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Abstract

We introduce and investigate a new class of functions called almost strongly 6-e-continuous functions,
containing the classes of almost strongly -precontinuous [J. H. Park, S. W. Bae, Y. B. Park, Chaos Soli-
tons Fractals, 28 (2006), 32—41], almost strongly f-semicontinuous [Y. Beceren, S. Yiiksel, E. Hatir, Bull.
Calcutta Math. Soc., 87 (1995), 329-334] and strongly #-e-continuous functions [M. Ozkog, G. Ashm,
Bull. Korean Math. Soc., 47 (2010), 1025-1036]. Several characterizations concerning almost strongly
f-e-continuous functions are obtained. Also we investigate the relationships between almost strongly 6-e-
continuous functions and separation axioms and almost strongly e-closedness of graphs of functions. (©)2016
All rights reserved.
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1. Introduction

The concept of continuity is the most important subject in topology. In 2008, the notion of e-continuous
functions was introduced and studied by Ekici [§] and in 2010, the notion of strongly #-e-continuous functions
was introduced by ()zkog and Ashm [19]. In 1984, Noiri and Kang introduced the notion of almost strong
f-continuity. Recently, three generalizations of almost strong f-continuity are obtained by Beceren et al.
[4], Park et al. [21] and Noiri and Zorlutuna [I8]. The aim of this paper is to introduce and investigate a
new class of functions, called almost strongly 6-e-continuous functions, which contains the classes of almost
strongly #-semicontinuous functions, almost strongly 6-precontinuous functions and strongly -e-continuous
functions.
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We introduce and investigate some fundamental properties of almost strongly #-e-continuous functions
defined via e-open sets introduced by Ekici [8] in a topological space. It turns out that almost strong 6-
e-continuity is stronger than -e-continuity [1I] and weaker than strong 6-e-continuity [19], almost strong
f-semicontinuity [4] and almost strong #-precontinuity [2I]. Moreover, we obtain some results related to
separation axioms and graphs properties.

2. Preliminaries

Throughout the paper, X and Y always mean topological spaces on which no separation axioms are
assumed, unless explicitly stated. Let X be a topological space and A a subset of X. The closure and interior
of A are denoted by cl(A) and int(A), respectively. A subset A is said to be regular open (resp. regular closed)
if A =int(cl(A)) (resp. A = cl(int(A))). A point x € X is said to be d-cluster point of A if int(cl(U))NA # ()
for each open neighborhood U of x. The set of all §-cluster points of A is called the J-closure [25] of A and
is denoted by d-cl(A). If A = §-cl(A), then A is called d-closed, and the complement of a d-closed set is
called d-open. A subset A is called semiopen [12] (resp. b-open [3], e-open [§], preopen [13], a-open [I5],
a-open [7], S-open [1]) if A C cl(int(A)) (resp. A C cl(int(A)) Uint(cl(A)), A C cl(ints(A)) Uint(cls(A)),
A C int(cl(A)), A C int(cl(int(A))), A C int(cl(ints(A))), A C cl(int(cl(A)))). The complement of a
semiopen (resp. b-open, e-open, preopen, a-open, a-open, (-open) set is called semiclosed (resp. b-closed,
e-closed, preclosed, a-closed, a-closed, -closed). The intersection of all e-closed sets of X containing A is
called the e-closure [8] of A and is denoted by e-cl(A). The semiclosure, preclosure, b-closure and a-closure
are similarly defined and are denoted by scl(A), pcl(A), bcl(A) and a-cl(A), respectively. The union of all
e-open sets of X contained in A is called the e-interior [8] of A and is denoted by e-int(A). A subset A is
said to be e-regular [19] if it is e-open and e-closed.

A point z of X is called an e-6-cluster point of A if e-cl(U) N A # () for every e-open set U containing x.
The set of all e-f-cluster points of A is called the e--closure [19] of A and is denoted by e-clg(A). A subset
A is said to be e-6-closed if A = e-clg(A). The complement of an e-0-closed set is called an e-6-open set.
Also it is noted in [19] that

e-regular = e-f-open = e-open.

The family of all e-open (resp. e-closed, e-regular, e-f-open, e-0-closed) subsets of X is denoted by eO(X)
(resp. eC(X), eR(X), eO(X), efC(X)). The family of all e-open (e-closed, e-regular, e-6-open, e-6-closed)
sets of X containing a point z of X is denoted by eO(X, x) (resp. eC(X, ), eR(X, z), edO(X, x), edC(X, x)).

Lemma 2.1 ([2]). Let X be a topological space. If A is a preopen set in X, then scl(A) = int(cl(A)).

Lemma 2.2 ([19]). Let X be a topological space and A C X and { Aol € A} C P (X). Then the following
statements hold:

(1) A € eO(X) if and only if e-cl(A) € eR(X).

(2) A is e-0-open in X if and only if for each x € A, there exists W € eR(X,x) such that W C A.

