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Abstract

We prove Baire’s theorem for fuzzy cone metric spaces in the sense of Öner et al. [T. Öner, M. B. Kandemir,
B. Tanay, J. Nonlinear Sci. Appl., 8 (2015), 610–616]. A necessary and sufficient condition for a fuzzy cone
metric space to be precompact is given. We also show that every separable fuzzy cone metric space is
second countable and that a subspace of a separable fuzzy cone metric space is separable. c©2016 All rights
reserved.
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1. Introduction

After Zadeh [13] introduced the theory of fuzzy sets, many authors have introduced and studied several
notions of metric fuzziness ([2], [3], [4], [8], [9]) and metric cone fuzziness ([1], [10] from different points of
view).

By modifying the concept of metric fuzziness introduced by George and Veeramani [4], Öner et al. [10]
studied the notion of fuzzy cone metric spaces. In particular, they proved that every fuzzy cone metric space
generates a Hausdorff first-countable topology.

Here we study further topological properties of these spaces whose fuzzy metric version can be found in
[4], [5] and [6]. We show that every closed ball is a closed set and prove Baire’s theorem for fuzzy cone metric
spaces. Moreover, we prove that a fuzzy cone metric space is precompact if and only if every sequence in
it has a Cauchy subsequence. Further, we show that X1 ×X2 is a complete fuzzy cone metric space if and
only if X1 and X2 are complete fuzzy cone metric spaces. Finally it is proven that every separable fuzzy
cone metric space is second countable and a subspace of a separable fuzzy cone metric space is separable.
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2. Preliminaries

Let E be a real Banach space, θ the zero of E and P a subset of E. Then P is called a cone [7] if and
only if

1) P is closed, nonempty, and P 6= {θ};
2) if a, b ∈ R, a, b ≥ 0 and x, y ∈ P , then ax+ by ∈ P ;
3) if both x ∈ P and −x ∈ P , then x = θ.
Given a cone P , a partial ordering � on E with respect to P is defined by x � y if only if y−x ∈ P . The

notation x ≺ y will stand for x � y and x 6= y, while x� y will stand for y − x ∈ int (P ) [7]. Throughout
this paper, we assume that all the cones have nonempty interiors.

There are two kinds of cones: normal and nonnormal ones. A cone P is called normal if there exists a
constant K ≥ 1 such that for all t, s ∈ E, θ � t � s implies ‖t‖ ≤ K‖s‖, and the least positive number K
having this property is called normal constant of P [7]. It is clear that K ≥ 1 [11].

According to [12], a binary operation ∗ : [0, 1]× [0, 1] −→ [0, 1] is a continuous t-norm if it satisfies:

1) ∗ is associative and commutative;

2) ∗ is continuous;

3) a ∗ 1 = a for all a ∈ [0, 1];

4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, a, b, c, d ∈ [0, 1].

In [10], we generalized the concept of fuzzy metric space of George and Veeramani by replacing the (0,∞)
interval by int(P ) where P is a cone as follows:

A fuzzy cone metric space is a 3-tuple (X,M, ∗) such that P is a cone of E, X is nonempty set, ∗ is a
continuous t-norm and M is a fuzzy set on X2×int (P ) satisfying the following conditions, for all x, y, z ∈ X
and t, s ∈ int (P ) (that is t� θ, s� θ)

FCM1) M (x, y, t) > 0;
FCM2) M (x, y, t) = 1 if and only if x = y;
FCM3) M (x, y, t) = M (y, x, t);
FCM4) M (x, y, t) ∗M (y, z, s) ≤M (x, z, t+ s);
FCM5) M (x, y, .) : int (P ) −→ [0, 1] is continuous.

If (X,M, ∗) is a fuzzy cone metric space, we will say that M is a fuzzy cone metric on X.
In [10], it was proven that every fuzzy cone metric space (X,M, ∗) induces a Hausdorff first-countable

topology τfc on X which has as a base the family of sets of the form {B(x, r, t) : x ∈ X, 0 < r < 1, t� θ},
where B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r} for every r with 0 < r < 1 and t� θ.

