Research Article



Journal of Nonlinear Science and Applications



# Some topological properties of fuzzy cone metric spaces

Print: ISSN 2008-1898 Online: ISSN 2008-1901

# Tarkan Öner

Department of Mathematics, Faculty of Sciences, Muğla Sıtkı Koçman University, 48000 Mugla, Turkey.

Communicated by R. Saadati

# Abstract

We prove Baire's theorem for fuzzy cone metric spaces in the sense of Öner *et al.* [T. Öner, M. B. Kandemir, B. Tanay, J. Nonlinear Sci. Appl., **8** (2015), 610–616]. A necessary and sufficient condition for a fuzzy cone metric space to be precompact is given. We also show that every separable fuzzy cone metric space is second countable and that a subspace of a separable fuzzy cone metric space is separable. ©2016 All rights reserved.

*Keywords:* Fuzzy cone metric space, Baire's theorem, separable, second countable. *2010 MSC:* 54A40, 54E35, 54E15, 54H25.

## 1. Introduction

After Zadeh [13] introduced the theory of fuzzy sets, many authors have introduced and studied several notions of metric fuzziness ([2], [3], [4], [8], [9]) and metric cone fuzziness ([1], [10] from different points of view).

By modifying the concept of metric fuzziness introduced by George and Veeramani [4], Öner *et al.* [10] studied the notion of fuzzy cone metric spaces. In particular, they proved that every fuzzy cone metric space generates a Hausdorff first-countable topology.

Here we study further topological properties of these spaces whose fuzzy metric version can be found in [4], [5] and [6]. We show that every closed ball is a closed set and prove Baire's theorem for fuzzy cone metric spaces. Moreover, we prove that a fuzzy cone metric space is precompact if and only if every sequence in it has a Cauchy subsequence. Further, we show that  $X_1 \times X_2$  is a complete fuzzy cone metric space if and only if  $X_1$  and  $X_2$  are complete fuzzy cone metric spaces. Finally it is proven that every separable fuzzy cone metric space is second countable and a subspace of a separable fuzzy cone metric space is separable.

Email address: tarkanoner@mu.edu.tr (Tarkan Öner)

#### 2. Preliminaries

Let E be a real Banach space,  $\theta$  the zero of E and P a subset of E. Then P is called a cone [7] if and only if

1) P is closed, nonempty, and  $P \neq \{\theta\}$ ;

2) if  $a, b \in \mathbb{R}$ ,  $a, b \ge 0$  and  $x, y \in P$ , then  $ax + by \in P$ ;

3) if both  $x \in P$  and  $-x \in P$ , then  $x = \theta$ .

Given a cone P, a partial ordering  $\leq$  on E with respect to P is defined by  $x \leq y$  if only if  $y - x \in P$ . The notation  $x \leq y$  will stand for  $x \leq y$  and  $x \neq y$ , while  $x \ll y$  will stand for  $y - x \in int(P)$  [7]. Throughout this paper, we assume that all the cones have nonempty interiors.

There are two kinds of cones: normal and nonnormal ones. A cone P is called normal if there exists a constant  $K \ge 1$  such that for all  $t, s \in E, \theta \le t \le s$  implies  $||t|| \le K ||s||$ , and the least positive number K having this property is called normal constant of P [7]. It is clear that  $K \ge 1$  [11].

According to [12], a binary operation  $*: [0,1] \times [0,1] \longrightarrow [0,1]$  is a continuous t-norm if it satisfies:

1) \* is associative and commutative;

- 2) \* is continuous;
- 3) a \* 1 = a for all  $a \in [0, 1]$ ;

4)  $a * b \le c * d$  whenever  $a \le c$  and  $b \le d$ ,  $a, b, c, d \in [0, 1]$ .