(3) If Ay is e-0-open in X for each a € A, then QLEJAAQ is e-B-open in X

(4) A € eR(X) if and only if A is e-0-open and e-0-closed.
Lemma 2.3 ([I7]). Let X be a topological space. Then the following statements hold:

(1) a-cl(V') = cl(V') for each [3-open set V of X.
(2) pcl(V') = cl(V') for each semi-open set V of X.

Lemma 2.4. Let A be a subset of a space X. The set A is e-0-open in X if and only if for each © € A,
there exists a U € eO(X) containing x such that x € e-cl(U) C A.

Proof. Tt can be proved directly using Lemma [2.2] O

Lemma 2.5 ([I1]). Let X be a topological space and A C X. Then:
(1) e-clg(X \ A) = X \ e-intg(A).
(2) e-intg(X \ A) = X \ e-clp(A).
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Lemma 2.6. Let X be a topological space. Then the following statements hold:
(1) V € BO(X) = a-cl(V) € SO(X).
(2) Ve SOX) = a-c(V) =pc(V).
Proof. (1) Let V € SO(X). We have
Ve BO(X) =V Ccd(int(cl(V)))
= a-cl(V) C a-cl(cl(int(cl(V))))
Lemm@3 (V) C cl(int(cl(V))) = cl(int(a-cl(V))).
(2) Let V € SO(X). We have
a-cl(V) =V Ucl(int(cl(V))) 4
= a-c(V) cVUd(@int(V)) = pcl(V) O

Ve SO(X)=V Cd(int(V))

VCX=pcdV)Ca-c(V) } = a-cl(V) = pel(V).

Lemma 2.7 ([20]). In a space X, the intersection of an a-open set and an e-open set is an e-open set.

3. Almost Strongly #-e-continuous Functions

Definition 3.1. A function f: X — Y is said to be almost strongly #-e-continuous (briefly, a.st.f.e.c.) if
for each x € X and each open set V' containing f(z), there exists an e-open set U in X containing x such

that fle-cl(U)] C int(cl(V)).

Theorem 3.2. For a function f: X — Y, the followings are equivalent:

(1) f is a.st.f.e.c.,

(2) for each x € X and each regular open set V' containing f(x), there exists an e-open set U in X

containing x such that fle-cl (U)] C V,

(3) for each x € X and each regular open set V' containing f(x), there exists an e-reqular set U in X

containing x such that f{U] C V,

(4) for each x € X and each regular open set V' containing f(x), there exists an e-0-open

containing = such that f[U] C V,

(5) 1G] € eBO(X) for every regular open set G of Y,

(6) f~Y[F] € edC(X) for every regular closed set F of Y,

(7) f7YG) € efO(X) for every §-open set G of Y,

(8) f7Y[F] € eBC(X) for every d-closed set F of Y,

(9) fle-clg(A)] C cls(f[A]) for every subset A of X,

(10) e-clo(f~1[B]) C f~Ycls(B)] for every subset B of Y,

(11) e-clg(f~ cl(int(cl(B)))]) C f~[cl(B)] for every subset B of Y,

(12) e-clo(f~1[V]) C f~Y[cl(V)] for every B-open set V of Y,

(13) e-cly(f~1[V]) C f~1[cl(V)] for every semi-open set V of Y,
(F-

(14) e-clg(f~1V]) C f[a-cl(V)] for every B-open set V of Y,

set U in X
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(15) e-cly(f~1[V]) C ffl[pcl( )] for every semi-open set V of Y,
(16) e-clg(f~*[cl(int(V))]
(17) e=cly(f = [cl(int(V))]

) C FLF) for every closed set F of Y,
N) € fYcl(V)] for every closed set V of Y,
(18) f~'[V] C e-into(f~'[scl(V)]) for every open set V of Y,

(19) f71[V] C e-into(f~int(cl(V))]) for every preopen set V of Y,
(20) f7Y[V] C e-into(f~ [scl(V)]) for every preopen set V of Y,
(21) f~V] [int(cl(V

(22) f: X — Yy is st.0.e.c., where Yy denotes the semi regularization of Y.

C e-intg(fint(cl(V))]) for every open set V of Y,

Proof. (1) =(2): Let x € X and V € RO(Y, f(x)). We have

(z € X)(V € RO(Y, f(x)))

RO, f(z)) C U(Y, f(z)) } = re 0w Egy(;g}fgi } ~

= (U € eO(X,z))(fle — cl (U)] C int(cl(V)) =V).

(2)=(3): Let x € X and V € RO(Y, f(x)). We have

(zeX)(Ve R%(y’;(j;i?s)ii } ~ (3U € cO(X, ) (fle — el (U)] C V), (3.1)
U eeO(X,z)=U=e—cl(U) € eR(X,x) (3.2)

(B-1),B2)= (U € eR(X,z))(f[U] C V).
(3)=(4): Let z € X and V € RO(Y, f(x)). We have

Hypothesis eR(X,z) C e0O(X, z) } = (U € edO(X,2))(f[U] C V).

