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Abstract
In this paper, we employ the penalized spline method to estimate the components
of a right-censored semiparametric time-series regression model with autoregres-
sive errors. Because of the censoring, the parameters of such a model cannot be
directly computed by ordinary statistical methods, and therefore, a transformation
is required. In the context of this paper, we propose three different data transfor-
mation techniques, called Gaussian imputation (GI), k nearest neighbors (kNN) and
Kaplan–Meier weights (KMW). Note that these data transformation methods, which
are modified extensions of ordinary GI , kNN and KMW approximations, are used to
adjust the censoring response variable in the setting of a time-series. In this sense,
detailed Monte Carlo experiments and a real time-series data example are carried out
to indicate the performances of the proposed approaches and to analyze the effects of
different censoring levels and sample sizes. The obtained results reveal that the cen-
sored semiparametric time-series models based on kNN imputation often work better
than those estimated by GI or KMW.

Keywords Right-censored time-series · Gaussian imputation · kNN imputation ·
Kaplan–Meier weights · Penalized splines · Semiparametric regression

1 Introduction

In econometrics and statistics literature, the term right-censored data is employed for
observations that cannot be observed beyond a cutoff value. Generally, time-series
measurements are often observed with data irregularities, such as observations due to
a detection limit. Namely, some response observations exceeding the detection limit
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will not be known, and these incomplete observations will be recorded as the value of
the detection limit. Depending on this issue, the known-classical semiparametric time-
series regression analysis cannot be directly applied to the right-censored data. Note
that in the case of uncensored response observations, classical time-series regression
models with autoregressive errors are analyzed by parametric methods. For instance,
see Box and Jenkins (1970), Brockwell and Davis (1991) for more detailed discussions.
In the presence of censoring, the estimates obtained from parametric methods are
highly biased and unreliable. A way to handle this problem is to replace censored
data points with reasonable values from observations of a data set via imputation
methods. Note that imputation refers to the process of replacing the censored data
with substituted values. Another way to cope with censorship data is to consider the
weighted Kaplan–Meier estimator of the observed response variable distribution that
can replace the empirical distribution. Note also that Kaplan–Meier gives suitable
weights to the censored observations (see, Miller 1976; Stute 1993).

Several authors studied the imputation methods in dealing with censored data. For
example, Park et al. (2007) considered the GI method to analyze censored time-series
with autoregressive moving average models. Batista and Monard (2002) analyzed the
use of the kNN method as an imputation to solve missing data problem in machine
learning algorithms. The kNN method computes the imputed value from the mean of
measured k uncensored values in the data set. Some examples of studies about kNN
imputation include Malarvizhi and Thanamani (2012) and Chen and Shao (2000).
The main idea of the GI method, on the other hand, is that the censored values are
replaced by estimating observations with the help of the conditional truncated normal
distribution. There are some important studies related to GI in the literature. See, for
example, the studies of Park et al. (2009), Faubel et al. (2009) and Silva and Deutsch
(2017). In addition, see Lee et al. (2018) to see a different perspective on imputation
technique.

Note that the aforementioned studies are essentially designed for parametric meth-
ods. But, in the real-world, time-series we work with often do not have a parametric
linear structure and thus they cannot always be handled by parametric methods. There-
fore, in practice, many authors suggested the use of nonparametric techniques for
analyzing time-series data. See, for example, Hardle et al. (1997), Morton et al. (2009)
and Aneiros-Perez et al. (2011).

It should be emphasized that nonparametric estimators, unlike parametric
approaches, are very flexible but their statistical accuracy decreases greatly if we add
several explanatory variables in the regression model. Such a case is always possible
in a regression problem and is known as the curse of dimensionality. To overcome the
curse of dimensionality problem, we used, in this paper, a semiparametric regression
model that combines the features of parametric and nonparametric models. In such
models, the parametric part can be interpreted as a linear model, while the nonpara-
metric part flexes the model from the rigid structural assumptions. Further advantages
of these models can be stressed as the inclusion of categorical variables in a parametric
way, an easy interpretation of the outcomes and a part specification of a semiparamet-
ric regression model. Therefore, in the last two decades, many authors have shown
interest in semiparametric regression techniques to model time-series with nonlinear-
ity. Examples of such work include Truong and Stone (1994), Gao (1995), Yu and
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Chen (2007), Gao (2007), Kato and Shiohama (2009), Gao and Philips (2010) and
Linton et al. (2009).

The main theme of this paper is the use of the semiparametric techniques to fit
and make inferences concerning a semiparametric regression model with censored
time-series data. The key problem here is that the data are censored from the right,
as in many environmental and econometric time-series applications. One common
routine in such a case is then to adjust for the censoring effect by transforming the
observations of the response variable. Based on this consideration, we propose three
different data transformation techniques, which are based on generalization of the
ordinary GI , kNN and KMW methods in case of the uncensored data. These methods,
which are modified extensions of ordinary statistical approximations, are employed
to determine missing response observations. Note that mentioned data transformation
techniques provide useful censoring response observations with the help of efficient
algorithms described newly in this article. Hence, the transformed response variable
can be treated as uncensored variable and standard semiparametric regression methods
can be applied, as in classical regression analysis. After the transformation of data,
we apply the semiparametric technique which is partially linear model based on the
penalized spline method. See, Aydin and Yilmaz (2018) for more details on the partially
linear model using a penalized spline. It should be also noted that we compare the
performances of the suggested GI , kNN imputations and KMW method. Their effects
on the semiparametric regression estimates are also measured. To the best of our
knowledge, such a study has not yet been discussed.

The rest of this paper is organized as follows. Fundamental ideas on the right-
censored time-series and semiparametric model are expressed in Sect. 2. Section 3
involves the solution methods that are Gaussian imputation, kNN imputation, and
Kaplan–Meier weights. Performance measurements are expressed in Sect. 4. To see
methods’ behaviors in practice, simulation and real data studies are carried out in
Sects. 5 and 6, respectively. Finally, conclusions are given in Sect. 7.

2 Materials andmethods

In the classical time-series processes, we assumed that the value of each sample unit
is completely observed or known. In many applications, however, all of the units in
the sample may not be followed (or observed). These types of data are commonly
called censored time-series data. Some techniques in this context are developed. The
usual approach is to fill in (impute) the unobserved values in some way. There are also
various ways to deal with the censoring data:

Throwing or ignoring a censored observation. Analyzing data using only uncen-
sored ones. Although this method is preferable for its simplicity, the results will be
biased if censored observations did not fit the assumption that data points are censoring
at random. Also, it causes a loss of information when the censoring level is getting
higher. It is a primitive method to handle censored data.

Forcing data to fit into a particular distribution (i.e., Weibull, Normal, Exponential,
etc.). Here, the probabilities of the observations and the censorship effect are added

123



D. Aydın, E. Yılmaz

to the estimation process. If the distribution of the data is clear, this technique will be
beneficial but in general, the distribution of time-series data is unspecified.

Data transformation or using Kaplan–Meier weights. If the data do not fol-
low any distribution, then the synthetic data transformation (Koul et al. 1981) and
Kaplan–Meier weights (Miller 1976) based on Kaplan and Meier (1958) estimator
can be used to overcome the censorship.

Imputation methods for handling censorship. Commonly used imputations tech-
niques include the mean imputation, Gaussian imputation (Park et al. 2007), kNN
imputation (Batista and Monard 2002), singular value decomposition (SVD)-based
imputation, Hot-deck imputation, regression imputation and so on. In this paper, the
kNN and Gaussian imputation techniques are considered as representatives of the
many important imputation methods. They are also chosen for an important differ-
ence between them: Gaussian depends on the normal distribution, but kNN is free
from all distributions.