In [10], we generalized the concept of fuzzy metric space of George and Veeramani by replacing the  $(0, \infty)$  interval by int(P) where P is a cone as follows:

A fuzzy cone metric space is a 3-tuple (X, M, \*) such that P is a cone of E, X is nonempty set, \* is a continuous t-norm and M is a fuzzy set on  $X^2 \times int(P)$  satisfying the following conditions, for all  $x, y, z \in X$  and  $t, s \in int(P)$  (that is  $t \gg \theta, s \gg \theta$ )

FCM1) M(x, y, t) > 0;

FCM2) M(x, y, t) = 1 if and only if x = y;

FCM3) M(x, y, t) = M(y, x, t);

FCM4)  $M(x, y, t) * M(y, z, s) \le M(x, z, t + s);$ 

FCM5)  $M(x, y, .) : int(P) \longrightarrow [0, 1]$  is continuous.

If (X, M, \*) is a fuzzy cone metric space, we will say that M is a fuzzy cone metric on X.

In [10], it was proven that every fuzzy cone metric space (X, M, \*) induces a Hausdorff first-countable topology  $\tau_{fc}$  on X which has as a base the family of sets of the form  $\{B(x, r, t) : x \in X, 0 < r < 1, t \gg \theta\}$ , where  $B(x, r, t) = \{y \in X : M(x, y, t) > 1 - r\}$  for every r with 0 < r < 1 and  $t \gg \theta$ .

A fuzzy cone metric space (X, M, \*) is called complete if every Cauchy sequence in it is convergent, where a sequence  $\{x_n\}$  is said to be a Cauchy sequence if for any  $\varepsilon \in (0, 1)$  and any  $t \gg \theta$  there exists a natural number  $n_0$  such that  $M(x_n, x_m, t) > 1 - \varepsilon$  for all  $n, m \ge n_0$ , and a sequence  $\{x_n\}$  is said to converge to x if for any  $t \gg \theta$  and any  $r \in (0, 1)$  there exists a natural number  $n_0$  such that  $M(x_n, x, t) > 1 - r$  for all  $n \ge n_0$  [10].

A sequence  $\{x_n\}$  converges to x if and only if  $\lim_{n \to \infty} M(x_n, x, t) \to 1$  for each  $t \gg \theta$  [10].

## 3. Results

**Definition 3.1.** Let (X, M, \*) be a fuzzy cone metric space. For  $t \gg \theta$ , the closed ball B[x, r, t] with center x and radius  $r \in (0, 1)$  is defined by  $B[x, r, t] = \{y \in X : M(x, y, t) \ge 1 - r\}$ .

**Lemma 3.2.** Every closed ball in a fuzzy cone metric space (X, M, \*) is a closed set.

*Proof.* Let  $y \in \overline{B[x, r, t]}$ . Since X is first countable, there exits a sequence  $\{y_n\}$  in B[x, r, t] converging to y. Therefore  $M(y_n, y, t)$  converges to 1 for all  $t \gg \theta$ . For a given  $\epsilon \gg 0$ , we have

$$M(x, y, t + \epsilon) \ge M(x, y_n, t) * M(y_n, y, \epsilon).$$

Hence

$$M(x, y, t + \epsilon) \ge \lim_{n \to \infty} M(x, y_n, t) * \lim_{n \to \infty} M(y_n, y, \epsilon)$$
$$\ge (1 - r) * 1 = 1 - r.$$

(If  $M(x, y_n, t)$  is bounded, then the sequence  $\{y_n\}$  has a subsequence, which we again denote by  $\{y_n\}$ , for which  $\lim_{n \to \infty} M(x, y_n, t)$  exists.) In particular for  $n \in \mathbb{N}$ , take  $\epsilon = \frac{t}{n}$ . Then

$$M(x, y, t + \frac{t}{n}) \ge (1 - r).$$

Hence

$$M(x, y, t) \ge \lim_{n \to \infty} M(x, y, t + \frac{t}{n}) \ge 1 - r.$$

Thus  $y \in B[x, r, t]$ . Therefore B[x, r, t] is a closed set.

**Theorem 3.3** (Baire's theorem). Let (X, M, \*) be a complete fuzzy cone metric space. Then the intersection of a countable number of dense open sets is dense.