(4)=(5): Let G € RO(Y, f(x)) and = ¢ f~'[G]. We have

x))) (x -1
(G € RO(Y. f(x))) ( H¢y gth[GD } — (AU € e60(X,2))(f[U] C @)

= (U € eHO(X,2))(x € U C f71Q)) } N

Lemm
= ( U Ue e&O(X)) ( U U= f_l[G]> = f_l[G] € efO(X).
zef-1G] zef~1G]

(5)=(6): Let F € RC(Y). We have

F e RC(YY) X\ F e ROY)
FYHX\ F] € eHO(X)
X\ f7YF] € eO(X)

[7Y[F] € efO(X).

tee e
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(6)=(7): Let V€ 60(Y). We have

Vedoy) = X\Veoll}y)
= X\V=csX\V)
= X\V=(|{FI(WcCF)(FeRCY))} }

Hypothesis
= (X\VCFeRCY)= flF]€efC(X)) <f_1[X \ V] = N f‘l[F]>
X\VCFeRC(Y)

= X\ V] € efC(X)
= X\ f7YV] € e8C(X)
= fHV] € eBO(X).

(7)=(8): Let F € §C(Y). We have

F e §C(Y) X\ Fedfo)
F7UX N\ F] € efO(X)
X\ f7YUF] € efO(X)

f7YUF] € efC(X).

R

(8)=(9): Let A C X. We have

AC X =cds(f[4]) € 5C(Y_) = f_l[cl5(f[x4])] € efC(X)
Hypothesis } x ¢ fcs(fIA))] }:>

= (3U € e0(X, 2))(e — cl (U) N [~ els(f[A])] = 0).
= (AU € eO(X,x))(e-cl (U) N A = 0).
=z ¢ e-clp(A).
Then e-clg(A) C f~H[els(f[A])] = £~ [e-clo(A)] C cls(f[A]).
(9)=(10): LetB C Y. We have

BCcY= f1lBcX

o | = 716 = lol7 ™ LB € a1 [B]) € () = exclo(£ (B £ [lo(B)

(10)=(11): Let B C Y. We have

= e-clp(f el (int(cl(B)))]) € £ els(cl(int(cl(B)))] C £ els(cls

= e-cly(fel(int(cl(B)))]) < [ clylint(cl(B)))] = f[cl(int(cl(B)))
= e-clg(f~ '

(11)=(12): Let V € BO(Y'). We have

vepom)Zawyerow) |
Hypothesis
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= e-clg(f[V]) C e-cly(fH[el(V)]) = e-clo(f~ [el(int(cl(V)))])  f~Hel(V)].
(12)=(13): This is obvious since every semiopen set is J-open.
(13)=(14): Let V € BO(Y'). We have

Ve po(y) m B vy e sow) |
Hypothesis

= e-clp(f V) C e-clp(f a-cl(V)]) C e-clg(f[cl(a-cl(V))]) € f el(V)]
= e-clg(F7V]) € £ el(V)) M EER  anel(V),

(14)=(15): Let V € SO(Y). We have

VeSOY)=Vepo)
Hypothesis

= e—clg(f—l [V]) C f_l [a—cl(V)] . )
Ve So(v) B8 o (V) = pel(V) } = e-clp(f 1 [V]) € f 7 [pel(V)].

(15)=(16): Let V € C(Y'). We have

Vecw)= C“m“V)})I;pit‘flgi } = e=clp(f~ [el(int(V))]) € 7 [pel(int(cl(V)))] € f7H[V].

(16)=(17): Let V € 0. We have
Ve } = ol it V)] € 7 AV el £ AV € 5 (V)L

(17)=(18): Let V € 0. We have
Veo=Y\cdV)eo Lemmazs>

= X\ e-intg(f~ 1 [scl(V)]) = e-clg(f~LY \ int(cl(V))]) = e-clg(f L [cl(Y \ cl(V))]) }
Hypothesis

= X\ e-intg(f ' [scl(V)]) C fTHY \d(V)] € X\ fHV]
= fLV] C e-intg(f~ [scl(V)]).

(18)=(19): Let V € PO(Y). We have

Ve PO(Y) = SCZ(V) = mt(cl(V)) Legmam
Hypothesis

= f7HV] C fscl(V)] C e-intg(f[scl(V)]) C e-inty(f~ int(cl(V))]).
(19)=(20) and (20)=(21) are clear.

(21)=(22): Let z € X and V € O(Yg, f(x)). We have
(x € X)(VeO(¥s, f(z) = (3G € ROY))(f(z) e GCV) }

Hypothesis =z € f71G] C evinto(f1[G])

= 1G] € efO(X)
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Lemma B2 (

3U € eO(X,z))(e-cl(U) C f~LG))
= (U € eO(X,2))(fle-cl(U)] Cc G C V).
(22)=(1): Let V € O(Y) and = € f~'[V]. We have

1 .
Veo)(zef[V])=flx)eV C Znt(Igl;I‘)/;))tL;iZ } = (AU € eO(X, z))(e-cl(U) C f~ [int(cl(V))))

= (AU € eO(X,2))(f [e-cl(U)] C int(cl(V))).
OJ

Definition 3.3. Let A be a subset of a topological space X. The e-0-frontier of A is defined by e-Frg(A) = e-
clg(A) \ e-intg(A).