One of the major concerns of this study is to detect the behaviors of three censorship
solution methods on modeling time-series in the semiparametric setting. In this context,
consider the uncensored semiparametric time-series model

Yt � xtβ + g(zt ) + εt , t � 1, .., n (2.1)

where Yt ’s are the uncensored values of stationary time-series, xt � (
x1t , . . . , xpt

)
is

a (n × p) dimensional matrix of parametric covariates for time t, β � (
β1, . . . , βp

)′

is a (p × 1) vector of regression coefficients, g(.) is an unknown smooth function to
be estimated based on values of nonparametric variable zt ’s, and finally, εt ’s are the
stationary autoregressive error terms, given by

εt � ρεt−1 + ut (2.2)

where ρ is an autocorrelation parameter and ut ’s are independent and identically
distributed random error terms with ut ∼ N

(
0, σ 2

ut

)
and |ρ| < 1. It should be noted

that when ρ � 0, this model reduces to an ordinary semiparametric regression model.
According to the concept of this study, Yt ’s are censored from the right by a constant

detection limit Ct . Therefore, instead of observing the values of Yt , we now observe
the data set defined as

St � min(Yt , Ct ), δt � I (Yt ≤ Ct ) (2.3)

where St ’s are the updated response values, δt includes the information on whether
an observation is censored or uncensored and I (.) is an indicator function. One thing
to point out here is that if an observation is censored, we take St� Ct and δt � 0;
otherwise, we choose St � Yt and δt � 1. Thus, we obtain a new data sets and model
(2.1) turns into a right-censored semiparametric time-series model

St � xtβ + g(zt ) + εt , t � 1, .., n, (2.4)

123



Semiparametric modeling of the right-censored time-series…

As indicated before, the key idea of this paper is to estimate the components of the
semiparametric model stated in (2.4) using penalized spline method. In this sense, we
modified the GI , kNN methods and KMW for dealing with the censored observations
of response variable St in a semiparametric regression setting. Also, we want to say that
none of these methods is used in a semiparametric regression model setting under the
right-censored time-series data. This is the most important innovation of this paper. In
the next section, the penalized spline method is first expressed, and then, the imputation
methods and KMW are introduced.

2.1 Penalized splines

In this section, the penalized spline method is introduced to estimate the parametric
and nonparametric part of a semiparametric model with right-censored time-series
data. Note that although some semiparametric approximations could be employed, we
prefer to use penalized spline technique. One of the most important reasons is that
this technique is highly resistant to censorship, as proved in the study of Aydin and
Yilmaz (2018).

The penalized splines method is first adapted to estimate an unknown function
in a nonparametric regression model by Eilers and Marx (1996) and then improved
to a partially linear (or semiparametric) model by Liang (2006). Penalized spline
method provides the estimates by using piecewise polynomial functions with nonzero
derivatives at special knot points to be selected. Such polynomial functions (i.e., fixed-
knot splines) are also known as regression splines. In general, this method works only
for the required knot points, so the method runs faster and is not affected by outliers.
This property is very critical when one of the main considerations is to model censored
data appropriately.

The key idea in the penalized spline is to estimate the components of model (2.4)
so that sum of squares of the differences between the censored response observations

St and
(
xt β̂ + ĝ(zt )

)
is a minimum. In here, the unknown smooth function ĝ(zt ) is

approximated by a qth degree regression spline with a truncated power basis

g(zt ) � b0 + b1zt1 + · · · + bq zq
tq +

K∑

k�1

bq+k(zt − κk)
q
+ + εi , i � 1, 2, . . . , n (2.5)

where b � (
b0, b1, . . . , bq , bq+1, . . . , bq+K

)′
is a vector of unknown regression

coefficients, q ≥ 1 indicates the degree of regression spline, (zt − κk)+ � (zt − κk)

when (zt − κk) > 0 and (zt − κk)+ � 0 otherwise. Also, κ1, κ2 . . . , κK denote the
selected knot points provided {min(zt ) ≤ κ1 < · · · < κK ≤ max(zt )}.

In the light of the information given above, semiparametric regression model with
right-censored time-series data can be written as follows

St � xt1β1 + · · · + xtpβp + b0 + b1zt1 + · · · + bq zq
tq +

K∑

k�1

bq+k(zt − κk)
q
+ + εt (2.6)
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where (zt − κk)+ � max(0, (zt − κk)). Equation (2.6) in matrix and vector form is
rewritten as

S � Xβ + Ub + ε (2.7)

where β � (
β1, . . . , βp, b0, . . . , bq

)′
denotes the coefficients of the parametric linear

component, while b � (
bq+1, . . . , bq+K

)′
denotes the coefficients of the nonparamet-

ric component, X and U are the design matrices that can be defined by

X �
⎡

⎢
⎣

1 xt1 . . . xtp zt . . . zq
t

...
...

...
1 xn1 . . . xnp zn . . . zq

n

⎤

⎥
⎦, U �

⎡

⎢
⎣

(zt − κ1)
q
+ . . . (zt − κK )

q
+

...
. . .

...
(zn − κ1)

q
+ . . . (zn − κK )

q
+

⎤

⎥
⎦, t � 1, . . . , n

(2.8)

and εt � (ε1, . . . , εn)
′

is a vector of the stationary autoregressive error terms, as
defined in (2.2). Note that we assume that εt ∼ Nn(0, A), where the covariance
matrix A is a symmetric and positive definite matrix and its entries are determined by

A � σ 2
u

1 − ρ2 R, Ri , j � ρ|i− j |, i , j � 1, 2, . . . , n. (2.9)

For convenience, we assume that A is known. Then, for any symmetric posi-
tive semidefinite matrix D and scalar λ > 0, the penalized spline estimators β̂ �
(
β̂1, . . . , β̂p, b̂0, b̂1, . . . , b̂q

)′
and ĝ �

(
b̂q+1, . . . , b̂q+K

)′
of β and b in (2.7) can

be obtained by minimizing the penalized residual sum of squares (PRSS) criterion

P RSS(β, b; λ) �
n∑

t�1

At (St − xtβ − g(zt ))
2 + λ

K∑

k�1

b2
p+k

� (S − Xβ − Ub)
′
A(S − Xβ − Ub) + λb′Db (2.10)

where λ
∑K

k�1 b2
p+k denotes the penalty term depends on the knot points and λ is a

smoothing parameter that controls the amount of the penalty. D � diag(0r+1, 1K) is a
diagonal penalty matrix with (r + 1) (where r � p + q) diagonal entries of zeros for
β and K diagonal elements of ones for b, as shown in (2.6) or (2.7).

By simple algebraic operations, it follows that Eq. (2.10) is minimized when βandb
satisfy the system of equations

(
X′AX X′AU

U′AX
(
U′AU + λD

)
)(

β

b

)
�
(

X′
U′

)
S (2.11)
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After some algebraic manipulations in the block matrix in (2.11), the estimates β̂

and b̂, respectively, of the parameters β and b can be easily obtained by

β̂ �
[
XTA

(
I − U

(
UT AU + λD

)−1
UT AT

)
X
]−1

XT A
(

I − U
(
UT AU + λD

)−1
UT AT

)
S

(2.12a)

b̂ �
(
UT AU + λD

)−1
UT AT

(
S − X β̂

)
(2.12b)

From (2.12a–b) fitted values can be described as

μ̂ �
(
Xβ̂ + Ub̂

)
� (HλS) � Ŝ � E[Y |x , z] (2.12c)

where Hλ is a smoothing matrix, which is also known as hat matrix given by

Hλ � U
(
UT AU + λD

)−1
UT AT + CX

(
XT ACX

)−1
XT C (2.12d)

with C �
(
I − U

(
UT AU + λD

)−1
UT AT

)
.