Proof. Let X be the given complete fuzzy cone metric space,  $B_0$  a nonempty open set, and  $D_1, D_2, D_3, \ldots$ dense open sets in X. Since  $D_1$  is dense in X, we have  $B_0 \cap D_1 \neq \emptyset$ . Let  $x_1 \in B_0 \cap D_1$ . Since  $B_0 \cap D_1$  is open, there exist  $0 < r_1 < 1, t_1 \gg \theta$  such that  $B(x_1, r_1, t_1) \subset B_0 \cap D_1$ . Choose  $r'_1 < r_1$  and  $t'_1 = \min\{t_1, t_1/||t_1||\}$  such that  $B[x_1, r'_1, t'_1] \subset B_0 \cap D_1$ . Let  $B_1 = B(x_1, r'_1, t'_1)$ . Since  $D_2$  is dense in X, we have  $B_1 \cap D_2 \neq \emptyset$ . Let  $x_2 \in B_1 \cap D_2$ . Since  $B_1 \cap D_2$  is open, there exist  $0 < r_2 < 1/2$  and  $t_2 \gg \theta$  such that  $B(x_2, r_2, t_2) \subset B_1 \cap D_2$ . Choose  $r'_2 < r_2$  and  $t'_2 = \min\{t_2, t_2/2 ||t_2||\}$  such that  $B[x_2, r'_2, t'_2] \subset B_1 \cap D_2$ . Let  $B_2 = B(x_2, r'_2, t'_2)$ . Similarly proceeding by induction, we can find an  $x_n \in B_{n-1} \cap D_n$ . Since  $B_{n-1} \cap D_n$  is open, there exist  $0 < r_n < 1/n, t_n \gg \theta$  such that  $B(x_n, r_n, t_n) \subset B_{n-1} \cap D_n$ . Choose an  $r'_n < r_n$  and  $t'_n = \min\{t_n, t_n/n ||t_n||\}$  such that  $B[x_n, r'_n, t'_n] \subset B_{n-1} \cap D_n$ . Let  $B_n = B(x_n, r'_n, t'_n)$ . Now we claim that  $\{x_n\}$  is a Cauchy sequence. For a given  $t \gg \theta$ ,  $0 < \varepsilon < 1$ , choose an  $n_0$  such that  $t/n_0 ||t|| \ll t, 1/n_0 < \varepsilon$ . Then for  $n \ge n_0, m \ge n$ , we have

$$M(x_n, x_m, t) \ge M\left(x_n, x_m, \frac{t}{n_0 \|t\|}\right) \ge 1 - \frac{1}{n} \ge 1 - \varepsilon.$$

Therefore  $\{x_n\}$  is a Cauchy sequence. Since X is complete,  $x_n \to x$  in X. But  $x_k \in B[x_n, r'_n, t'_n]$  for all  $k \ge n$ . Since  $B[x_n, r'_n, t'_n]$  is closed,  $x \in B[x_n, r'_n, t'_n] \subset B_{n-1} \cap D_n$  for all n. Therefore  $B_0 \cap (\bigcap_{n=1}^{\infty} D_n) \ne \emptyset$ . Hence  $\bigcap_{n=1}^{\infty} D_n$  is dense in X.

**Definition 3.4.** A fuzzy cone metric space (X, M, \*) is called precompact if for each r, with 0 < r < 1, and each  $t \gg \theta$ , there is a finite subset A of X, such that  $X = \bigcup_{a \in A} B(a, r, t)$ . In this case, we say that M is a precompact fuzzy cone metric on X.

