f(a) = f(c) = f(d) = a, f(b) = c. Then f is θ.e.c. on X, but
it is not a.st.θ.e.c. at the point b of X.

(b) Define a function f : (X, τ) → (X,σ) by f(a) = f(b) = f(d) = d, f(c) = a. Then f is a.st.θ.e.c. on
X, but it is not a.st.θ.b.c. at the point d of X.

Example 4.7. LetX = {a, b, c, d}, τ = {∅, X, {a}, {c}, {a, b}, {a, c}, {a, b, c}, {a, c, d}} and σ = {∅, X, {a}, {c},
{a, c}, {c, d}, {a, c, d}}. Define a function f : (X, τ)→ (X,σ) by f(a) = f(b) = b, f(c) = d, f(d) = c. Then
f is a.st.θ.e.c. on X, but it is not st.θ.e.c. at the point d of X.

Example 4.8. LetX = {a, b, c, d}, τ = {∅, X, {a}, {c}, {a, c}, {c, d}, {a, c, d}} and σ = {∅, X, {c}, {d}, {c, d},
{a, c, d}, {b, c, d}}. Define a function f : (X, τ) → (X,σ) by f(a) = f(d) = a, f(b) = f(c) = c. Then f is
a.st.θ.b.c. on X, but it is not a.st.θ.e.c. at the point c of X.

The family of regular open sets of a space (X, τ) forms a base for a smaller topology τs on X, called
semi-regularization of τ . The space (X, τ) is said to be semi-regular if τs = τ [14].

A space (X, τ) is called almost regular [23] if for any regular open set U ⊂ X and each point x ∈ U ,
there is a regular open set V of X such that x ∈ V ⊂ cl(V ) ⊂ U .

Theorem 4.9. Let f : X → Y be a function. Then the following statements hold:
(a) If f : X → Y e.c. and Y is almost regular, then f is a.st.θ.e.c.
(b) If f : X → Y is a.st.θ.e.c. and Y is semi-regular, then f is st.θ.e.c.

Proof. (a) Let f be e.c. and Y almost regular.We have

(x ∈ X) (V ∈ RO(Y, f(x)))
Y is almost regular

}
⇒ (∃W ∈ RO(Y, f(x)))(W ⊂ cl(W ) ⊂ V )

f is e.c.

}
⇒

⇒ (∃U ∈ eO(X,x))(f [U ] ⊂W ⇒ U ⊂ f−1 [W ])
y /∈ cl(W )⇒ (∃G ∈ U(y))(G ∩W = ∅)⇒ f−1 [G] ∩ f−1 [W ] = ∅

}
⇒ f−1 [G] ∩ U = ∅...(1)
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G ∈ U(y)
f is e.c.

}
⇒ f−1 [G] ∈ eO(X)...(2)

(1), (2)⇒ f−1 [G] ∩ e-cl(U) = ∅ ⇒ G ∩ f [e-cl(U)] = ∅ ⇒ y /∈ f [e-cl(U)].

(b) Let f be a.st.θ.e.c. and Y semi-regular. We have

(x ∈ X)(V ∈ U(Y, f(x))
Y is semi-regular

}
⇒ (∃W ∈ RO(X,x))(W ⊂ V )

f is a.st.θ.e.c.

}
⇒ (∃W ∈ eO(X,x))(f [e-cl(U)] ⊂W ⊂ V ).

Theorem 4.10. Let Y be a semi-regular space. Then f : X → Y is a.st.θ.e.c. if and only if f : X → Y is
st.θ.e.c.

Proof. It follows clearly from Theorem 4.9.

Corollary 4.11 ([19]). Let Y be a regular space. Then the following statements are equivalent for a function
f : X → Y :

(1) f is st.θ.e.c.,
(2) f is a.st.θ.e.c.,
(3) f is θ.e.c.,
(4) f is e.c.

Recall that a space X is called submaximal if each dense subset of X is open in X. A space X is called
extremally disconnected if the closure of each open subset of X is open in X. In an extremally disconnected
submaximal regular space, open, preopen, semiopen, b-open and e-open sets are equivalent. Then we have
the following corollary:

Corollary 4.12 ([19]). Let X be an extremally disconnected submaximal regular space and let Y be a regular
space. Then the following statements are equivalent for a function f : X → Y :

(1) f is almost strongly θ-continuous,
(2) f is almost strongly θ-precontinuous,
(3) f is almost strongly θ-semicontinuous,
(4) f is almost strongly θ-b-continuous,
(5) f is almost strongly θ-e-continuous,
(6) f is strongly θ-e-continuous,
(7) f is strongly θ-continuous,
(8) f is b-continuous,
(9) f is e-continuous.