Derivations of Eqs. (2.12a–d) are given in “Appendix.”
In practice, the estimators given in the (2.12a–b) cannot be used directly unless

the values of response variable S are observed completely. To solve this problem, we
propose three data transformations techniques such as GI , kNN and KMW discussed
in the next section.

3 Solutionmethods for censorship

There are mainly two approaches in the literature to overcome censorship. One is to
eliminate censored observations and continue to analyze with uncensored ones, and the
other one is to use censored data points as observed. However, Park et al. (2007) show
that both methods give highly biased and inefficient estimates. According to Helsel
(1990), these two approaches may only be useful for data sets with low censorship
rates. Of course, such ideas are not permanent solutions in many applications. This
study aims to complete censored time-series data correctly and provide useful methods
for time-series analysis in a semiparametric regression setting. Therefore, in the case
of censored observations, three different approaches with different advantages and
disadvantages are introduced in the next sections.

3.1 Gaussian imputation

Assume that Yt � (Y1, Y2, . . . , Yn)
T is a realization from a stationary time-series

defined in model (2.1) with correlated errors. Note also that the error terms follow a
multivariate normal distribution with mean zero and covariance matrix A: εt ∼ Nn

(0, A), where A � σ 2 R(ρ) is an nxn matrix, given by
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A � σ 2 R(ρ) � σ 2
ε

⎡

⎢⎢⎢
⎣

1 ρ1 . . . ρn−1

ρ1 1 . . . ρn−2

...
ρn−1

...
ρn−2

. . .
. . .

...
1

⎤

⎥⎥⎥
⎦

� σ 2
u

1 − ρ2

⎡

⎢⎢⎢
⎣

1 ρ . . . ρn−1

ρ 1 . . . ρn−2

...
ρn−1

...
ρn−2

. . .
. . .

...
1

⎤

⎥⎥⎥
⎦

where R is a (nxn) autocorrelations matrix with elements Ri , j � ρ|i− j |, i , j � 1, 2,
. . . , n, as defined in (2.9), and 1, ρ1, . . . , ρn−1 are theoretical autocorrelations of the
autoregressive process.

From the ideas given above, it is understood that Yt ∼ Nn(μ, A) for complete data.
When we consider the response observations with a censoring mechanism, Yt ∼ T Nn

(μ, A; Rc), where T Nn(.; Rc) denotes the truncated normal distribution on the interval
Rc (see Vaida and Liu 2009). Note that the interval Rc depends on whether data point is
censored. Essentially, the interval Rc is (0, Ct ) if δt � 1 and Rc is [Ct , ∞) otherwise.
To calculate the components in the censored regression model with autoregressive
error, the first task is to consider separately the observed and censored data points of
the response variable at the beginning of the estimation procedure. In this context, by
using permutation matrix P , which maps (1, .., l)

′
into the permutation vector p �

(p1, . . . , pl)
′
, the order of the data can be rearranged as

PYt �
[

Po

Pc

]
Yt �

[
Yo

Yc

]
(3.1)

where Yo represents the vector of observed response values, whereas Yc denotes the
vector of the unobserved response values.

Using a similar procedure to (3.1), the new observed response variable St calculated
according to the censoring mechanism in (2.3) can be portioned into the sub-vectors,
as follows

PSt �
[

Po

Pc

]
St �

[
So

Sc

]
(3.2)

As stated before, we want to find suitable values, instead of unobserving Sc given in
the (3.2). In this sense, the conditional truncated normal distribution is frequently used
in practical implementations (see, Lee and Carlin 2010; Yuan 2009). The key idea is
to replace the values of the right-censored vector Sc by sampling values obtained from
the conditional distribution of the censored response vector Yc given So and Sc. This
procedure is equivalent to applying the truncated normal distribution:

(Yc|So, Sc ∈ Rc) ∼ T Nnc (M, V, Rc) (3.3)

where nc denotes the number of censored observations, T Nnc shows a truncated multi-
variate normal distribution with nc-dimension and Rc determines the region associated
with the censoring of the response observations, as defined previously. The symbols
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and expressed in (3.3) denote the conditional mean and covariance of uncensored part.
Note also that the probability density function of the truncated normal distribution is

f (St ) � g(St )I (δt � 0)/[1 − F(Ct )] (3.4)

where (.) denotes the indicator function, g(.) and (.) are the probability density function
of the standard normal distribution and its cumulative distribution function, respec-
tively. It should be emphasized that f (.) is used for observations in the interval [, ∞]
to obtain the distribution of the right-censored part of the data.

To be able to carry out the ideas of the Gaussian imputation method, in the first stage,
the parameters of the distributions outlined above must be estimated by iteratively
applying an appropriate algorithm defined in Table 1.

From output of the algorithm, we see that SGI is a vector of response values from
kth iteration of the imputation. In this case, we replace the right-censored response
vector S in (2.10) with the vector SGI imputed by GI method to estimate the regression
coefficients. Hence, the estimators given in Eqs. (2.12a–b) are defined, respectively,
as

β̂GI �
[
XTA

(
I − U

(
UT AU + λD

)−1
UTAT

)
X
]−1

XTA
(

I − U
(
UT AU + λD

)−1
UTAT

)
SGI ,

(3.5a)

b̂GI �
(
UT AU + λD

)−1
UT AT

(
SGI − X β̂GI

)
(3.5b)

where β̂GI and b̂GI represent the estimators based on Gaussian imputation for para-
metric and nonparametric parts of model (2.1), respectively. The fitted values are also
given as follows

ŜGI �
(
Xβ̂GI + Ub̂GI

)
�
(
HGI SGI

)
� ŶGI � E[Y |x , z] (3.5c)

where HGI � X
(
XT ACX

)−1
XT AC + U

(
UT AU + λD

)−1
UT AT

(
I − X

(
XT ACX

)−1
XT AC

)

shows the smoothing matrix with C described in (2.12d) for a parameter λ obtained
with the help of observations vector SGI .

3.2 kNN imputation

kNN imputation is a common method to overcome the missing data in the literature
but in this part of the study, it is modified for imputation of the censored observations.
The main purpose of using kNN is that censored data points can be imputed and
replaced by using kNN method. Note that a censored value is imputed by either a
value measured as the average of measured values for multiple (k) neighbors. Some
of the advantages of this technique can be ordered as follows

i. The method is free from distribution assumptions which provide an important
superiority in the analysis of right-censored data that does not fit any distribution.
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Table 1 Algorithm for the Gaussian imputation method

ii. kNN method replaces censored observations with their actual estimates, not
synthetic values and also it does not manipulate all data points different from
Kaplan–Meier weights.

iii. Separate from synthetic data transformation and K–M weights, the kNN method
can use predictor variables to obtain additional information for completing cen-
sored data points. That is a very beneficial property, especially in the time-series
analysis because it takes into account the effect of time in the imputation process.
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Table 2 Algorithm for kNN imputation method

iv. It should be indicated that kNN imputation is a fully nonparametric method and it
does not require any restrictions about the relationship between observation pairs
(xt , zt , Yt ) or (xt , zt , St ), t � 1, . . . , n.