A fuzzy cone metric space (X,M, ∗) is called complete if every Cauchy sequence in it is convergent,
where a sequence {xn} is said to be a Cauchy sequence if for any ε ∈ (0, 1) and any t � θ there exists a
natural number n0 such that M (xn, xm, t) > 1−ε for all n,m ≥ n0, and a sequence {xn} is said to converge
to x if for any t� θ and any r ∈ (0, 1) there exists a natural number n0 such that M (xn, x, t) > 1− r for
all n ≥ n0 [10].

A sequence {xn} converges to x if and only if lim
n→∞

M (xn, x, t)→ 1 for each t� θ [10].

3. Results

Definition 3.1. Let (X,M, ∗) be a fuzzy cone metric space. For t� θ, the closed ball B[x, r, t] with center
x and radius r ∈ (0, 1) is defined by B[x, r, t] = {y ∈ X : M(x, y, t) ≥ 1− r}.

Lemma 3.2. Every closed ball in a fuzzy cone metric space (X,M, ∗) is a closed set.

Proof. Let y ∈ B[x, r, t]. Since X is first countable, there exits a sequence {yn} in B[x, r, t] converging to y.
Therefore M(yn, y, t) converges to 1 for all t� θ. For a given ε� 0, we have

M(x, y, t+ ε) ≥M(x, yn, t) ∗M(yn, y, ε).
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Hence

M(x, y, t+ ε) ≥ lim
n→∞

M(x, yn, t) ∗ lim
n→∞

M(yn, y, ε)

≥ (1− r) ∗ 1 = 1− r.

(If M(x, yn, t) is bounded, then the sequence {yn} has a subsequence, which we again denote by {yn}, for

which lim
n→∞

M(x, yn, t) exists.) In particular for n ∈ N, take ε =
t

n
. Then

M(x, y, t+
t

n
) ≥ (1− r) .

Hence

M(x, y, t) ≥ lim
n→∞

M(x, y, t+
t

n
) ≥ 1− r.

Thus y ∈ B[x, r, t]. Therefore B[x, r, t] is a closed set.

Theorem 3.3 (Baire’s theorem). Let (X,M, ∗) be a complete fuzzy cone metric space. Then the intersection
of a countable number of dense open sets is dense.

Proof. Let X be the given complete fuzzy cone metric space, B0 a nonempty open set, and D1, D2, D3, . . .
dense open sets in X. Since D1 is dense in X, we have B0∩D1 6= ∅. Let x1 ∈ B0∩D1. Since B0∩D1 is open,
there exist 0 < r1 < 1, t1 � θ such that B (x1, r1, t1) ⊂ B0 ∩D1. Choose r′1 < r1 and t′1 = min {t1, t1/ ‖t1‖}
such that B [x1, r

′
1, t
′
1] ⊂ B0∩D1. Let B1 = B (x1, r

′
1, t
′
1). Since D2 is dense in X, we have B1∩D2 6= ∅. Let

x2 ∈ B1∩D2. Since B1∩D2 is open, there exist 0 < r2 < 1/2 and t2 � θ such that B (x2, r2, t2) ⊂ B1∩D2.
Choose r′2 < r2 and t′2 = min {t2, t2/2 ‖t2‖} such that B [x2, r

′
2, t
′
2] ⊂ B1 ∩ D2. Let B2 = B (x2, r

′
2, t
′
2).

Similarly proceeding by induction, we can find an xn ∈ Bn−1 ∩ Dn. Since Bn−1 ∩ Dn is open, there exist
0 < rn < 1/n, tn � θ such that B (xn, rn, tn) ⊂ Bn−1∩Dn. Choose an r′n < rn and t′n = min {tn, tn/n ‖tn‖}
such that B [xn, r

′
n, t
′
n] ⊂ Bn−1∩Dn. Let Bn = B (xn, r

′
n, t
′
n). Now we claim that {xn} is a Cauchy sequence.

For a given t � θ, 0 < ε < 1, choose an n0 such that t/n0 ‖t‖ � t, 1/n0 < ε. Then for n ≥ n0, m ≥ n, we
have

M (xn, xm, t) ≥M
(
xn, xm,

t

n0 ‖t‖

)
≥ 1− 1

n
≥ 1− ε.

Therefore {xn} is a Cauchy sequence. Since X is complete, xn → x in X. But xk ∈ B [xn, r
′
n, t
′
n] for all

k ≥ n. Since B [xn, r
′
n, t
′
n] is closed, x ∈ B [xn, r

′
n, t
′
n] ⊂ Bn−1 ∩Dn for all n. Therefore B0 ∩ (

⋂∞
n=1Dn) 6= ∅.