**Lemma 3.5.** A fuzzy cone metric space is precompact if and only if every sequence has a Cauchy subsequence.

Proof. Suppose that (X, M, \*) is a precompact fuzzy cone metric space. Let  $\{x_n\}$  be a sequence in X. For each  $m \in \mathbb{N}$  there is a finite subset  $A_m$  of X such that  $X = \bigcup_{a \in A_m} B(a, 1/m, t_0/m ||t_0||)$  where  $t_0 \gg \theta$  is a constant. Hence, for m = 1, there exists an  $a_1 \in A_1$  and a subsequence  $\{x_{1(n)}\}$  of  $\{x_n\}$  such that  $x_{1(n)} \in B(a_1, 1, t_0/||t_0||)$  for every  $n \in \mathbb{N}$ . Similarly, there exist an  $a_2 \in A_2$  and a subsequence  $\{x_{2(n)}\}$  of  $\{x_{1(n)}\}$  such that  $x_{2(n)} \in B(a_2, 1/2, t_0/2 ||t_0||)$  for every  $n \in \mathbb{N}$ . By continuing this process, we get that for  $m \in \mathbb{N}$ , m > 1, there is an  $a_m \in A_m$  and a subsequence  $\{x_{m(n)}\}$  of  $\{x_{m-1(n)}\}$  such that  $x_{m(n)} \in B(a_m, 1/m, t_0/m ||t_0||)$  for every  $n \in \mathbb{N}$ . Now, consider the subsequence  $\{x_{n(n)}\}$  of  $\{x_n\}$ . Given r with 0 < r < 1 and  $t \gg \theta$  there is an  $n_0 \in \mathbb{N}$  such that  $(1 - 1/n_0) * (1 - 1/n_0) > 1 - r$  and  $2t_0/n_0 ||t_0|| \ll t$ .

$$M(x_{k(k)}, x_{m(m)}, t) \ge M\left(x_{k(k)}, x_{m(m)}, \frac{2t_0}{n_0 ||t_0||}\right)$$
$$\ge M\left(x_{k(k)}, a_{n_0}, \frac{t_0}{n_0 ||t_0||}\right) * M\left(a_{n_0}, x_{m(m)}, \frac{t_0}{n_0 ||t_0||}\right)$$
$$\ge \left(1 - \frac{1}{n_0}\right) * \left(1 - \frac{1}{n_0}\right)$$
$$> 1 - r.$$

Hence  $(x_{n(n)})$  is a Cauchy sequence in (X, M, \*).

Conversely, suppose that (X, M, \*) is a nonprecompact fuzzy cone metric space. Then there exist an r with 0 < r < 1 and  $t \gg \theta$  such that for each finite subset A of X, we have  $X \neq \bigcup_{a \in A} B(a, r, t)$ . Fix  $x_1 \in X$ . There is an  $x_2 \in X - B(x_1, r, t)$ . Moreover, there is an  $x_3 \in X - \bigcup_{k=1}^2 B(x_k, r, t)$ . By continuing this process, we construct a sequence  $\{x_n\}$  of distinct points in X such that  $x_{n+1} \notin \bigcup_{k=1}^n B(x_k, r, t)$  for every  $n \in \mathbb{N}$ . Therefore  $\{x_n\}$  has no Cauchy subsequence. This completes the proof.

**Lemma 3.6.** Let (X, M, \*) be a fuzzy cone metric space. If a Cauchy sequence clusters around a point  $x \in X$ , then the sequence converges to x.

Proof. Let  $\{x_n\}$  be a Cauchy sequence in (X, M, \*) having a cluster point  $x \in X$ . Then, there is a subsequence  $\{x_{k(n)}\}$  of  $\{x_n\}$  that converges to x with respect to  $\tau_{fc}$ . Thus, given r with 0 < r < 1 and  $t \gg \theta$ , there is an  $n_0 \in \mathbb{N}$  such that for each  $n \ge n_0$ ,  $M(x, x_{k(n)}, t/2) > 1 - s$  where s > 0 satisfies (1-s) \* (1-s) > 1 - r. On the other hand, there is  $n_1 \ge k(n_0)$  such that for each  $n, m \ge n_1$ , we have  $M(x_n, x_m, t/2) > 1 - s$ . Therefore, for each  $n \ge n_1$ , we have

$$M(x, x_n, t) \ge M(x, x_{k(n)}, \frac{t}{2}) * M(x_{k(n)}, x_n, \frac{t}{2})$$
  
$$\ge (1 - s) * (1 - s)$$
  
$$> 1 - r.$$

We conclude that the Cauchy sequence  $\{x_n\}$  converges to x.

**Proposition 3.7.** Let  $(X_1, M_1, *)$  and  $(X_2, M_2, *)$  be fuzzy cone metric spaces. For  $(x_1, x_2), (y_1, y_2) \in X_1 \times X_2$ , let

$$M((x_1, x_2), (y_1, y_2), t) = M_1(x_1, y_1, t) * M_2(x_2, y_2, t)$$

Then M is a fuzzy cone metric on  $X_1 \times X_2$ .