kNN method uses the average value of k closest neighbors for continuous attributes.
In this study, Euclidean norm which is a very common distance measurement is
used to evaluate the similarity between the corresponding data point and neighbors.
Euclidean distance can be calculated by using Minkowski distance when p � 2 which
is expressed in Eq. (3.6).

dM (X , Y ) �
(

n∑

i�1

|xi − Yi |p

) 1
p

(3.6)

In this paper, an algorithm is developed for kNN imputation for simplifying the
calculations and making procedure more understandable which is given in Table 2.

when S given in Eqs. (2.12a–b) is by YkN N defined in Table 2, we can obtain
the penalized spline estimators β̂kN N and ĝkN N , based on kNN imputation method,
respectively, as

β̂kN N �
[

XTA
(

I − U
(
UT AU + λD

)−1
UTAT

)−1

X

]−1

XTA
(

I − U
(
UT AU + λD

)−1
UTAT

)−1

YkN N ,

(3.7a)
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b̂kN N �
(
UT AU + λD

)−1
UT AT

(
YkN N − X β̂kN N

)
(3.7b)

and the fitted values are

ŶkN N �
(
Xβ̂kN N + Ub̂kN N

)
�
(
HkN N YkN N

)
� E[Y |X , Z ] (3.7c)

where HkN N � X
(
XT ACX

)−1
XT AC + U

(
UT AU + λD

)−1
UT AT

(
I − X

(
XT ACX

)−1
XT AC

)
is a smoother matrix with C given in (2.12d) for a

smoothing parameter λ described by means of observations vector YkN N .

3.3 Kaplan–Meier weights

In this section, we begin by adapting the penalized spline based on censored response
observations. To handle censored observations, we use Kaplan–Meier (K–M) weights
discussed in the study of Stute (1993). In the context of penalized spline, the squared
term in the penalized least criterion (2.10) is multiplied by a weight matrix W . Then,
the penalized least squares (2.10) transform to

P RSSK MW (β; b) � (S − Xβ − Ub)T AW(S − Xβ − Ub) + λbT Db (3.8)

where A is a covariance matrix, as defined in Sect. 3.1 and W is a n × n diagonal
matrix that denotes the K–M weights associated with

{
S(1) ≤ S(2) ≤ · · · ≤ S(n)

}
. The

diagonal elements of this matrix are computed by

w(i) � F̂K M
(
S(i)

) − F̂K M
(
S(i−1)

) � δ(i)

n − i + 1

i−1∏

j�1

(
n − j

n − j + 1

)δ(i)

(3.9)

where δ(i) denotes the value of censoring indicator associated with ordered values
S(i)’s. It should be emphasized that the K–M weights defined in (3.9) can also be
computed as the contribution of the K–M estimator F̂ of the distribution function F
of response observations Yi ’s at each ordered value S(i).

Performing a little bit of algebra reveals that the solutions for β and b in (3.8) can
be defined, respectively, as

(3.10a)

β̂K M �
[
XT AWCX

]−1
XT AWC−1S with C

�
(

I − U
(
UT AWU + λD

)−1
UT AT WT

)−1

b̂K M �
(
UT AWU + λD

)−1
UT AT WT

(
S − X β̂K M

)
(3.10b)
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and the fitted values are

ŶK M �
(
Xβ̂K M + Ub̂K M

)
�
(
HK MYK M

)
� E[Y |x , z] (3.10c)

where HK M � X
(
XT AWCX

)−1
XT AWC + U

(
UT AWU + λD

)−1
UT AT WT

(
I − X

(
XT AWCX

)−1
XT AWC

)
denotes the smoother matrix for a parameterλ found

by using observations vector YK M

Derivations of Eqs. (3.10a–b) are given in “Appendix.”
It is important to emphasize that smoothing parameter λ discussed in the above for-

mulas has a crucial role in the estimation process. In order to obtain accurate estimates
of β and b for three methods, one needs to select an optimum value of parameter λ.
From the study of Aydin and Yilmaz (2018), it follows that the improved version of
the Akaike information criterion (AICc) has a good performance on selection of a
smoothing parameter. Calculation of the AICc score defined as (Hurvich et al. 1998)

AICc(λ) � 1 + log
[
(‖Hλ − I)S‖2/n

]
+ [{2tr(Hλ) + 1}/n − tr(Hλ) − 2] (3.7)

where Hλ is a smoother matrix depends on a parameterλ. Note also that the matrix Hλ is
replaced by the HGI defined in (3.5c) to select a parameter λ for the estimators based on
Gaussian imputation. Similar procedures are performed for the other methods. Hence,
a value of λ that minimizes the AICc expressed in (3.7) is chosen as an optimum
smoothing parameter for each method.

As already noted, the amount of penalty in Eq. (2.10) depends on the set of knots
and a smoothing parameter λ. The idea is to choose enough knots and an optimum
smoothing parameter to resolve the essential structure in the underlying semiparamet-
ric regression model with censored time-series data. In this sense, we see in study of
Aydin and Yilmaz (2018) that using improved Akaike information criterion (AICc)

to choose the parameter λ and the full search algorithm (FSA) to select a set of knot
points is generally an effective strategy. It should be emphasized the FSA searches the
whole sequence of trial values and employs the one that minimizes the criterion AICc.
See Ruppert et al. (2003) for more detailed discussions about the FSA.

4 Assessing the quality of estimators

We now consider several measures for evaluating the quality of estimators, which are
obtained in a semiparametric regression setting. Some of these measures denote the
quality of estimators with small samples, while other measures represent the quality
of estimators with large samples. Note that the quality of an estimator relates to its
estimation capability (or its performance) on data. Evaluation of such a performance
is extremely important in application areas, since it guides the selection of a model,
and provides us a measure of the quality of the ultimately selected model.

To evaluate estimates of the semiparametric time-series model based on censored
data, one needs to consider the abilities of methods in terms of parametric component
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(β̂), nonparametric component (ĝ) and the fitted values (Ŝ). These different parts of
the semiparametric model (2.1) are inspected separately in the next sections.

4.1 Assessment of parametric part

We use the terms bias and variance to determine the performance of the semiparametric
model based on censored time-series data. Note that one can easily decompose the
errors of the semiparametric model into two parts such as bias and variance. Such
a decomposition helps us understand considering estimators, as these concepts are
related to overfitting and under-fitting.

To see the computations of each estimator, we first expand the parametric coeffi-
cients estimator β̂GI in (3.5a) with the matrix and vector form of (2.4) being replaced
by SGI to find

β̂GI �
[
XTACX

]−1
XTACS � β +

(
XTACX

)−1
XTACg +

(
XTACX

)−1
XTAC"

(4.1)

where C �
(
I − U

(
UT AU + λD

)−1
UT AT

)
, as defined in Eq. (2.12d).

Hence, the bias and variance–covariance matrix of this estimator are obtained,
respectively, as follows

Bias
(
β̂GI

)
� E

(
β̂GI

)
− β �

(
XTACX

)−1
XTACg (4.2a)

V ar
(
β̂GI

)
� σ 2

(
XT ACX

)−1
XT ACX

(
XT ACX

)−1
(4.2b)

Similarly, we expand β̂kN N in (3.7a) with (2.4), which is replaced by YkN N , to

define Bias
(
β̂kN N

)
� E

(
β̂kN N

)
− β and V ar

(
β̂kN N

)
. Note also that since the bias

and variance matrix from the kN N method have the same form as those in (4.2a–b),
they are not given here.