5. Fundamental Properties

Lemma 5.1. Let X be a topological space and X0 an a-open set in X. Then:
(a) X0 ∩ eO(X) := {X0 ∩ E|E ∈ eO(X)} = eO(X0).
(b) If A ⊂ X0 and A ∈ eO(X0), then A ∈ eO(X).
(c) If F ⊂ X0 and F ∈ eC(X0), then F ∈ eC(X).

Proof. (a) [20]
(b) Let A ∈ eO(X0). Then

A ∈ eO(X0)
(a)⇒ A ∈ X0 ∩ eO(X)
⇒ (∃E ∈ eO(X))(A = X0 ∩ E)
⇒ A ∈ eO(X).
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(c) Let F ∈ eC(X0). Then

F ∈ eC(X0)⇒ X \ F ∈ eO(X0)
(b)⇒ X \ F ∈ eO(X)⇒ F ∈ eC(X).

Lemma 5.2. If A ⊂ X0 ⊂ X and X0 is an a-open set in X, then e-cl(A)∩X0 = e-clX0(A), where e-clX0(A)
denotes the e-closure of A in the subspace X0.

Proof. Let x ∈ e-cl(A) ∩X0 and U ∈ eO(X0, x). We have

(x ∈ e-cl(A) ∩X0) (U ∈ eO(X0, x))
Lemma 5.1⇒ (∃V ∈ eO(X,x)) (U = V ∩X0)

x ∈ e-cl(A)

}
⇒

⇒ ∅ 6= V ∩A = U ∩A⇒ x ∈ e-clX0(A). Then we have e-cl(A) ∩X0 ⊂ e-clX0(A).

(x ∈ e-clX0(A)) (U ∈ eO(X,x))
Lemma 5.1⇒ (U ∩X0 ∈ eO(X,x)) (∅ 6= A ∩ (U ∩X0) = A ∩ U)

⇒ x ∈ e-cl(A)...(1)

x ∈ e-clX0(A) ⊂ X0 ⇒ x ∈ X0...(2)

(1), (2)⇒ x ∈ e-cl(A) ∩X. Then we have e-clX0(A) ⊂ e-cl(A) ∩X0.

Lemma 5.3. Let G ⊂ X0 ⊂ X and X0 be an a-open set in X. If G is an e-θ-open set in X0, then G is an
e-θ-open set in X.

Proof. Let G ∈ eθO(X0, x). Then

G ∈ eθO(X0, x)
Lemma 2.2⇒ (∃U ∈ eO(X0, x)) (U ⊂ e-cl(U) ⊂ G)
Lemma 2.2⇒ e-clX0(U) ∈ eC(X0)
Lemma 5.1⇒ (U ∈ eO(X))(e-clX0(U) ∈ eC(X))
⇒ x ∈ U ⊂ e-cl(U) ⊂ e-cl(e-clX0(U)) = e-clX0(U) ⊂ G
⇒ x ∈ e-intθ(G).

Lemma 5.4. If X0 is an a-open set and U is an e-θ-open set in X, then U ∩X0 is an e-θ-open set in the
relative topology of X0.

Proof. Let X0 be an a-open set in X and U ∈ eθO(X). Then

x ∈ U ∩X0 ⇒ (x ∈ U) (x ∈ X0)
U ∈ eθO(X)

}
Lemma 2.2⇒ (∃T ∈ eO(X,x))(e− cl(T ) ⊂ U)

Lemma 5.1⇒ (T ∩X0 ∈ eO(X0, x))(T ∩X0 ⊂ e− cl(T ) ∩X0 ⊂ U ∩X0)

Lemma 5.2⇒ (T ∩X0 ∈ eO(X0, x))(T ∩X0 ⊂ e− clX0(T ∩X0)

= e− cl(T ∩X0) ∩X0 ⊂ e− cl(T ) ∩X0 ⊂ U ∩X0)

⇒ x ∈ e− intθ(U ∩X0).
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Corollary 5.5. If X0 is an a-open set and U is an e-θ-open set in X, then U ∩X0 is an e-θ-open set in X.