*Proof.* FCM1. Since  $M_1(x_1, y_1, t) > 0$  and  $M_2(x_2, y_2, t) > 0$ , this implies that

$$M_1(x_1, y_1, t) * M_2(x_2, y_2, t) > 0.$$

Therefore

$$M((x_1, x_2), (y_1, y_2), t) > 0.$$

FCM2. Suppose that for all  $t \gg \theta$ ,  $(x_1, y_1, t) = (x_2, y_2, t)$ . This implies that  $x_1 = y_1$  and  $x_2 = y_2$  for all  $t \gg \theta$ . Hence

$$M_1(x_1, y_1, t) = 1$$

and

$$M_2(x_2, y_2, t) = 1$$

It follows that

$$M((x_1, x_2), (y_1, y_2), t) = 1.$$

Conversely, suppose that  $M((x_1, x_2), (y_1, y_2), t) = 1$ . This implies that

$$M_1(x_1, y_1, t) * M_2(x_2, y_2, t) = 1.$$

Since

and

it follows that

and

$$M_2(x_2, y_2, t) = 1.$$

 $0 < M_1(x_1, y_1, t) \le 1$ 

 $0 < M_2(x_2, y_2, t) \le 1,$ 

 $M_1(x_1, y_1, t) = 1$ 

Thus  $x_1 = y_1$  and  $x_2 = y_2$ . Therefore  $(x_1, x_2) = (y_1, y_2)$ . FCM3. To prove that  $M((x_1, x_2), (y_1, y_2), t) = M((y_1, y_2), (x_1, x_2), t)$  we observe that

$$M_1(x_1, y_1, t) = M_1(y_1, x_1, t)$$

and

$$M_2(x_2, y_2, t) = M_2(y_2, x_2, t)$$

It follows that for all  $(x_1, x_2), (y_1, y_2) \in X_1 \times X_2$  and  $t \gg \theta$ 

$$M((x_1, x_2), (y_1, y_2), t) = M((y_1, y_2), (x_1, x_2), t).$$

FCM4. Since  $(X_1, M_1, *)$  and  $(X_2, M_2, *)$  are fuzzy cone metric spaces, we have that

$$M_1(x_1, z_1, t+s) \ge M_1(x_1, y_1, t) * M_1(y_1, z_1, s)$$

and

$$M_2(x_2, z_2, t+s) \ge M_2(x_2, y_2, t) * M_2(y_2, z_2, s)$$

for all  $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in X_1 \times X_2$  and  $t, s \gg \theta$ . Therefore

$$\begin{aligned} M((x_1, x_2), (z_1, z_2), t+s) &= M_1(x_1, z_1, t+s) * M_2(x_2, z_2, t+s) \\ &\geq M_1(x_1, y_1, t) * M_1(y_1, z_1, s) * M_2(x_2, y_2, t) * M_2(y_2, z_2, s) \\ &\geq M_1(x_1, y_1, t) * M_2(x_2, y_2, t) * M_1(y_1, z_1, s) * M_2(y_2, z_2, s) \\ &\geq M((x_1, x_2), (y_1, y_2), t) * M((y_1, y_2), (z_1, y_2), s). \end{aligned}$$

FCM5. Note that  $M_1(x_1, y_1, t)$  and  $M_2(x_2, y_2, t)$  are continuous with respect to t and \* is continuous too. It follows that

$$M((x_1, x_2), (y_1, y_2), t) = M_1(x_1, y_1, t) * M_2(x_2, y_2, t)$$

is also continuous.

**Proposition 3.8.** Let  $(X_1, M_1, *)$  and  $(X_2, M_2, *)$  be fuzzy cone metric spaces. We define

$$M((x_1, x_2), (y_1, y_2), t) = M_1(x_1, y_1, t) * M_2(x_2, y_2, t).$$

Then M is a complete fuzzy cone metric on  $X_1 \times X_2$  if and only if  $(X_1, M_1, *)$  and  $(X_2, M_2, *)$  are complete.