Finally, as in the above statements, expanded form of the β̂K M in (3.10a) can be
written as

(4.3)

β̂K MW �
[
XTACWX

]−1
XTACWS

� β +
(
XTACWX

)−1
XTACWg +

(
XTACWX

)−1
XTACW"

where C �
(
I − U

(
UT AWU + λD

)−1
UTAT WT

)−1
as describe in Eq. (3.10a).

Thus, the bias and variance–covariance matrix of estimator β̂K MW are obtained,
respectively, as

Bias
(
β̂K MW

)
� E

(
β̂K M

)
− β �

(
XTACWX

)−1
XTACWg (4.3a)
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V ar
(
β̂K MW

)
� σ 2

(
XT ACWX

)−1
XT ACWX

(
XT ACWX

)−1
(4.3b)

From Eqs. (4.2b) and (4.3b), we can see that the variance matrices are not practical
since they depend on the unknown σ 2. In this context, an estimate of σ 2 is required
to obtain the aforementioned variance–covariance matrices. In this sense, the natural
option is to consider the squared differences between observed responses and its fitted
values.

Noting that these squared differences are also known as squared residuals from
the semiparametric regression model and the vector form of squared residuals can be
written as follows

RSS � eT e �
(
Y − Ŷ

)T (
Y − Ŷ

)
� [(I − Hλ)Y]T [(I − Hλ)Y] � ‖(I − Hλ)Y‖2

(4.4)

Using (4.4), typically one estimates the variance σ 2 by

σ̂ 2 � RSS

tr(I − Hλ)
2 � ‖((I − Hλ)Y)‖2

tr
[
(I − Hλ)

T (I − Hλ)
] (4.5)

where tr(.) denotes the trace of a matrix, tr(I − Hλ) � n − 2tr(Hλ) + tr
(
HT

λ Hλ

)
is

a degrees of freedom depends on smoothing parameter λ. Note that tr(Hλ) need O
(n) algebraic operations. It should be noted that the Hλ given in (4.5) is replaced by
HGI in (3.5c), and hence, σ̂ 2 is defined for GI method. In a similar fashion, when the
smoother matrix Hλ expressed in (4.5) is replaced by HkN N in (3.7c) and HK M in
(3.10c), the estimates of variance are obtained for the kNN and KMW methods.

Note also that σ̂ 2 in (4.5) has an asymptotically negligible bias. If data have a
normal distribution, Gaussian imputation finds every censored data point accurately
(see Park et al. 2007). However, the same idea cannot be said for kNN imputation, due
to a machine learning method. Of course, kNN imputation has the advantage of being
a fully nonparametric method between the other two solution techniques. Hence, it is
highly useful for chaotic, unstable and time-series data.

4.2 Assessment of nonparametric part

As denoted in Sect. 2.1, the penalized spline estimate ĝ �
(
b̂q+1, . . . , b̂q+K

)T
of b

in (2.7) is the corresponding estimation of the nonparametric component g(zt ) in the
model (2.1). Viewed from this perspective, we compare the performances of proposed
data transformations techniques for evaluating the model in terms of nonparametric
parts.

First, we evaluate the performances of the proposed methods by average squared
errors, which is also known as mean square error (MSE), given by

MSE
(
g, ĝ

) � 1

n

n∑

j�1

[
g
(
z j
) − ĝ

(
z j
)]2 � n−1(g − ĝ

)T (g − ĝ
)

(4.6)
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where ĝ
(
z j
)

denotes the value estimated at the j th time point by one of the three
methods considered here, such as, GI , kNN and KMW.

Then we assess the relative efficiency of an estimator ĝM1 compared to another
estimator ĝM2. The aforementioned efficiency can be defined as the ratio of MSE
(RoMSE) values, given by

RoMSE
(
ĝM1, ĝM2

) � MSE
(
g, ĝM1

)
/MSE

(
g, ĝM2

)
(4.7)

If RoMSE
(
ĝM1, ĝM2

)
> 1, then it can be said that ĝM2 is more efficient than

ĝM1 and vice versa. The results obtained from (4.6–4.7) are shown in both simulation
and real data studies.

4.3 Overall performance of model

In this section, to evaluate the fitted values from the semiparametric regression model
with censored time-series data using three techniques we first use the performance
measures such as mean absolute relative error (M ARE), generalized mean square
error (GMSE) defined by Li and Liang (2008) and mean absolute percentage error
(M AP E). Then, we assess the relative efficiencies of the methods by the ratio of
generalized mean square error (RGMSE). These measures are formulated in the
following way.

M ARE � 1

n

n∑

t�1

∣∣∣Yt − Ŷt

∣∣∣/|Yt |, GMSE �
(
Ŷ − Y

)T
E
(
YYT

)(
Ŷ − Y

)
,

M AP E � 1

n

n∑

t�1

∣∣∣Yt − Ŷt

∣∣∣/Yt , and RGMSE � GMSE
(
ŶM1

)
/GMSE

(
ŶM2

)

Note also that similar to that used for RoMSE , it can be said that the fitted values
(ŶM2) obtained from an estimator are more efficient than fitted values (ŶM1) defined

by another estimator, when RGMSE
(
ŶM1, ŶM2

)
> 1.

5 Simulation design and results

In this section, a Monte Carlo simulation study is performed to compare the estimation
performances of the modified data transformation techniques such as GI, kNN and
KMW, defined in Sect. 3. In this context, simulated data sets are generated from the
following model

Yt � x1tβ1 + x2tβ2 + g(zt ) + εt , t � 1, 2, . . . , n (5.1)

as defined in (2.1).
In Eq. (5.1), β � (β1, β2) � (−1, 0.5)

′
, x1tand x2t are constructed by the uni-

form distribution U [0, 1]; the regression function g(zt ) � 8zt sin(zt )
2 and zt �
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(t − 0.5)/n; the error terms εt are generated using a first-order autoregressive process
(that is, εt � ρεt−1 + ut ) with ρ � 0.5 and ut ∼ N I I D

(
0, σ 2

u � 1
)
.

To introduce right censoring, we generate the censoring indicator δ from the
Bernoulli distribution with specific censoring levels (C.L.) at 2%, 20% and 40%.
Using these C.L. (ω � 2%, 20%, 40%), a cutoff value c is determined by (Park et al.
2007)

c � μY + σ
F−1(1 − ω)
√

1 − ρ2

√
1 − ρ2(n+1)

where ω is the censoring probability stated as ω � P(Yt > c), and μY is the mean
of response variable Yt , F(.) represents the standard normal distribution function, ρ is
the autocorrelation parameter, as defined in (2.2), and

√
1 − ρ2(n+1) is the correction

term for the finite sample sizes.
After deciding the cutoff value c, censored time-series Ct can be produced as

Ct � Yt (1 − I (Yt > c)) + c.I (Yt > c), t � 1, . . . , n

Thus, the new incompletely observed response measurements St are constructed by
Eq. (2.3). However, because of the censoring, ordinary methods cannot be applied to
these measurements directly. To overcome this problem, we use the observed response
variables obtained by three data transformation techniques, denoted as GI , kNN and
KMW, given in Sect. 3. Note also that for each simulation configuration, we generate
1000 random samples of size n� 50, 200 and 300 based on censoring levels.

Figure 1 shows the uncensored observations generated from model (5.1) together
with right-censored values for a single simulated data set based on various sample sizes
and censoring levels. Note also that in this simulation experiment, different configura-
tions are established to provide perspective of the adequacy of the data transformations
techniques stated in main text. Because there are many different simulation configura-
tions, it is not possible to present all of them. Therefore, the results from the simulation
study are summarized in the following tables and figures. But the codes of simulation
experiments will be provided in https://github.com/yilmazersin13.

