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Abstract The aim of the present study was to evaluate

the relationship between obstructive sleep apnea syndrome

(OSAS) severity and the hippocampal sulcus width in a

cohort of subjects with OSAS and controls. A total of 149

OSAS patients and 60 nonapneic controls were included in

the study. Overnight polysomnograpy was performed in all

patients. Hippocampal sulcus width of the patients was

measured by a radiologist blinded to the diagnosis of the

patients. Other variables noted for each patient were as

follows: gender, age, body mass index, apnea hypopnea

index, Epworth sleepiness scale, sleep efficacy, mean sat-

uration, lowest O2 saturation, longest apnea duration, neck

circumference, waist circumference, hip circumference. A

total of 149 OSAS patients were divided into three groups:

mild OSAS (n = 54), moderate OSAS (n = 40), severe

OSAS (n = 55) groups. The control group consisted of

patients with AHI\5 (n = 60). Hippocampal sulcus width

was 1.6 ± 0.83 mm in the control group; while

1.9 ± 0.81 mm in mild OSAS, 2.1 ± 0.60 mm in moder-

ate OSAS, and 2.9 ± 0.58 mm in severe OSAS groups

(p\ 0.001). Correlation analysis of variables revealed that

apnea hypopnea index (rs = 0.483, p\ 0.001) was posi-

tively correlated with hippocampal sulcus width. Our

findings demonstrated that severity of OSAS might be

associated with various pathologic mechanisms including

increased hippocampal sulcus width.

Keywords Hippocampal sulcus width � Obstructive sleep
apnea

Introduction

Obstructive sleep apnea syndrome (OSAS) is a common

multifactorial disorder characterized by repetitive episodes

of upper airway obstruction during sleep leading to inter-

mittent hypoxia or arousal [1–3]. With increased incidence

in recent years, OSAS is an important cause of morbidity

and mortality, such as increased cardiovascular risk, heart

failure, arrhythmias, systemic and pulmonary hypertension

[4, 5]. Repeated episodes of apnea/hypopnea in OSAS have

been demonstrated to lead to hypoxia and to result in

neurostructural changes [6].

Cerebral structural changes have been shown to be

associated with OSAS [7]. The limbic system and hippo-

campus are primary regions of the central nervous system

that control sleep-wake patterns, light–dark-cycle adapta-

tion, mood regulation, and neuronal excitation [8]. The

hippocampus demonstrates age-related atrophy, and it may

be affected by neurotoxic drug abuse, hypoxic injury,

diabetes mellitus, hypertension, obesity, sleep disorders,

and trauma [9, 10]. Cellular damage to the hippocampus
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contributes to neuropsychological impairment, including

insomnia and cognitive dysfunction [11, 12].

Magnetic resonance imaging (MRI) modalities have

been widely used to evaluate neurological and neuropsy-

chiatric disorders [8, 12]. To our knowledge, no study has

examined the relationship between the hippocampus sulcus

width and severity of OSAS using MRI. We hypothesized

that repeated episodes of apnea/hypopnea might cause

neurostructural changes in the hippocampus in OSAS. The

aim of the present study was to evaluate the relationship

between OSAS severity and the hippocampal sulcus width

in a cohort of subjects with OSAS and controls.

Materials and methods

Study design

This study was approved by the local Institutional Review

Board (04012013/5). A retrospective study was performed

in patients referred to the sleep laboratory of our institution

for daytime sleepiness, habitual nocturnal snoring, and

witnessed apnea spells from August 2009 to January 2014.

Among these patients, 261 patients who had undergone

cranial MRI for any reason (head trauma, brain tumors,

ischemia, hemorrhage, suspected epilepsy, developmental

disorders, diseases of the pituitary gland, parasellar region,

brain stem and posterior fossa, evaluation of the cranial

nerves, infectious and inflammatory and diseases, post-

operative patient evaluation) were included in the study.

Fifty-two patients who had undergone MRI for brain

tumor, suspected epilepsy, and diseases of the parasellar

region were excluded. Finally, a total of 149 OSAS patients

and 60 nonapneic controls were included in the study.

Outcome parameters

Clinical examination included standardized scales for the

assessment of respiratory symptoms and subjective day-

time sleepiness, that is, the Epworth Sleepiness Scale

(ESS) [13]. Body mass index (BMI) was calculated from

body weight in kilograms divided by the square of height in

meters. Full-night polysomnography (PSG) (Alice-5 Poly-

somnography System, Respironics Inc., Pittsburgh, PA)

was performed. The following physiologic variables were

monitored simultaneously and continuously: four channels

for the electroencephalogram; two channels for the electro-

oculogram; two channels for the surface electromyogram

(submentonian region and anterior tibialis muscle); one

channel for an electrocardiogram; airflow detection via two

channels through a thermocouple (one channel) and nasal

pressure (one channel); respiratory effort of the thorax (one

channel) and of the abdomen (one channel) using

plethysmography; snoring (one channel) and body position

(one channel); oxyhemoglobin saturation; and pulse rate.