Theorem 3.4. The set of all points x € X at which a function f: X — Y is not a.st.0.e.c. coincides with
the union of the e-0-frontiers of the inverse images of reqular open sets of Y containing f(x).

Proof. Let A :={x | f is not a.st.f.e.c. at a point = of X}. Then

x € A= (IV € ROY, f(x)))(VU € eO(X, x))(fle-cl(U)] gZ V)
= (3V € RO(Y, f(2)))(VU € eO(X,z))(e-cl(U) ¢ V)
= (3V € RO(Y, f(x)))(VU € eO(X, z))(e-cl(U) N (X \ fHV]) #0) (3.3)
=z €eclp(X\ fHV)) '
=z € X\ eintg(fLV])
=z ¢ e-inty(f1[V]),
f@)eV=uxeflVice—cl(fl[V]) =z ce—cl(fl[V]) (3.4)
B3, BA)=zee- Frg(ffl[V]).
Then we have A C |J{e-Fro(f~'[V])|f(z) € V € RO(Y)}.
A ot | = e s e o)
= x € e-intg(fHV])
=z ¢ e-Fro(f1[V])
=z ¢ | J{e-Fro(f ' V])f(x) €V € ROY)}.
Then we have |J {e-Fro(f~![V])|f(z) € V € RO(Y)} C A. O

4. Comparisons and Some Properties

Definition 4.1. A function f : X — Y is called almost strongly 6-continuous [I7] (resp. almost strongly
f-semicontinuous [4], almost strongly #-precontinuous [2I], almost strongly #-b-continuous [1§]), if for each
x € X and each open set V' containing f(z), there is an open (resp. semi-open, preopen, b-open) set
U containing x such that f[cl(U)] C int(cl(V)) (resp. flscl(U)] C int(cl(V)), flpcl(U)] C int(cl(V)),
flocl(U)] C int(cl(V))).

Definition 4.2. A function f : X — Y is called strongly 6-e-continuous [19] (resp. e-continuous [g]) if
for each x € X and each open set V' containing f(x), there is an e-open set U containing = such that
fle-cl(U)] C V (resp. f[U] C V).
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Definition 4.3. A function f: X — Y is called #-e-continuous [11] if for each z € X and each open set V'
containing f(x), there is an e-open set U containing z such that fle-cl(U)] C cl(V').

Remark 4.4. From Definitions and we have the following diagram.

a.st.f0.p.c. st.f.e.c.
SN
a.st.f.c. a.st.f.b.c. a.st.f.e.c. e.c.
¢ T a 1 e
a.st.f.s.c. f.e.c.

However, none of these implications is reversible as shown by the following examples.

Example 4.5. Let X = {a,b,¢,d}, 7 = {0, X,{c},{a,b},{a,b,c}} and o = {0, X, {a}, {c}, {a, b}, {a,c},
{a,b,c}, {a,c,d}}.

(a) Define the function f: (X,7) = (X,0) by f(a) = f(b) = a, f(c) = f(d) = c. Then f is a.st.f.e.c. on
X, but it is not a.st.f.p.c. at the point d of X.

(b) Define the function f : (X,7) — (X,0) by f(a) = a, f(b) =¢, f(c) = f(d) = d. Then f is a.st.f.e.c.
on X, but it is not a.st.f.s.c. at the point a of X.

Example 4.6. Let X ={a,b,c,d}, 7 = {0, X, {a},{c},{a,c},{c,d}, {a,c,d}} and 0 = {0, X, {c},{d},{c,d},
{a,c,d},{b,c,d}}.

(a) Define a function f : (X,7) — (X,0) by f(a) = f(c) = f(d) = a, f(b) = c. Then f is f.e.c. on X, but
it is not a.st.f.e.c. at the point b of X.

(b) Define a function f: (X,7) — (X,0) by f(a) = f(b) = f(d) = d, f(c) = a. Then f is a.st.f.e.c. on
X, but it is not a.st.f.b.c. at the point d of X.

Example 4.7. Let X = {aa b, ¢, d}: T = {@, X, {a}’ {6}7 {a7 b}v {av 6}7 {a? b, 0}7 {a7 Cy d}} and o = {(Z)v X, {a}7 {C}v
{a,c},{c,d},{a,c,d}}. Define a function f : (X,7) — (X,0) by f(a) = f(b) =0, f(c) =d, f(d) = c. Then
f is a.st.f.e.c. on X, but it is not st.f.e.c. at the point d of X.

Example 4.8. Let X = {a> b, c, d}a T = {@, X, {(l}, {6}7 {a7 C}v {Ca d}a {(I, ¢, d}} and o = {®7 X, {C}7 {d}v {Cv d}a
{a,c,d},{b,c,d}}. Define a function f : (X,7) — (X,0) by f(a) = f(d) = a, f(b) = f(c) = c. Then f is
a.st.6.b.c. on X, but it is not a.st.f.e.c. at the point ¢ of X.