Theorem 5.6. Let {Uα | α ∈ Λ} be an a-open cover of a topological space X. A function f : (X, τ)→ (Y, σ)
is a.st.θ.e.c. if and only if the restriction f |Uα : (Uα, τUα)→ (Y, σ) is a.st.θ.e.c. for each α ∈ Λ.

Proof. Necessity. Let f be a.st.θ.e.c. and α0 ∈ Λ and x ∈ Uα0 . Then
(f(x) ∈ V ∈ σ) (f a.st.θ.e.c.)⇒ (∃G ∈ eO(X,x)) (f [e-cl(G)] ⊂ int(cl(V )))

W := G ∩ Uα0

}
⇒

Lemma 5.1,5.2⇒ (x ∈W ∈ eO(Uα0)) (e− clUα0
(W ) ⊂ e− cl(W ))

⇒ (W ∈ eO(Uα0 , x))
(
f |Uα0

[
e-clUα0

(W )
]

= f
[
e-clUα0

(W )
]
⊂ f [e-cl(W ))] ⊂ int(cl(V ))

)
.

Sufficiency. Let f |Uα be a.st.θ.e.c. for all α ∈ Λ and V ∈ RO(Y ). Then

V ∈ RO(Y )
f |Uα is a.st.θ.e.c.

}
Theorem 3.2⇒ (∀α ∈ Λ)

(
(f |Uα)−1[V ] ∈ eθO(Uα)

)
Lemma 5.3⇒ (∀α ∈ Λ)

(
(f |Uα)−1[V ] ∈ eθO(X)

)
...(1)

⇒ f−1[V ] = f−1[V ] ∩X = f−1[V ] ∩

(⋃
α∈Λ

Uα

)
=
⋃
{f−1[V ] ∩ Uα|α ∈ Λ}

⇒ f−1[V ] =
⋃
{(f |Uα)−1 [V ]|α ∈ Λ}...(2)

(1), (2)⇒ f−1[V ] ∈ eθO(X).

Definition 5.7. A function f : X → Y is called an R-map [6] if the preimage of every regular open subset
of Y is regular open in X.

Definition 5.8. A function f : X → Y is called δ-continuous [16] if for each x ∈ X and each open set V
containing f(x), there is an open set U containing x such that f [int(cl(U))] ⊂ int(cl(V )).

Theorem 5.9. Let f : X → Y and g : Y → Z be two functions. Then:
(1) If f is a.st.θ.e.c. and g is an R-map, then g ◦ f is a.st.θ.e.c.
(2) If f is a.st.θ.e.c. and g is δ-continuous, then g ◦ f is a.st.θ.e.c.

Proof. Clear.

Theorem 5.10. Let f : X → Y be a function and g : Y → Z an injective R-map which preserves regular
open sets. Then f is a.st.θ.e.c. if and only if g ◦ f is a.st.θ.e.c.

Proof. Necessity. It follows from Theorem 5.9.
Sufficiency. Let g ◦ f be a.st.θ.e.c. and let g be an injective R-map which preserves regular open sets.

V ∈ RO(Y )
Hypothesis⇒ g[V ] ∈ RO(Z)
g is R-map and injective

}
⇒ V = g−1 [g [V ]] ∈ RO(Y )

⇒ f−1 [V ] = f−1
[
g−1 [g [V ]]

]
= (g ◦ f)−1 [g [V ]]
g ◦ f is a.st.θ.e.c.

}
⇒ f−1 [V ] ∈ eθO(X).

Theorem 5.11. Let {Yα|α ∈ Λ} be a family of spaces. If a function f : X → ΠYα is a.st.θ.e.c., then
Pα ◦ f : X → Yα is a.st.θ.e.c. for each α ∈ Λ, where Pα is the projection of ΠYα onto Yα.

Proof. This is obvious from Theorem 5.9 because every open continuous surjection Pα is an R-map.
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6. Separation Axioms

Definition 6.1. A space X is called almost e-regular [11] if for any regular closed set F ⊂ X and any point
x ∈ X \ F , there exist disjoint e-open sets U and V such that x ∈ U and F ⊂ V .

Theorem 6.2. The following statements are equivalent for a space X:

(1) X is almost e-regular,

(2) for each x ∈ X and for each regular open set U of X containing x, there exists V ∈ eO(X) such that
x ∈ V ⊂ e-cl(V ) ⊂ U,

(3) for each regular closed set F of X, F = ∩{e-cl(V )|F ⊂ V and V ∈ eO(X)},

(4) for each subset A ⊂ X and each regular closed set F such that A ∩ F = ∅, there exist disjoint
U, V ∈ eO(X) such that A ∩ U 6= ∅ and F ⊂ V ,

(5) for each subset A ⊂ X and each regular open set U such that A∩U 6= ∅, there exists W ∈ eO(X) such
that A ∩W 6= ∅ and e-cl(W ) ⊂ U .