Hence
⋂∞

n=1Dn is dense in X.

Definition 3.4. A fuzzy cone metric space (X,M, ∗) is called precompact if for each r, with 0 < r < 1, and
each t� θ, there is a finite subset A of X, such that X =

⋃
a∈AB (a, r, t). In this case, we say that M is a

precompact fuzzy cone metric on X.

Lemma 3.5. A fuzzy cone metric space is precompact if and only if every sequence has a Cauchy subse-
quence.

Proof. Suppose that (X,M, ∗) is a precompact fuzzy cone metric space. Let {xn} be a sequence in X.
For each m ∈ N there is a finite subset Am of X such that X =

⋃
a∈Am

B (a, 1/m, t0/m ‖t0‖) where
t0 � θ is a constant. Hence, for m = 1, there exists an a1 ∈ A1 and a subsequence

{
x1(n)

}
of {xn}

such that x1(n) ∈ B (a1, 1, t0/ ‖t0‖) for every n ∈ N. Similarly, there exist an a2 ∈ A2 and a subsequence{
x2(n)

}
of
{
x1(n)

}
such that x2(n) ∈ B (a2, 1/2, t0/2 ‖t0‖) for every n ∈ N. By continuing this process,

we get that for m ∈ N, m > 1, there is an am ∈ Am and a subsequence
{
xm(n)

}
of
{
xm−1(n)

}
such that

xm(n) ∈ B (am, 1/m, t0/m ‖t0‖) for every n ∈ N. Now, consider the subsequence
{
xn(n)

}
of {xn}. Given r

with 0 < r < 1 and t� θ there is an n0 ∈ N such that (1− 1/n0) ∗ (1− 1/n0) > 1− r and 2t0/n0 ‖t0‖ � t.
Then, for every k,m ≥ n0, we have
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M
(
xk(k), xm(m), t

)
≥M

(
xk(k), xm(m),

2t0
n0 ‖t0‖

)
≥M

(
xk(k), an0 ,

t0
n0 ‖t0‖

)
∗M

(
an0 , xm(m),

t0
n0 ‖t0‖

)
≥
(

1− 1

n0

)
∗
(

1− 1

n0

)
> 1− r.

Hence
(
xn(n)

)
is a Cauchy sequence in (X,M, ∗).

Conversely, suppose that (X,M, ∗) is a nonprecompact fuzzy cone metric space. Then there exist an r
with 0 < r < 1 and t � θ such that for each finite subset A of X, we have X 6=

⋃
a∈AB (a, r, t). Fix x1

∈ X. There is an x2 ∈ X −B (x1, r, t). Moreover, there is an x3 ∈ X −
⋃2

k=1B (xk, r, t). By continuing this
process, we construct a sequence {xn} of distinct points in X such that xn+1 /∈

⋃n
k=1B (xk, r, t) for every

n ∈ N. Therefore {xn} has no Cauchy subsequence. This completes the proof.

Lemma 3.6. Let (X,M, ∗) be a fuzzy cone metric space. If a Cauchy sequence clusters around a point
x ∈ X, then the sequence converges to x.

Proof. Let {xn} be a Cauchy sequence in (X,M, ∗) having a cluster point x ∈ X. Then, there is a subse-
quence

{
xk(n)

}
of {xn} that converges to x with respect to τfc. Thus, given r with 0 < r < 1 and t� θ, there

is an n0 ∈ N such that for each n ≥ n0, M
(
x, xk(n), t/2

)
> 1−s where s > 0 satisfies (1−s)∗ (1−s) > 1−r.

On the other hand, there is n1 ≥ k(n0) such that for each n,m ≥ n1, we have M(xn, xm, t/2) > 1 − s.
Therefore, for each n ≥ n1, we have

M(x, xn, t) ≥M(x, xk(n),
t

2
) ∗M(xk(n), xn,

t

2
)

≥ (1− s) ∗ (1− s)
> 1− r.

We conclude that the Cauchy sequence {xn} converges to x.

Proposition 3.7. Let (X1,M1, ∗) and (X2,M2, ∗) be fuzzy cone metric spaces. For (x1, x2) , (y1, y2) ∈
X1 ×X2, let

M((x1, x2), (y1, y2), t) = M1(x1, y1, t) ∗M2(x2, y2, t).