The family of regular open sets of a space (X, 7) forms a base for a smaller topology 75 on X, called
semi-regularization of 7. The space (X, ) is said to be semi-regular if 7, = 7 [14].

A space (X, 7) is called almost regular [23] if for any regular open set U C X and each point x € U,
there is a regular open set V of X such that z € V C cl(V) C U.

Theorem 4.9. Let f: X — Y be a function. Then the following statements hold:
(a)If f: X =Y e.c. andY is almost regular, then f is a.st.f.e.c.
(b) If f: X =Y is a.st.0.e.c. andY is semi-regular, then f is st.0.e.c.

Proof. (a) Let f be e.c. and Y almost regular.We have

(z € X) (V € RO(Y, f(x)))

Y is almost regular } = (3W € RO(Y, f(2)))(W C (W) C V) } N

fise.c.
= (U € eO(X,2))(f[U CW = U C f~L[W))

ydcd(W)= 3G eUy)GNW =0)= FLGINnf W] =0 } = fGINU =0..(1)
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(1),(2) = LG Necd(U)=0= GN fle-c(U)] =0 =y & f[e-cl(U)].
(b) Let f be a.st.f.e.c. and Y semi-regular. We have

(z € X)(V eUuy, f(z) } — (3W € RO(X,2))(W C V)

Y is semi-regular Fis ast.de.c } = (IW € eO(X,z))(fle-cl(U)] Cc W C V).

O

Theorem 4.10. Let Y be a semi-reqular space. Then f: X — Y is a.st.f.e.c. if and only if f : X =Y s
st.0.e.c.

Proof. Tt follows clearly from Theorem [4.9] O

Corollary 4.11 ([19]). LetY be a regular space. Then the following statements are equivalent for a function
f:X—=Y:

(1) f is st.0.e.c.,

(2) f is a.st.h.e.c.,

(3) f is B.e.c.,

(4) f ise.c.

Recall that a space X is called submaximal if each dense subset of X is open in X. A space X is called
extremally disconnected if the closure of each open subset of X is open in X. In an extremally disconnected
submaximal regular space, open, preopen, semiopen, b-open and e-open sets are equivalent. Then we have
the following corollary:

Corollary 4.12 ([19]). Let X be an extremally disconnected submazximal regular space and let Y be a regular
space. Then the following statements are equivalent for a function f: X — Y :

(1) f is almost strongly 0-continuous,

(2) f is almost strongly 0-precontinuous,

(3) f is almost strongly 0-semicontinuous,

(4) f is almost strongly 0-b-continuous,

(5) f is almost strongly 6-e-continuous,

(6) f is strongly 6-e-continuous,

(7) f is strongly 0-continuous,

(8) f is b-continuous,

(9) f is e-continuous.

5. Fundamental Properties

Lemma 5.1. Let X be a topological space and Xy an a-open set in X. Then:
(a) XoNeO(X):={XoNE|E € eO(X)} =e0(Xp).
(b) If A C Xo and A € eO(X)), then A € eO(X).
(¢c) If F C Xo and F € eC(X)y), then F € eC(X).

Proof. (a) [20]
(b) Let A € eO(Xp). Then
AceO(X)) ¥ AcXxoneo(x)
= (AE€eO0(X))(A=XoNE)
= AeceO(X).
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(c) Let F € eC(Xp). Then

FeeC(Xo) = X\ Fee0Xo) X\ FeeOX)= F e eC(X).
O
Lemma 5.2. If A C Xy C X and Xy is an a-open set in X, then e-cl(A)N Xy = e-clx,(A), where e-clx,(A)
denotes the e-closure of A in the subspace X.

Proof. Let z € e-cl(A) N Xy and U € eO(Xp,z). We have

(& € e-cl(A) N Xo) (U € eO(Xo, 2)) "™ 2B Qv ¢ cO(X, 2)) (U = V N Xo) } _
x € e-cl(A)

=0£VNA=UNA= z € e-clx,(A). Then we have e-cl(A) N Xy C e-clx,(A).

(x € e-clx,(A)) (U € eO(X, x)) Lemgl>alm:|(U NXoeeO(X,2) (0 £AN(UNXy) =ANU)
=z € e-cl(A)...(1)
x € e-clx,(A) C Xo =z € Xp...(2)
(1),(2) = z € e-cl(A) N X. Then we have e-clx,(A) C e-cl(A) N Xp.
O

Lemma 5.3. Let G C Xg C X and Xg be an a-open set in X. If G is an e-0-open set in Xy, then G is an
e-0-open set in X.

Proof. Let G € e#O(Xp, ). Then

G € eBO(Xo,x) "B 37 ¢ cO(Xy, 7)) (U C e-cl(U) C G)
Lemma B2 e-clx,(U) € eC(Xp)

LemmaBI 7 ¢ 0(X)) (e-clx, (U) € eC(X))
= x €U Ce-c(U) Ce-clleclx,(U)) =e-clx,(U) CG
= z € e-inty(G).