Proof. It can be proved directly.

Theorem 6.3. If a continuous function f : X → X is a.st.θ.e.c., then X is almost e-regular.

Proof. Let f be the identity function. Then f is continuous and a.st.θ.e.c. so,

x ∈ U ∈ RO(X)
f is identity and a.st.θ.e.c.

}
⇒ x ∈ f−1[U ] = U ∈ eθO(X)

Lemma 2.2⇒ (∃V ∈ eO(X,x))(V ⊂ e− cl(V ) ⊂ U).

Theorem 6.4. An R-map f : X → X is a.st.θ.e.c. if and only if X is almost e-regular.

Proof. Necessity. Obvious.
Sufficiency. Let f be an R-map and X be almost e-regular.

(x ∈ X)(V ∈ RO(Y, f(x)))
f is R-map

}
⇒ (x ∈ f−1[V ] ∈ RO(X))

X is almost e-regular

}
Theorem 6.2⇒

⇒ (∃U ∈ eO(X,x))(e− cl(U) ⊂ f−1[V ])

⇒ (∃U ∈ eO(X,x))(f [e-cl(U)] ⊂ V ).

Definition 6.5. A space is called e-regular [19] if for any closed set F ⊂ X and any point x ∈ X \F , there
exist disjoint e-open sets U and V such that x ∈ U and F ⊂ V .

Definition 6.6. A function f : X → Y is called almost continuous [24] if the preimage of every regular
open subset of Y is open in X.

Theorem 6.7. If f : X → Y is almost continuous and X is e-regular, then f is a.st.θ.e.c.
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Proof. Let x ∈ X and let V ∈ RO(Y, f(x)). Then

(x ∈ X)(V ∈ RO(Y, f(x)))
f is almost continuous

}
⇒ x ∈ f−1[V ] ∈ τ

X is e-regular

}
[19]⇒

⇒ (∃U ∈ eO(X,x))(e− cl(U) ⊂ f−1[V ])

⇒ (∃U ∈ eO(X,x))(f [e-cl(U)] ⊂ V ).

Theorem 6.8. Let f : X → Y be a function and let g : X → X × Y , given by g(x) = (x, f(x)) for each
x ∈ X be graph function. Then g is a.st.θ.e.c. if and only if f is a.st.θ.e.c. and X is almost e-regular.

Proof. Necessity. Let x ∈ X and let V ∈ RO(Y, f(x)). Then
(x ∈ X) (V ∈ RO(Y, f(x)))⇒ g(x) = (x, f(x)) ∈ X × V

X × V ∈ RO(X × Y )
g is a.st.θ.e.c.

⇒ (∃U ∈ eR(X,x))(g [U ] ⊂ X × V )

⇒ (∃U ∈ eR(X,x))(f [U ] ⊂ V ). Then f is a.st.θ.e.c.

U ∈ RO(X,x)⇒ g(x) ∈ U × Y ∈ RO(X × Y )
g is a.st.θ.e.c.

}
⇒ (∃W ∈ eO(X,x))(g [e-cl(W )] ⊂ U × Y )

⇒ (∃W ∈ eO(X,x))(W ⊂ e-cl(W ) ⊂ U). Then X is almost e-regular.

Sufficiency. Let x ∈ X and let V ∈ RO(X × Y, g(x)). Then
(x ∈ X)(V ∈ RO(X × Y, g(x)))⇒ (∃V1 ∈ RO(X)) (∃V2 ∈ RO(Y )) (g(x) = (x, f(x)) ∈ V1 × V2 ⊂ V )

f is a.st.θ.e.c.

}
⇒

⇒ (∃U0 ∈ eR(X,x))(f [U0] ⊂ V2)...(1)

U := U0 ∩ V1
Lemma 5.4⇒ U ∈ eθO(V1)

Lemma 5.3⇒ U ∈ eθO(X)...(2)

(1), (2)⇒ (∃U ∈ eθO(X)) (g[U ] ⊂ U × f [U ] ⊂ U × f [U0] ⊂ V1 × V2 ⊂ V ).