5.1 Outcomes from the parametric component

When tables are inspected roughly, some expected outputs can be seen such as esti-
mates getting worse versus increasing censoring level and better results for larger
samples. It should be noted that these common inferences are not valid for kNN impu-
tation which is a machine learning method. Although in most of the cases kNN seems
ensured the mentioned expected results, it is not an obligation for it. It is already
shown in Table 3; kNN-based estimates for 20% and 40% censoring levels are better
than 2%. It is also counted as an advantage of kNN because it may be useful for any
censoring level. It cannot be generalized for the GI and KMW methods because of
their theoretical properties.
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Fig. 1 Scatterplot of the uncensored and right-censored observations versus time for different sample sizes
and censoring levels: Red points denote the censored observations, while black points show the uncensored
observations. (Color figure online)

Table 3 Outcomes from parametric components of the model (5.1) with right-censored data for n � 50

C.L. Method
[
β̂1, β̂2

] [
B(β̂1), B(β̂2)

] [
V ar (β̂1), V ar (β̂2)

]

2% GI [− 0.97; 0.52] [0.021; 0.008] [0.384; 0.297]

kNN [− 0.88; 0.42] [0.027; 0.001] [0.404; 0.331]

KMW [− 0.85; 0.50] [0.027; 0.085] [0.382; 0.344]

20% GI [− 0.90; 0.58] [0.090; 0.081] [0.447; 0.448]

kNN [− 1.00; 0.55] [0.009; 0.058] [0.466; 0.478]

KMW [− 0.41; 0.60] [0.580; 0.108] [0.425; 0.422]

40% GI [− 0.58; 0.23] [0.416; 0.269] [0.494; 0.470]

kNN [− 0.93; 0.41] [0.060; 0.086] [0.446; 0.433]

KMW [− 0.39; 0.06] [0.601; 0.431] [0.397; 0.384]

In Tables 3, 4 and 5, best scores for each estimation are marked with bold color.
Details of tables show that the estimates based on kNN imputation are better than

the other two methods in terms of regression coefficients
(
β̂1, β̂2

)
and their biases

{
B
(
β̂1

)
, B

(
β̂2

)}
. In the case of variance, the estimates based on GI appear more

satisfying than others.
To see the performance of the imputation methods for estimating the parametric

component of the model, the box plots of the estimated regression coefficients in
1000 replications are presented in Fig. 2. For different combinations, the biases of
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Table 4 Similar to Tables 3 but for n � 200

1. C.L. Method
[
β̂1, β̂2

] [
B(β̂1), B(β̂2)

] [
V ar (β̂1), V ar (β̂2)

]

2% GI [− 1.04; 0.52] [0.040; 0.021] [0.036; 0.030]

kNN [− 1.02; 0.51] [0.026; 0.015] [0.035; 0.029]

KMW [− 0.96; 048] [0.032; 0.015] [0.007; 0.008]

20% GI [− 0.90; 0.46] [0.091; 0.037] [0.033; 0.036]

kNN [− 1.15; 0.58] [0.156; 0.085] [0.044; 0.044]

KMW [− 0.72; 0.36] [0.274; 0.133] [0.119; 0.133]

40% GI [− 0.71; 0.36] [0.284; 0.131] [0.049; 0.073]

kNN [− 1.25; 0.62] [0.252; 0.125] [0.048; 0.073]

KMW [− 0.54; 0.26] [0.459; 0.230] [0.082; 0.067]

Table 5 Similar to Tables 3 and 4 but for n � 300

C.L. Method
[
β̂1, β̂2

] [
B(β̂1), B(β̂2)

] [
V ar (β̂1), V ar (β̂2)

]

2% GI [− 1.03; 0.51] [0.030; 0.018] [0.020; 0.014]

kNN [− 1.01; 0.51] [0.019; 0.013] [0.021; 0.001]

KMW [− 0.97; 0.48] [0.029; 0.021] [0.005; 0.005]

20% GI [− 0.93; 0.47] [0.064; 0.027] [0.013; 0.004]

kNN [− 1.16; 0.58] [0.169; 0.088] [0.034; 0.012]

KMW [− 0.74; 0.37] [0.252; 0.120] [0.009; 0.009]

40% GI [− 0.84; 0.46] [0.157; 0.039] [0.019; 0.018]

kNN [− 1.03; 0.51] [0.038; 0.018] [0.030; 0.042]

KMW [− 0.56; 0.36] [0.435; 0.138] [0.027; 0.029]

the predictions are also indicated by line graphs in the panel (d) of the same figure
according to censoring levels and sample sizes, respectively.

All the graphs plotted for the parametric components of the model, also shown in
Fig. 2, confirm all simulation results given in Tables 3, 4 and 5. The thick red lines in
panels (a), (b) and (c) of Fig. 2 show the real values of the regression coefficients. In
this context, when the panels are examined in detail, it can be clearly seen that as the
censoring level increases, the box graphs start to deviate from the red line and more
outliers appear. However, in order to better understand the success of the methods
of estimating the parametric component, it is also possible to see some interesting
results in the line graphs showing the biases given in panel (d). Due to their theoretical
properties, it can be seen that GI and KMW methods give better results with increasing
sample sizes and worse results with increasing censoring levels. Moreover, it can be
said that the kNN method is not affected by censoring levels and sample sizes. For
example, when n � 300, the measured bias values for the 40% censoring level are
almost identical to the results obtained at the 2% censoring level.
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Fig. 2 a–c Represent the boxplots of estimated regression coefficients and d is formed to see biases of the
estimations for all simulation combinations and all methods

As a result, when the y-axes in panel (d) of Fig. 2 are examined, it can be said
that the kNN method generally has lower bias values than the other two imputation
methods, but the GI and KMW methods give more stable results than the kNN method.
The idea here is that GI and KMW can give better results at low censoring levels.

5.2 Outcomes from the nonparametric component

Table 6 presents the results from the estimation of nonparametric components of the
model (5.1) based on each imputation methods { that is, ĝGI , ĝkN N , and ĝK MW }. As
mentioned earlier, MSE and RoMSE criteria are used to evaluate the performance of
the nonparametric part. Note that the RoMSE scores are given in Fig. 3 to facilitate
understanding of the results. Furthermore, the curves fitted by each method are shown
in Fig. 4.

The MSE scores in Table 6 show that kNN and GI methods are generally satisfac-
tory. Compared to other two methods, the KMW method performs the worst in most
cases and particularly when the censoring levels increase. However, when the results
in Table 6 are examined in detail, the KMW gives a very good second score for low
censoring level (i.e., C.L. � 2%). The GI method can be quite unstable in some cases.
The kNN method is the most stable better than the other existing methods. Moreover,
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Table 6 MSE values from the estimates based on imputation techniques

C.L. n � 50 n � 200 n � 300

GI kNN KMW GI kNN KMW GI kNN KMW

2% 0.0377 0.0148 0.0188 0.0122 0.0068 0.0501 0.0069 0.0015 0.0016

20% 0,1334 0.5730 0.9537 0.0410 0.4738 0.3451 0.0318 0.7298 0.3068

40% 1,9510 0.7339 3,1284 0.4820 1,6799 2,1844 0.4474 0,0674 1,4555

Fig. 3 Bar plots represent the RoMSE scores for all sample sizes and censoring levels

Fig. 4 Real observations and their estimated curves corresponding to the nonparametric part from GI , KMW
and kNN, respectively, for different sample sizes and censoring levels

it can be said that GI and kNN have lower MSE values, especially for heavy censoring
levels.