O

Lemma 5.4. If X, is an a-open set and U is an e-0-open set in X, then U N Xy is an e-0-open set in the
relative topology of Xg.

Proof. Let Xy be an a-open set in X and U € efO(X). Then

zelUNXo= (z eg)e(z";)(?ggg } Lemma B2 37 ¢ c0(X, 2)) (e — cl(T) € U)

LemmaBIl 1 X, € eO(Xo, 2))(TN Xo C e — el(T) N Xo € U N Xo)
Lemma B2 1 1 X, € eO(Xo, 2))(T N Xo C e — elx, (T N Xo)
=e—c(TNXy)NXygCe—cl(T)N Xy CUNXp)
=z € e—intg(U N Xp).
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Corollary 5.5. If Xq is an a-open set and U is an e-0-open set in X, then U N Xy is an e-0-open set in X.

Theorem 5.6. Let {U, | a« € A} be an a-open cover of a topological space X. A function f: (X,7) — (Y, 0)
is a.st.0.e.c. if and only if the restriction f|y, : (Ua,v,) — (Y,0) is a.st.0.e.c. for each a € A.

Proof. Necessity. Let f be a.st.f.e.c. and a9 € A and x € U,,. Then
(f(x) eV eo)(fast.b.ec)= (3G € eO(X,x)) (fle-cl(G)] C int(cl(V))) N
W :=GNUy,

Lemma BB (1 € W € O(Uny)) (e — clur,, (W) C e — (W)

= (W € eO(Uyy, )) (f’Uao [e—cano W] =rf [e—cano(W)] C fle-cl(W))] C int(cl(V))) .
Sufficiency. Let f|y, be a.st.f.e.c. for all @« € A and V € RO(Y). Then

V e RO(Y)

eoremm
flu. is a.st.f.e.c. } " (Vo€ A) ((flv.) " [V] € e8O(Ua))

Lemgam(va N ((f|U ) [ ] € eAO(X )) (1)

= V)= vinX = 1 (UU>=U{f1[V]mUaraeA}

a€A

U{ flo,) " [Vl € A}...(2)
(1),(2) = V] € ehO(X). O

Definition 5.7. A function f: X — Y is called an R-map [0] if the preimage of every regular open subset
of Y is regular open in X.

Definition 5.8. A function f : X — Y is called d-continuous [16] if for each x € X and each open set V'
containing f(x), there is an open set U containing z such that f [int(cl(U))] C int(cl(V)).

Theorem 5.9. Let f: X =Y and g: Y — Z be two functions. Then:
(1) If f is a.st.0.e.c. and g is an R-map, then go f is a.st.f.e.c.
(2) If f is a.st.0.e.c. and g is §-continuous, then go f is a.st.0.e.c.

Proof. Clear. Ul

Theorem 5.10. Let f : X — Y be a function and g : Y — Z an injective R-map which preserves regular
open sets. Then f is a.st.0.e.c. if and only if go f is a.st.0.e.c.

Proof. Necessity. It follows from Theorem
Sufficiency. Let go f be a.st.f.e.c. and let g be an injective R-map which preserves regular open sets.

Hypothesis
=

g is R-map and injective

= V=g g VI = (go ) gV

go fis a.st.f.e.c. } = [T [V] € eO(X).

O

Theorem 5.11. Let {Y,|a € A} be a family of spaces. If a function f : X — IIY, is a.st.f.e.c., then
Pyof: X =Y, isa.sth.e.c. for each a € A, where P, is the projection of 11Y,, onto Y,.

Proof. This is obvious from Theorem because every open continuous surjection P, is an R-map. O
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6. Separation Axioms

Definition 6.1. A space X is called almost e-regular [I1] if for any regular closed set F' C X and any point
x € X \ F, there exist disjoint e-open sets U and V such that x € U and FF C V.

Theorem 6.2. The following statements are equivalent for a space X :
(1) X is almost e-regular,

(2) for each x € X and for each regular open set U of X containing x, there exists V € eO(X) such that
xeV Ce-c(V)CU,

(3) for each regular closed set F' of X, F = N{e-cl(V)|F CV and V € eO(X)},

(4) for each subset A C X and each regular closed set F such that AN F = (), there exist disjoint
U,V € eO(X) such that ANU #0 and F CV,

(5) for each subset A C X and each regular open set U such that ANU # (), there exists W € eO(X) such
that ANW # 0 and e-cl(W) C U.

Proof. It can be proved directly. O
Theorem 6.3. If a continuous function f: X — X is a.st.0.e.c., then X is almost e-regular.

Proof. Let f be the identity function. Then f is continuous and a.st.f.e.c. so,

z €U € RO(X)

-1 B
f is identity and a.st.f.e.c. } =€ fU] =U € efO(X)

LemmaB2 3y, ¢ cO(X, 2))(V C e — cl(V) € U).