Definition 6.9. A space X is said to be:

(1) rT0 [10] if for each pair of distinct points x and y in X, there exists a regular open set U ∈ RO(X)
such that either x ∈ U and y /∈ U or y ∈ U and x /∈ U .

(2) e-T2 [7] if for each pair of distinct points x and y in X, there exist e-open sets U and V of X containing
x and y, respectively, such that U ∩ V = ∅.

Theorem 6.10. If f : X → Y is an a.st.θ.e.c. injection and Y is rT0, then X is e-T2.

Proof. Let x1, x2 ∈ X and x1 6= x2. Then

(x1, x2 ∈ X)(x1 6= x2)(f is injective)⇒ f(x1) 6= f(x2)
Y isrT0

}
⇒

⇒ (∃V ∈ RO(Y, f(x1))) (∃W ∈ RO(Y, f(x2))) (f(x1) /∈W ∨ f(x2) /∈ V ).

Case I. Let V ∈ RO(Y, f(x1)) and f(x2) /∈ V .

V ∈ RO(Y, f(x1))
f is a.st.θ.e.c.

}
⇒ (∃U ∈ eO(X,x1))(f [e-cl(U)] ⊂ V )

f(x2) /∈ V

}
⇒ f(x2) /∈ f [e-cl(U)]
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⇒ x2 /∈ e-cl(U)⇒ x2 ∈ X \ e-cl(U).

Case II. It can be proved similarly.

Corollary 6.11. If f : X → Y is an a.st.θ.e.c. injection and Y is Hausdorff, then X is e-T2.

Proof. It is obvious since every Hausdorff space is rT0.

Theorem 6.12. Let f, g : X → Y be functions and Y a Hausdorff space. If f is a.st.θ.e.c. and g is an
R-map, then the set A = {x ∈ X | f(x) = g(x)} is e-closed in X.

Proof. Let x /∈ A. Then

x /∈ A⇒ f (x) 6= g (x)
Y is Hausdorff

}
⇒ (∃V1 ∈ U(f(x))) (∃V2 ∈ U(g(x))) (V1 ∩ V2 = ∅)

⇒ (∃V1 ∈ U(f(x))) (∃V2 ∈ U(g (x))) (int(cl(V1)) ∩ int(cl(V2)) = ∅)...(1)

int(cl(V1)) ∈ RO(Y, f(x1))
f is a.st.θ.e.c.

}
⇒ (∃G ∈ eO(X,x))(f [e− cl(G)] ⊂ int(cl(V1)))...(2)

int(cl(V2)) ∈ RO(Y, f(x2))
g is R-map

}
⇒ g−1[int(cl(V2))] ∈ RO(X,x)...(3)

U := G ∩ g−1[int(cl(V2))]
Lemma 2.7⇒ U ∈ eO(X,x)...(4)

(1), (2), (3), (4)⇒ (U ∈ eO(X,x)) (U ∩A = ∅)⇒ x /∈ e-cl(A).

7. Preservation Properties

Definition 7.1. A space X is called:

(1) nearly compact [22] (resp. nearly countable compact [9]) if every regular open cover (resp. countable
regular open cover) of X has a finite subcover.

(2) e-closed [19] (resp. countable e-closed [19]) if every cover (resp. countable cover) of X by e-open sets
has a finite subcover whose e-closures cover X.

A subset A of a space X is said to be e-closed [19] (resp. N -closed [5]) relative to X if for every cover
{Vα|α ∈ I} of A by e-open (resp. regular open) sets of X, there exists a finite subset I0 of I such that
A ⊂

⋃
{e-cl(Vα)|α ∈ I0} (resp. A ⊂

⋃
{Vα|α ∈ I0}).

Theorem 7.2. If f : X → Y is an a.st.θ.e.c. function and A is e-closed relative to X, then f [A] is N -closed
relative to Y .

Proof. It can be proved directly.

Corollary 7.3. Let f : X → Y be an a.st.θ.e.c. surjection. Then the following statements hold:
(1) If X is e-closed, then Y is nearly compact.
(2) If X is countable e-closed, then Y is nearly countable compact.

Definition 7.4. The graph G(f) of a function f : X → Y is said to be θ-e-closed [11] if for each (x, y) ∈ (X×
Y ) \G(f), there exist U ∈ eO(X,x) and an open set V containing y such that (e-cl(U)× cl(V ))∩G(f) = ∅.