Then M is a fuzzy cone metric on X1 ×X2.

Proof. FCM1. Since M1(x1, y1, t) > 0 and M2(x2, y2, t) > 0, this implies that

M1(x1, y1, t) ∗M2(x2, y2, t) > 0.

Therefore
M((x1, x2), (y1, y2), t) > 0.

FCM2. Suppose that for all t � θ, (x1, y1, t) = (x2, y2, t). This implies that x1 = y1 and x2 = y2 for all
t� θ. Hence

M1(x1, y1, t) = 1

and
M2(x2, y2, t) = 1.

It follows that
M((x1, x2), (y1, y2), t) = 1.

Conversely, suppose that M((x1, x2), (y1, y2), t) = 1. This implies that

M1(x1, y1, t) ∗M2(x2, y2, t) = 1.

Since
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0 < M1(x1, y1, t) ≤ 1

and
0 < M2(x2, y2, t) ≤ 1,

it follows that
M1(x1, y1, t) = 1

and
M2(x2, y2, t) = 1.

Thus x1 = y1 and x2 = y2. Therefore (x1, x2) = (y1, y2).
FCM3. To prove that M((x1, x2), (y1, y2), t) = M((y1, y2), (x1, x2), t) we observe that

M1(x1, y1, t) = M1(y1, x1, t)

and
M2(x2, y2, t) = M2(y2, x2, t).

It follows that for all (x1, x2) , (y1, y2) ∈ X1 ×X2 and t� θ

M((x1, x2), (y1, y2), t) = M((y1, y2), (x1, x2), t).

FCM4. Since (X1,M1, ∗) and (X2,M2, ∗) are fuzzy cone metric spaces, we have that

M1(x1, z1, t+ s) ≥M1(x1, y1, t) ∗M1(y1, z1, s)

and
M2(x2, z2, t+ s) ≥M2(x2, y2, t) ∗M2(y2, z2, s)

for all (x1, x2) , (y1, y2) , (z1, z2) ∈ X1 ×X2 and t, s� θ. Therefore

M((x1, x2), (z1, z2), t+ s) = M1(x1, z1, t+ s) ∗M2(x2, z2, t+ s)

≥M1(x1, y1, t) ∗M1(y1, z1, s) ∗M2(x2, y2, t) ∗M2(y2, z2, s)

≥M1(x1, y1, t) ∗M2(x2, y2, t) ∗M1(y1, z1, s) ∗M2(y2, z2, s)

≥M((x1, x2), (y1, y2), t) ∗M((y1, y2), (z1, y2), s).

FCM5. Note that M1(x1, y1, t) and M2(x2, y2, t) are continuous with respect to t and ∗ is continuous too.
It follows that

M((x1, x2), (y1, y2), t) = M1(x1, y1, t) ∗M2(x2, y2, t)

is also continuous.

Proposition 3.8. Let (X1,M1, ∗) and (X2,M2, ∗) be fuzzy cone metric spaces. We define

M((x1, x2), (y1, y2), t) = M1(x1, y1, t) ∗M2(x2, y2, t).

Then M is a complete fuzzy cone metric on X1×X2 if and only if (X1,M1, ∗) and (X2,M2, ∗) are complete.

Proof. Suppose that (X1,M1, ∗) and (X2,M2, ∗) are complete fuzzy cone metric spaces. Let {an} be a
Cauchy sequence in X1 ×X2. Note that

an = (xn1 , x
n
2 )

and
am = (xm1 , x

m
2 ) .

Also, M(an, am, t) converges to 1. This implies that

M((xn1 , x
n
2 ), (xm1 , x

m
2 ), t)
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converges to 1 for each t� θ. It follows that

M1(x
n
1 , x

m
1 , t) ∗M2(x

n
2 , x

m
2 , t)

converges to 1 for each t � θ. Thus M1(x
n
1 , x

m
1 , t) converges to 1 and also M2(x

n
2 , x

m
2 , t) converges to 1.

Therefore {xn1} is a Cauchy sequence in (X1,M1, ∗) and {xn2} is a Cauchy sequence in (X2,M2, ∗). Since
(X1,M1, ∗) and (X2,M2, ∗) are complete fuzzy cone metric spaces, there exist x1 ∈ X1 and x2 ∈ X2 such
that M1(x

n
1 , x1, t) converges to 1 and M2(x

n
2 , x2, t) converges to 1 for each t � θ. Let a = (x1, x2). Then

a ∈ X1 ×X2. It follows that M(an, a, t) converges to 1 for each t� θ. This shows that (X1 ×X2,M, ∗) is
complete.