*Proof.* Suppose that  $(X_1, M_1, *)$  and  $(X_2, M_2, *)$  are complete fuzzy cone metric spaces. Let  $\{a_n\}$  be a Cauchy sequence in  $X_1 \times X_2$ . Note that

$$a_n = (x_1^n, x_2^n)$$

and

$$a_m = (x_1^m, x_2^m).$$

Also,  $M(a_n, a_m, t)$  converges to 1. This implies that

$$M((x_1^n, x_2^n), (x_1^m, x_2^m), t)$$

converges to 1 for each  $t \gg \theta$ . It follows that

$$M_1(x_1^n, x_1^m, t) * M_2(x_2^n, x_2^m, t)$$

converges to 1 for each  $t \gg \theta$ . Thus  $M_1(x_1^n, x_1^m, t)$  converges to 1 and also  $M_2(x_2^n, x_2^m, t)$  converges to 1. Therefore  $\{x_1^n\}$  is a Cauchy sequence in  $(X_1, M_1, *)$  and  $\{x_2^n\}$  is a Cauchy sequence in  $(X_2, M_2, *)$ . Since  $(X_1, M_1, *)$  and  $(X_2, M_2, *)$  are complete fuzzy cone metric spaces, there exist  $x_1 \in X_1$  and  $x_2 \in X_2$  such that  $M_1(x_1^n, x_1, t)$  converges to 1 and  $M_2(x_2^n, x_2, t)$  converges to 1 for each  $t \gg \theta$ . Let  $a = (x_1, x_2)$ . Then  $a \in X_1 \times X_2$ . It follows that  $M(a_n, a, t)$  converges to 1 for each  $t \gg \theta$ . This shows that  $(X_1 \times X_2, M, *)$  is complete.

Conversely, suppose that  $(X_1 \times X_2, M, *)$  is complete. We shall show that  $(X_1, M_1, *)$  and  $(X_2, M_2, *)$ are complete. Let  $\{x_1^n\}$  and  $\{x_2^n\}$  be Cauchy sequences in  $(X_1, M_1, *)$  and  $(X_2, M_2, *)$  respectively. Thus  $M_1(x_1^n, x_1^m, t)$  converges to 1 and  $M_2(x_2^n, x_2^m, t)$  converges to 1 for each  $t \gg \theta$ . It follows that

$$M((x_1^n, x_2^n), (x_1^m, x_2^m), t) = M_1(x_1^n, x_1^m, t) * M_2(x_2^n, x_2^m, t)$$

converges to 1. Then  $(x_1^n, x_2^n)$  is a Cauchy sequence in  $X_1 \times X_2$ . Since  $(X_1 \times X_2, M, *)$  is complete, there exists a pair  $(x_1, x_2) \in X_1 \times X_2$  such that  $M((x_1^n, x_2^n), (x_1, x_2), t)$  converges to 1. Clearly,  $M_1(x_1^n, x_1, t)$  converges to 1 and  $M_2(x_1^n, x_2, t)$  converges to 1. Hence  $(X_1, M_1, *)$  and  $(X_2, M_2, *)$  are complete. This completes the proof.

## Theorem 3.9. Every separable fuzzy cone metric space is second countable.

*Proof.* Let (X, M, \*) be the given separable fuzzy cone metric space. Let  $A = \{a_n : n \in \mathbb{N}\}$  be a countable dense subset of X. Consider

$$B = \left\{ B\left(a_j, \frac{1}{k}, \frac{t_1}{k \|t_1\|}\right) : j, k \in \mathbb{N} \right\}$$

where  $t_1 \gg \theta$  is constant. Then *B* is countable. We claim that *B* is a base for the family of all open sets in *X*. Let *G* be an open set in *X*. Let  $x \in G$ ; then there exists *r* with 0 < r < 1 and  $t \gg \theta$  such that  $B(x,r,t) \subset G$ . Since  $r \in (0,1)$ , we can find an  $s \in (0,1)$  such that (1-s) \* (1-s) > (1-r). Choose  $m \in \mathbb{N}$  such that 1/m < s and  $t_1/m ||t_1|| \ll \frac{t}{2}$ . Since *A* is dense in *X*, there exists an  $a_j \in A$  such that  $a_j \in B(x, 1/m, t_1/m ||t_1||)$ . Now if  $y \in B(a_j, 1/m, t_1/m ||t_1||)$ , then