Figure 3, which displays the bar graphs of RoMSE values, also supports the results
given in Table 6. As can be seen from this graph, the kNN has the best performance,
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Table 7 Outcomes of performance criteria for fitted values

C.L. n � 50 n � 200 n � 300

MARE GMSE MAPE MARE GMSE MAPE MARE GMSE MAPE

2% GI 0.0245 3.0930 0.0160 0.0173 0.8342 0.0234 0.0180 0.8279 0.0219

kNN 0.0217 1.6946 0.0158 0.0169 0.7329 0.0233 0.0173 0.6379 0.0219

KMW 0.0250 4.5642 0.0161 0.0177 0.8848 0.0234 0.0186 0.8705 0.0219

20% GI 0.0259 1.9820 0.0159 0.0182 0.9417 0.0237 0.0189 1.1233 0.0220

kNN 0.0277 2.3161 0.0144 0.0111 1.3550 0.0229 0.0111 1.0893 0.0218

KMW 0.0358 3.2021 0.0165 0.0203 1.0987 0.0251 0.0207 1.2251 0.0240

40% GI 0.0258 4.1755 0.0180 0.0212 1.1567 0.0252 0.0219 1.3122 0.1869

kNN 0.0220 4.7934 0.0255 0.0206 2.8378 0.0204 0.0266 1.2750 0.1689

KMW 0.0291 3.0430 0.0218 0.0257 2.3560 0.0281 0.0258 2.2614 0.1938

while the KMW has the worst performance. Figure 3 also shows the relative perfor-
mance of the methods relative to each other. The basic idea here is that the comparison
of solution techniques is to make clearer.

Figure 4 is designed for the estimates of the nonparametric component obtained
from imputation techniques. In this sense, many different simulation configurations
are analyzed here. But, it is not possible to show the details of each configurations
due to occupying more space. Therefore, only a few of them are displayed in Fig. 4
for all censoring levels and sample sizes. In this context, the two top panels of Fig. 4
are obtained for n � 50 and censoring levels C.L. � 20% and 40%. The estimated
curves for the low censoring level (i.e., C.L. � 2%) are also given in the bottom left
panel of the same figure. Here, the effect of the censoring rate can easily be seen in the
bottom-right panel. Moreover, in each of the panels, estimated curves of the KMW
seem worse than the others. By looking the top panels of Fig. 4, one can easily notice
the improvement in the estimation from kNN when the censoring rate is getting larger.

5.3 Assessing the fitted values from semiparametric model

Finally, we evaluate the overall performance of the model with right-censored data. In
this sense, Table 7 displays the results for the semiparametric time-series regression
model with autoregressive errors defined in Sect. 2. Besides the fitting such a semi-
parametric model, it is also important to able to accurately estimate the parametric and
nonparametric components of the model. For these purposes, the fitted values from the
model for right-censored data based on GI , kNN and KMW techniques are assessed
in terms of MARE, GMSE and MAPE criteria.

The outcomes in Table 7 denote that the KMW method designed for censored data
performs poorly, whereas kNN method performs better in almost all simulation con-
figurations. Furthermore, from Table 7, we observe that the GI method is understood
to be the second best performing method after kNN. To see the results in more detail,
bar graphs of the RGMSE values for all simulation combinations are given in Fig. 5.
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Fig. 5 Bar plots show the RGMSE scores from kNN, GI and KMW for all sample sizes and censoring
levels

In this context, a remarkable aspect of Fig. 5 is that it provides an alternative way to
compare the data transformation techniques. It is interesting to note that even though
KMW and GI are badly affected by censorship, they seem to have a more stable
structure than kNN.

As noted earlier, the sample size or censorship level is not binding for the kNN
method. This can be considered both an advantage and a disadvantage for kNN,
because this method can give very good results under high censorship, as well as
poor performance for low censoring levels. In Fig. 5, the results from the kNN method
for n � 300 and C .L. � 2% can be shown as an example for this case.

6 Real data work

In this section, real-world data are considered to see the performances of the data
transformation techniques designed for right-censored data. To achieve this goal, the
data set showing the duration of unemployment is used. The data set includes the
monthly unemployment period rates between 2004–2019 and is taken from the https://
ec.europa.eu/eurostat/data/databas for Turkey. In this data set, none of 2004 and the
last three months of 2019 are correctly obtained. Since these data points cannot take
negative values, they can be censored from right to zero as a detection limit. Thus, the
proposed analysis can be performed using this data set. In these sense, semiparametric
time-series model can be written as follows

Unempt � β1Unemp(t−1) + g(set ) + εt , t � 1, . . . , 186 (6.1)
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Fig. 6 Obtained new response variable and censored original data for two imputation methods

Table 8 Estimations from the
parametric part of the model
(6.1) with censored
unemployment ratios

GI kNN KMW

β̂1 0.2590 0.3792 1.0000

V ar
(
β̂1

)
0.0019 0.0012 0.0180

Table 9 Overall performance
scores for fits from
semiparametric model using GI ,
kNN and KMW

MARE GMSE MAPE

GI 0.0602 0.0088 0.0270

kNN 0.0108 0.0051 0.0209

KMW 0.0655 0.2106 0.0552

where Unempt ’s are the values of unemployment duration ratio depend on time,
Unemp(t−1) denotes the first lag of the response variable, set � (1, . . . , n)T is con-
structed to represent seasonality, and εt ’s are the random error terms with zero mean
and constant variance.

As denoted before, to deal with censoring data problem the kNN and GI methods
replace the censored observations with the imputed observations, while the KMW
method uses the Kaplan–Meier weights. In this context, both the real and observations
imputed with kNN and GI are shown in Fig. 6. Thus, by defining response observations
(i.e., unemployment ratios) for three methods, we fit semiparametric model (6.1) with
right-censored data. Tables 8 and 9 report the results for the parametric component of
this model, whereas Fig. 7 displays the nonparametric component of the same model.

Table 8 displays the evaluation measures for parametric component. According
to these result, it is clearly seen that the kNN imputation produces better estimates
than other two methods. As in simulation experiments, it can also be said that KMW
method does not give a good estimate.

Regarding nonparametric component, three different estimations of the unknown
regression function are graphically illustrated in Fig. 7. The MSE values for these
fittings designed by GI , kNN and KMW methods are also calculated as 0.7567, 0.8384
and 1.5258, respectively. Fitted the curves denoted by ĝG I (set ), ĝkN N (set )and ĝK MW

(set ) are shown in Fig. 7.
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Fig. 7 Fitted curves for nonparametric component of the model

As can be seen in Fig. 7, although the estimated curve for KMW captures the
actual data line, it tries to overcome censorship with increasing magnitudes of some
data points that can be clearly detected after t � 100. The GI and kNN methods
confirm the above MSE values and the values given in Table 8 and estimates from
these methods follow each other closely. In addition, it is important that the fitted
curves appear more understandable in terms of unemployment duration rates, since
kNN and GI use imputed values. Overall performances of these methods are illustrated
in Table 9.

From Table 9, we see that the estimate based on kNN has the best scores in terms of
performance criteria. The KMW method has not shown a good performance especially
for GMSE criterion but in general, similar to simulation study, scores are close to each
other. Low censoring level (8%) can be presented as a reason for this case.