Conversely, suppose that (X1 ×X2,M, ∗) is complete. We shall show that (X1,M1, ∗) and (X2,M2, ∗)
are complete. Let {xn1} and {xn2} be Cauchy sequences in (X1,M1, ∗) and (X2,M2, ∗) respectively. Thus
M1(x

n
1 , x

m
1 , t) converges to 1 and M2(x

n
2 , x

m
2 , t) converges to 1 for each t� θ. It follows that

M((xn1 , x
n
2 ), (xm1 , x

m
2 ), t) = M1(x

n
1 , x

m
1 , t) ∗M2(x

n
2 , x

m
2 , t)

converges to 1. Then (xn1 , x
n
2 ) is a Cauchy sequence in X1 ×X2. Since (X1 ×X2,M, ∗) is complete, there

exists a pair (x1, x2) ∈ X1 × X2 such that M((xn1 , x
n
2 ), (x1, x2) , t) converges to 1. Clearly, M1(x

n
1 , x1, t)

converges to 1 and M2(x
n
1 , x2, t) converges to 1. Hence (X1,M1, ∗) and (X2,M2, ∗) are complete. This

completes the proof.

Theorem 3.9. Every separable fuzzy cone metric space is second countable.

Proof. Let (X,M, ∗) be the given separable fuzzy cone metric space. Let A = {an : n ∈ N} be a countable
dense subset of X. Consider

B =

{
B

(
aj ,

1

k
,

t1
k ‖t1‖

)
: j, k ∈ N

}
where t1 � θ is constant. Then B is countable. We claim that B is a base for the family of all open sets
in X. Let G be an open set in X. Let x ∈ G; then there exists r with 0 < r < 1 and t � θ such that
B (x, r, t) ⊂ G. Since r ∈ (0, 1), we can find an s ∈ (0, 1) such that (1− s) ∗ (1− s) > (1− r). Choose
m ∈ N such that 1/m < s and t1/m ‖t1‖ � t

2 . Since A is dense in X, there exists an aj ∈ A such that
aj ∈ B (x, 1/m, t1/m ‖t1‖). Now if y ∈ B (aj , 1/m, t1/m ‖t1‖), then

M (x, y, t) ≥M
(
x, aj ,

t

2

)
∗M

(
y, aj ,

t

2

)
≥M

(
x, aj ,

t1
m ‖t1‖

)
∗M

(
y, aj ,

t1
m ‖t1‖

)
≥
(

1− 1

m

)
∗
(

1− 1

m

)
≥ (1− s) ∗ (1− s)
> (1− r) .

Thus y ∈ B (x, y, t) and hence B is a basis.

Proposition 3.10. A subspace of a separable fuzzy cone metric space is separable.

Proof. Let X be a separable fuzzy cone metric space and Y a subspace of X. Let A = {xn : n ∈ N} be
a countable dense subset of X. For arbitrary but fixed n, k ∈ N, if there are points x ∈ X such that
M (xn, x, t1/k ‖t1‖) > 1 − 1/k, where t1 � θ is constant, choose one of them and denote it by xnk. Let
B = {xnk : n, k ∈ N}; then B is countable. Now we claim that Y ⊂ B. Let y ∈ Y . Given r with 0 < r < 1
and t� θ we can find a k ∈ N such that (1− 1/k) ∗ (1− 1/k) > 1− r and t1/k ‖t1‖ � t

2 . Since A is dense
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in X, there exists an m ∈ N such that M (xm, y, t1/k ‖t1‖) > 1 − 1/k. But by definition of B, there exists
an xmk such that M (xmk, xm, t1/k ‖t1‖) > 1− 1/k. Now

M (xmk, y, t) ≥M
(
xmk, xm,

t

2

)
∗M

(
xm, y,

t

2

)
≥M

(
xmk, xm,

t1
k ‖t1‖

)
∗M

(
xm, y,

t1
k ‖t1‖

)
≥
(

1− 1

k

)
∗
(

1− 1

k

)
> 1− r.

Thus y ∈ B and hence Y is separable.
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