O
Theorem 6.4. An R-map f: X — X is a.st.0.e.c. if and only if X is almost e-regular.
Proof. Necessity. Obvious.
Sufficiency. Let f be an R-map and X be almost e-regular.
(weX)(Ve R?g’éﬁ? } = (z € 7'[V] € RO(X)) | Theorgm 52
P X is almost e-regular
= (U € eO(X,z))(e — (U) C fHV])
= (U € eO(X, x))(fe-cl(U)] C V).
O

Definition 6.5. A space is called e-regular [19] if for any closed set F' C X and any point € X \ F, there
exist disjoint e-open sets U and V such that x € U and FF C V.

Definition 6.6. A function f : X — Y is called almost continuous [24] if the preimage of every regular
open subset of Y is open in X.

Theorem 6.7. If f: X — Y is almost continuous and X is e-reqular, then f is a.st.6.e.c.
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Proof. Let x € X and let V € RO(Y, f(x)). Then

(x € X)(V € RO(Y, f(z))) }

f is almost continuous ;
X is e-regular

=zecflV]er } legj
= (U € eO(X,z))(e — (U) C fHV])
= (AU € eO(X, x))(fle-cl(U)] C V).

O

Theorem 6.8. Let f : X — Y be a function and let g : X — X x Y, given by g(x) = (z, f(x)) for each
x € X be graph function. Then g is a.st.0.e.c. if and only if f is a.st.0.e.c. and X is almost e-regular.

Proof. Necessity. Let € X and let V€ RO(Y, f(x)). Then
(z € X)(V € ROY, f(z))) = g(z) = (z, f(x)) € X x V
XxVeROXxY) %= (3U €eR(X,2))(g[U] € X x V)
g is a.st.f.e.c.

= (U € eR(X,z))(f[U] C V). Then f is a.st.f.e.c.
Ue ROX,z)=g(x) eUxY € ROX xY)

g is a.st.f.e.c.

= (AW € eO(X,z))(W C e-cl(W) C U). Then X is almost e-regular.

} = (AW € eO(X,x))(gle-cl(W)] CU xY)

Sufficiency. Let x € X and let V € RO(X x Y, g(x)). Then
(z € X)(V € RO(X xY,g(x))) = (31 € RO(X)) 3V2 € RO(Y)) (9(z) = (z, f(z)) e Vi x Vo C V) }
f is a.st.f.e.c.

= (HU() S €R(X,:B))(f[U0] C Vg)(l)

U:=Uynv; 2By ¢ cpo(vy) BT 1 ¢ g0 (X)...(2)
(1),(2) = (3U € ebO(X)) (g[U] C U x f[U] C U x f[Us] € Vi x Vo C V). O

Definition 6.9. A space X is said to be:

(1) rTp [10] if for each pair of distinct points = and y in X, there exists a regular open set U € RO(X)
such that either x e U and y ¢ U or y € U and = ¢ U.

(2) e-Ty [7] if for each pair of distinct points x and y in X, there exist e-open sets U and V' of X containing
x and y, respectively, such that U NV = (.

Theorem 6.10. If f: X — Y is an a.st.0.e.c. injection and Y is r1y, then X is e-Ts.

Proof. Let 1,22 € X and z1 # x2. Then
(r1,22 € X) (w1 # x2)(f is injective) = f(x1) # f(x2) } N
Y isrldy
= (3V € RO(Y,, f(z1))) BW € RO(Y, f(z2))) (f(z1) ¢ WV f(x2) ¢ V).
Case I. Let V € RO(Y, f(x1)) and f(x2) ¢ V.

V € RO(Y, f(z1))

f is a.st.f.e.c.

= (U € eO(X,x1))(f[e-cl(U)] C V)
} WIS b= ) ¢ fleaw)
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=z9 ¢ e-cl(U) =z € X\ e-cl(U).
Case II. It can be proved similarly. O
Corollary 6.11. If f: X — Y is an a.st.0.e.c. injection and Y is Hausdorff, then X is e-T5.
Proof. 1t is obvious since every Hausdorff space is 1. O

Theorem 6.12. Let f,g : X — Y be functions and Y a Hausdorff space. If f is a.st.0.e.c. and g is an
R-map, then the set A= {x € X | f(x) = g(x)} is e-closed in X.

Proof. Let x ¢ A. Then

rEAS s b @0 U@ @V e Ulele) (0 Ve =0)

= (I, € U(F(2))) BVa € U(g (x))) (int(cl(V1)) Nint(cl(Va)) = 0)...(1)
int(cl(V1)) € RO(Y, f(z1))

f is a.st.f.e.c.

int(cl(Va)) € RO(Y, f(x2))
g is R-map

} = (3G € eO(X, x))(f[e — cl(@)] C int(cl(V1)))...(2)

} = g int(cl(Va))] € RO(X, x)...(3)

U= G g Yint(d(V)] “ ™20y ¢ co(X, 2)...(4)

(1),(2),(3),(4) = (UeeO(X,2) (UNA=0)=z ¢ ecl(A).

7. Preservation Properties
Definition 7.1. A space X is called:

(1) nearly compact [22] (resp. nearly countable compact [9]) if every regular open cover (resp. countable
regular open cover) of X has a finite subcover.