7 Concluding remarks

In this paper, we use penalized spline to fit a semiparametric regression model with
right-censored time-series data. Since the censored data cannot be used directly with
an ordinary statistical method such as penalized splines, a data transformation is gen-
erally required to solve this problem. For these purposes, we consider three different
techniques GI, kNN and KMW. Note that Aydin and Yilmaz (2018) modified the
ordinary penalized splines method to estimate a semiparametric regression model in
which censored observations are replaced with synthetic data points. In this paper,
we propose three different data transformation methods to solve the censored data
problem. It should be noted that proposed methods are based on a generalization of
the ordinary GI , kNN and KMW methods in case of the uncensored data. To achieve
these ideas, Monte Carlo simulation experiments and a real data example are carried
out. Accordingly, although three solution methods give the satisfying results, the kNN
method works much better than the other two almost for all of the simulation com-
binations and the real data example. In addition, the findings obtained in this paper
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show that the semiparametric regression model captures the changes of variability in
the data and provides a reasonable fit to censored time-series.

The empirical results of both the real data and simulation studies confirmed that
for all the methods, as expected the variances and bias values of the estimated coeffi-
cients start to decrease as the sample size n gets larger. Note also that for small sized
sample, the bias values of coefficients increase as the censoring levels increase. One
of the important ideas of this paper is that the kNN imputation method provides the
satisfactory results in most cases.

In summary, the results of the simulation study show that although the GI and
KMW methods give good results for low censoring level (2%), as the censoring levels
increase, the kNN method improves and provides much better performance in esti-
mating the parametric component of the right-censored semiparametric time-series
model.

In terms of the nonparametric component, the kNN and GI methods give similar
MSE scores. However, KMW does not give a satisfactory nonparametric function
estimate. In addition, the performance of the three estimated models are evaluated by
MARE, GMSE, MAPE and RGMSE and it is seen that kNN has had the best estimates.

In the real data study, unemployment rates are modeled with three introduced esti-
mators and similar to the simulation study, kNN and GI methods provide better results
than KMW with a high difference. The failure of KMW can be explained by the fact
that the censored data points are far from uncensored due to Kaplan–Meier weights.
Details are given in Sect. 3.3

Finally, the kNN method performs better than the other two methods in terms of
performance criteria and the variance of estimates considered here, for all sample sizes
and censoring levels.

MSE A possible extension of the proposed estimators can be obtained using
different imputation techniques such as regression imputation, multiple imputation,
SVD-based imputation, and so on. It can also be designed for different smoothing
techniques such as kernel smoothing or smoothing spline for future research. Thus,
significant contributions can be provided for improving of this study. In addition, new
approaches can be developed for not only right-censored data, but also for time-series,
left-censored and interval-censored data points.
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Appendix A1: Derivation of Eqs. (2.12a–b)

To see derivation of Eqs. (2.12a–b), we first consider the penalized criterion defined
in (2.10). According to this equation, the matrix and vector form

P RSS(β, b; λ) �
n∑

t�1

At (St − xtβ − g(zt ))
2 + λ

K∑

k�1

b2
p+k

� (S − Xβ − Ub)T A(S − Xβ − Ub) + λbT Db
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Some simple algebraically show that

P RSS(β, b; λ) �
(
ST A − βT XT A − bT UT A

)
(S − Xβ − Ub) + λbT Db

� ST AS − ST AXβ − ST AUb − βT XT AS + βT XT AXβ

+ βT XT AUb − bT UT AS + bT UT AXβ + bT UT AUb + λbT Db

� ST AS − 2ST AXβ − 2ST AUb + βT XT AXβ + 2βT XT AUb

+ bTUT AUb + λbT Db (A1.1)

In order to find the minimizers of (A1.1), we set the partial derivatives of this
expression to zero. From (A1.1), it follows that the partial derivate of (A1.1) with
respect to b is

∂ P RSS

∂b
� −2ST AU + 2βT XT AU + 2UT AUb + 2λDb � 0 (A1.2)

Replacing b by b̂, and after some algebra we find that

b̂ �
(
UT AU + λD

)−1
UTA(S − Xβ) (A1.3)

as claimed in the main text.
Similarly, the partial derivate of (A1.1) with regard to β is

∂ P RSSm

∂β
� −2ST AX + 2XT AXβ + 2XT AUb � 0 (A1.4)

Simple algebra shows that

XT AXβ � ST AX − XTAUb

XT AXβ � XTA(S − Ub) (A1.5)

Substituting Equation (A1.3) into Equation (A1.5), we get

XT AXβ � XT A
[
S − UXT

(
UT AU + λD

)−1
UTA(S − Xβ)

]

XT AXβ � XTAS − XT AX
(
UT AU + λD

)−1
UTAS + XT AX

(
UT AU + λD

)−1
UTAXβ

[
XT AX − XT AX

(
UT AU + λD

)−1
UTAX

]
β � XTAS − XT AX

(
UT AU + λD

)−1
UTAS

as stated in (A1.3), replacing β by β̂ and simple algebra shows that

β̂ �
[
XT AX − XT AX

(
UT AU + λD

)−1
UTAX

]−1(
I − X

(
UT AU + λD

)−1
UTA

)
XTAS

(A1.6)

as described in the main text.
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Appendix A2: Derivation of Eqs. (3.10a–b)

In the context of KMW, the penalized least-squares estimates are the values of
β̂K M and b̂K M that minimize the criterion (3.8), given by P RSSK M (β; b) �
(S − Xβ − Ub)T AW(S − Xβ − Ub) + λbT Db

This expression could be written as

P RSSK M (β; b) �
(
ST AW − βT XT AW − bT UT AW

)
(S − Xβ − Ub) + λbT Db

� ST AWS − ST AWXβ − ST AWUb − βT XT AWS + βT XT AWXβ

+ βT XT AWUb − bT UT AWS + bT UT AWXβ + bT UT AWUb + λbT Db

� ST AWS − 2ST AWXβ − 2ST AWUb + βT XT AWXβ

+ 2βT XT AWUb + bTUT AWUb + λbT Db (A2.1)

Similar to the procedures that used in equation (A1.1), the partial derivate of (A2.1)
with respect to b is

∂ P RSSm

∂b
� −2ST AWU + 2βT XT AWU + 2UT AWUb + 2λDb � 0 (A2.2)

Equation (A2.1) could be written as follows

UT AWUb + λDb � ST AWU + βT XT AWU
(
UT AWU + λD

)
b � UTAW(S − Xβ)

After some algebra, we find that the estimator b̂K M of b is

b̂K M �
(
UT AWU + λD

)−1
UTAW(S − Xβ) (A2.3)

as determined in Sect. 3.3.
Similarly, the partial derivate of (A2.1) with regard to β is

∂ P RSSm

∂β
� −2ST AWX + 2XT AWXβ + 2XT AWUb � 0 (A2.4)

From (A2.3), it follows that

XT AWXβ � ST AWX − XTAWUb

XT AWXβ � XTAW(S − Ub) (A2.5)

Substituting Equation (A2.3) into Equation (A2.5), we obtain

XT AWXβ � XT AW
[
S − UXT

(
UT AWU + λD

)−1
UTAW(S − Xβ)

]

XT AWXβ � XTAWS − XT AWX
(
UT AWU + λD

)−1
UTAWS + XT AWX

(
UT AWU + λD

)−1
UTAWXβ
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[
XT AWX − XT AWX

(
UT AWU + λD

)−1
UTAWX

]
β � XTAWS − XT AWX

(
UT AWU + λD

)−1
UTAWS

Consequently, after a bit of algebra we find that the estimator β̂K M of β is

β̂K M �
[
XT AWX − XT AWX

(
UT AWU + λD

)−1
UTAWX

]−1(
I − X

(
UT AWU + λD

)−1
UTAW

)
XTAWS

(A2.6)

as described in Sect. 3.3.
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