$$M(x, y, t) \ge M\left(x, a_j, \frac{t}{2}\right) * M\left(y, a_j, \frac{t}{2}\right)$$
$$\ge M\left(x, a_j, \frac{t_1}{m \|t_1\|}\right) * M\left(y, a_j, \frac{t_1}{m \|t_1\|}\right)$$
$$\ge \left(1 - \frac{1}{m}\right) * \left(1 - \frac{1}{m}\right)$$
$$\ge (1 - s) * (1 - s)$$
$$> (1 - r).$$

Thus  $y \in B(x, y, t)$  and hence B is a basis.

#### **Proposition 3.10.** A subspace of a separable fuzzy cone metric space is separable.

Proof. Let X be a separable fuzzy cone metric space and Y a subspace of X. Let  $A = \{x_n : n \in \mathbb{N}\}$  be a countable dense subset of X. For arbitrary but fixed  $n, k \in \mathbb{N}$ , if there are points  $x \in X$  such that  $M(x_n, x, t_1/k ||t_1||) > 1 - 1/k$ , where  $t_1 \gg \theta$  is constant, choose one of them and denote it by  $x_{nk}$ . Let  $B = \{x_{nk} : n, k \in \mathbb{N}\}$ ; then B is countable. Now we claim that  $Y \subset \overline{B}$ . Let  $y \in Y$ . Given r with 0 < r < 1and  $t \gg \theta$  we can find a  $k \in \mathbb{N}$  such that (1 - 1/k) \* (1 - 1/k) > 1 - r and  $t_1/k ||t_1|| \ll \frac{t}{2}$ . Since A is dense

in X, there exists an  $m \in \mathbb{N}$  such that  $M(x_m, y, t_1/k ||t_1||) > 1 - 1/k$ . But by definition of B, there exists an  $x_{mk}$  such that  $M(x_{mk}, x_m, t_1/k ||t_1||) > 1 - 1/k$ . Now

$$M(x_{mk}, y, t) \ge M\left(x_{mk}, x_m, \frac{t}{2}\right) * M\left(x_m, y, \frac{t}{2}\right)$$
$$\ge M\left(x_{mk}, x_m, \frac{t_1}{k \|t_1\|}\right) * M\left(x_m, y, \frac{t_1}{k \|t_1\|}\right)$$
$$\ge \left(1 - \frac{1}{k}\right) * \left(1 - \frac{1}{k}\right)$$
$$> 1 - r.$$

Thus  $y \in \overline{B}$  and hence Y is separable.

### References

- T. Bag, Fuzzy cone metric spaces and fixed point theorems of contractive mappings, Ann. Fuzzy Math. Inform., 6 (2013), 657–668.1
- [2] Z. Deng, Fuzzy pseudo-metric spaces, J. Math. Anal. Appl., 86 (1982), 74–95.1
- [3] M. A. Erceg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl., 69 (1979), 205–230.1
- [4] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994), 395–399.1
- [5] A. George, P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems, 90 (1997), 365–368.1
- [6] V. Gregori, S. Romaguera, Some properties of fuzzy metric spaces, Fuzzy Sets and Systems, 115 (2000), 485–489.
  1
- [7] L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476.2
- [8] O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, 12 (1984), 215–229.1
- [9] O. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 11 (1975), 336–344.1
- [10] T. Öner, M. B. Kandemir, B. Tanay, Fuzzy cone metric spaces, J. Nonlinear Sci. Appl., 8 (2015), 610–616.1, 2
- [11] S. Rezapour, R. Hamlbarani, Some notes on the paper: "Cone metric spaces and fixed point theorems of contractive mappings", J. Math. Anal. Appl., 332 (2007), 1468–1476.2
- [12] B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 313–334.2
- [13] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.1