Definition 7.5. The graph G(f) of a function f : X → Y is said to be almost strongly e-closed if for
each (x, y) ∈ (X × Y ) \ G(f), there exist U ∈ eO(X,x) and a regular open set V containing y such that
(e-cl(U)× V ) ∩G(f) = ∅.
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Corollary 7.6. If the graph G(f) of a function f : X → Y is θ-e-closed, then it is almost strongly e-closed.

Lemma 7.7. The graph G(f) of a function f : X → Y is almost strongly e-closed in X × Y if and only if
for each (x, y) ∈ (X × Y ) \G(f), there exist U ∈ eO(X,x) and a regular open set V containing y such that
f [e-cl(U)] ∩ V = ∅.

Proof. It follows immediately from the definition.

Definition 7.8. The graph G(f) of a function f : X → Y is said to be strongly e-closed [19] if for
each (x, y) ∈ (X × Y ) \ G(f), there exist U ∈ eO(X,x) and an open set V containing y such that (e-
cl(U)× V ) ∩G(f) = ∅.

It is obvious that if the graph of a function is almost strongly e-closed, then it is strongly e-closed.

Theorem 7.9. If f : X → Y is a.st.θ.e.c. and Y is Hausdorff, then the graph G(f) of f is almost strongly
e-closed in X × Y .

Proof. Let (x, y) /∈ G(f). Then

(x, y) /∈ G(f)⇒ y 6= f(x)
Y is Hausdorff

}
⇒ (∃V1 ∈ U(Y, f(x))) (∃V2 ∈ U(Y, y)) (V1 ∩ V2 = ∅)

⇒ (∃V1 ∈ U(f(x))) (∃V2 ∈ U(g(x))) (int(cl(V1)) ∩ int(cl(V2)) = ∅)
f is a.st.θ.e.c.

}
⇒

⇒ (∃U ∈ eO(X,x))(f [e-cl(U)] ∩ int(cl(V2)) = ∅).

Then G(f) is almost strongly e-closed in X × Y by Lemma 7.7.

Theorem 7.10. If a function f : X → Y has an almost strongly e-closed graph, then f [K] is δ-closed in Y
for each subset K which is e-closed relative to X.

Proof. Let f be a.st.θ.e.c. and y /∈ f [K]. Then

y /∈ f [K]⇒ (∀x ∈ K)((x, y) /∈ G(f))
G(f) is almost strongly e-closed

}
Lemma 7.7⇒ (∃Ux ∈ eO(X,x))(∃Vx ∈ RO(Y, y))(f [e-cl(Ux)] ∩ Vx = ∅)

⇒ ({Ux|x ∈ K} ⊂ eO(X))(K ⊂
⋃
{Ux|x ∈ K})

K is e-closed relative to X

}
⇒

⇒ (∃K∗ ⊂ K)(|K∗| < N0)(K ⊂
⋃
{e-cl(Ux)|x ∈ K∗})

V :=
⋂

x∈K∗
Vx ∈ RO(Y, y)

}
⇒

⇒ (V ∈ RO(Y, y))

(
f [K] ∩ V ⊂

( ⋃
x∈K∗

f [e-cl(Ux)]

)
∩ V = ∅

)
⇒ (V ∈ RO(Y, y)) (f [K] ∩ V = ∅)⇒ x /∈ clδ(f [K]).

Corollary 7.11. If f : X → Y is an a.st.θ.e.c. function and Y is Hausdorff, then f [K] is δ-closed in Y
for each subset K which is e-closed relative to X.

Theorem 7.12 ([19]). Let X be a submaximal extremally disconnected regular space and Y be a compact
Hausdorff space. Then the following statements are equivalent:

(1) f is strongly θ-e-continuous,
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(2) G(f) is strongly e-closed in X × Y ,
(3) f is strongly θ-continuous,
(4) f is continuous,
(5) f is e-continuous.

Corollary 7.13. Let X be a submaximal extremally disconnected regular space and Y a compact Hausdorff
space. Then the following properties are equivalent:

(1) f is strongly θ-e-continuous,
(2) f is almost strongly θ-e-continuous,
(3) G(f) is almost strongly e-closed in X × Y ,
(4) G(f) is strongly e-closed in X × Y ,
(5) f is strongly θ-continuous,
(6) f is continuous,
(7) f is e-continuous.

Proof. (2)⇒(3): It follows from Theorem 7.9. Other implications follow from Theorem 7.12.
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