(2) e-closed [19] (resp. countable e-closed [19]) if every cover (resp. countable cover) of X by e-open sets
has a finite subcover whose e-closures cover X.

A subset A of a space X is said to be e-closed [19] (resp. N-closed [0]) relative to X if for every cover
{Vala € I} of A by e-open (resp. regular open) sets of X, there exists a finite subset Iy of I such that
A C He-c(Vy)|a € In} (resp. A C | U{Vala € Ip}).

Theorem 7.2. If f : X — Y is an a.st.0.e.c. function and A is e-closed relative to X, then f[A] is N-closed
relative to Y .

Proof. 1t can be proved directly. O

Corollary 7.3. Let f : X = Y be an a.st.0.e.c. surjection. Then the following statements hold:
(1) If X is e-closed, then Y is nearly compact.
(2) If X is countable e-closed, then Y is nearly countable compact.

Definition 7.4. The graph G(f) of a function f : X — Y is said to be #-e-closed [11] if for each (z,y) € (X x
Y)\ G(f), there exist U € eO(X, z) and an open set V containing y such that (e-cl(U) x cl(V))NG(f) = 0.

Definition 7.5. The graph G(f) of a function f : X — Y is said to be almost strongly e-closed if for
each (z,y) € (X xY)\ G(f), there exist U € eO(X,x) and a regular open set V' containing y such that
(e-cl(U) x V)NG(f) =0.
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Corollary 7.6. If the graph G(f) of a function f : X — Y is 6-e-closed, then it is almost strongly e-closed.

Lemma 7.7. The graph G(f) of a function f: X — Y is almost strongly e-closed in X XY if and only if
for each (z,y) € (X xY)\ G(f), there exist U € eO(X,x) and a reqular open set V containing y such that
fle-c(U)NV =0.

Proof. 1t follows immediately from the definition. O

Definition 7.8. The graph G(f) of a function f : X — Y is said to be strongly e-closed [19] if for
each (z,y) € (X xY)\ G(f), there exist U € eO(X,z) and an open set V containing y such that (e-
d(U) x V)NG(f) = 0.

It is obvious that if the graph of a function is almost strongly e-closed, then it is strongly e-closed.

Theorem 7.9. If f: X — Y is a.st.0.e.c. andY is Hausdorff, then the graph G(f) of f is almost strongly
e-closed in X xXY.

Proof. Let (z,y) ¢ G(f). Then

Y is Hausdorff

= (V1 € U(f(2))) (BVa € U(g(x))) (int(cl(V1)) Nint(cl(V2)) = 0) }
f is a.st.f.e.c.

(.9) ¢ G(f) = y # f(2) } = (Vi €U(Y, f(x))) (AV2 €UV y)) (ViNVa = 0)

= (U € eO(X, z))(fle-cl(U)] Nint(cl(Va)) = 0).
Then G(f) is almost strongly e-closed in X x Y by Lemma O

Theorem 7.10. If a function f : X — Y has an almost strongly e-closed graph, then f[K] is d-closed in'Y
for each subset K which is e-closed relative to X .

Proof. Let f be a.st.f.e.c. and y ¢ f[K]. Then

y ¢ fIK] = (Vo e K)((z,y) ¢ G(f))

Lemma [7.1
G(f) is almost strongly e-closed } = QU € cO(X, 2)) 3V € RO(Y, y))(Fle-cl(Ua)] N Ve = 0)

= ({Uglx € K} C eO(X))(K C | H{U,|x € K}) N
K is e-closed relative to X

Vi= 1 Vz € RO(Y,y)

= (3K* C K)(|K*| < Np)(K € U{e-cl(Uy)|x € K*}) } .
TeK*

= (V € RO(Y,y)) (f[K] NV c ( U s [e—cl(Ux)]> V= @)

TeEK*
= (Ve RO(Y,y)) (fIK]NV =0) = z ¢ cls(f[K]).

O

Corollary 7.11. If f : X — Y is an a.st.0.e.c. function and Y is Hausdorff, then f[K] is d-closed in'Y
for each subset K which is e-closed relative to X .

Theorem 7.12 ([19]). Let X be a submazimal extremally disconnected reqular space and Y be a compact
Hausdorff space. Then the following statements are equivalent:
(1) f is strongly 0-e-continuous,
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(2) G(f) is strongly e-closed in X XY,
(8) f is strongly 0-continuous,

(4) f is continuous,

(5) f is e-continuous.

Corollary 7.13. Let X be a submaximal extremally disconnected regular space and'Y a compact Hausdorff
space. Then the following properties are equivalent:

(1) f is strongly 0-e-continuous,

(2) f is almost strongly 0-e-continuous,

(3) G(f) is almost strongly e-closed in X x Y,

(4) G(f) is strongly e-closed in X XY,

(5) f is strongly 0-continuous,

(6) f is continuous,

(7) f is e-continuous.

Proof. (2)=(3): It follows from Theorem Other implications follow from Theorem O
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