Two trained technicians visually scored all PSGs according

to standardized criteria for investigating sleep [14]. Apnea

was defined as complete cessation of airflow for at least

10 s; hypopnea was defined as a reduction in airflow that

was associated with at least a 4 % drop in O2 saturation.

OSA was defined by AHI C5/h. According to the AHI

values, OSA patients were classified into three groups as

mild (AHI = 5–15), moderate (AHI = 15–30) and severe

OSA (AHI[ 30).

Hippocampal sulcus width of the patients (study and

control groups) was measured by a radiologist blinded to

the diagnosis of the patients. Magnetic resonance imaging

was performed on a General Electric (GE) Signa 1.5-T MR

imaging system (GE Healthcare, Milwaukee, WI, USA)

with an eight-channel head coil. Routine brain MR imaging

and fat-saturated 3D T1-weighted gradient-echo sequence

in the coronal planes (TR, 12.3 ms; TE, 5.4 ms; flip angle,

8; NEX, 2; section thickness, 0.8 mm; intersection spacing,

0.4 mm; matrix size, 512 9 512, field of view,

200 9 200 mm) was performed (Figs. 1, 2).

Statistical analyses

Data were analyzed using the Statistical Package for Social

Sciences 19.0 for Windows (SPSS Inc., Chicago, IL). A

normal distribution of the quantitative data was checked

using Kolmogorov–Smirnov and Shapiro–Wilk tests.

Parametric tests were applied to data of normal distribution

and non-parametric tests were applied to data of

Fig. 1 Magnified coronal T1-weighted image of a 48-year old non-

demented control object revealed right hippocampal sulcus (vertical

white arrows) and choroidal fissure (asterisk) within normal limits.

The right Sylvian fissure (white arrowheads), third ventricle (dagger)

and branches of anterior and middle cerebral arteries (vertical black

arrows) were also seen
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questionably normal distribution. Independent-samples

t test and Mann–Whiney U test were used to compare

independent groups. One-way ANOVA test was used to

compare groups of independent continuous variables and

Bonferroni post hoc analysis was used for multiple com-

parison tests. To calculate correlation coefficients Partial

Correlation test was used. The distribution of categorical

variables in both groups was compared using Pearson’s

Chi-square test. Data are expressed as mean ± SD or

median (interquartile range), as appropriate. All differences

associated with a chance probability of 0.05 or less were

considered statistically significant.

Results

A total of 149 OSAS patients were divided into three

groups: mild OSAS (n = 54; 28/26 male/female; mean

Fig. 2 Magnified coronal T1-weighted image of a 54-year old patient

with mild OSAS showed vertical measurement of the hippocampal

sulcus on left side

Table 1 Demographic characteristics in control subjects and patients with mild, moderate and severe obstructive sleep apnea

Control group

(n = 60)

Mild OSAS

(n = 54)

Moderate OSAS

(n = 40)

Severe OSAS

(n = 55)

p value

BMI (kg/m2) 27.4 ± 4.86 29.9 ± 5.11 30.7 ± 5.23 32.1 ± 4.61 \0.001 p(S–Mi) = 0.021

p(S–C)\ 0.001

p(Mi–C) = 0.007

p(C–Mo) = 0.001

AHI 1.8 ± 1.36 8.8 ± 3.04 21.8 ± 4.27 60.8 ± 21.17 \0.001 p(S–Mi)\ 0.001

p(S–C)\ 0.001

p(S–Mo)\ 0.001

p(Mi–C)\ 0.001

p(Mi–Mo)\ 0.001

p(C–Mo)\ 0.001

ESS 5 ± 5 5.5 ± 5 6 ± 7 8 ± 8 0.152

Neck circumference 37.5 ± 3.39 38.6 ± 2.90 40.8 ± 2.93 41.2 ± 3.78 \0.001 p(S–Mi)\ 0.001

p(S–C)\ 0.001

p(Mi–Mo) = 0.002

p(C–Mo)\ 0.001

Waist circumference 97.5 104.7 110.1 111.0 \0.001 p(S–Mi) = 0.010

p(S–C)\ 0.001

p(Mi–C) = 0.003

p(Mi–Mo) = 0.042

p(C–Mo)\ 0.001

Hip circumference 104 ± 10 109 ± 11 110 ± 14 114 ± 17 0.001 p(S–C) = 0.001

p(C–Mo) = 0.040

Hippocampal sulcus width 1.6 ± 0.83 1.9 ± 0.81 2.1 ± 0.60 2.9 ± 0.58 \0.001 p(S–Mi)\ 0.001

p(S–C)\ 0.001

p(S–Mo)\ 0.001

p(Mi–C) = 0.022

BMI body mass index, AHI apnea hypopnea index, ESS Epworth sleepiness scale, C control, Mi mild, Mo moderate, S severe
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age: 54.3 ± 13.18 years), moderate OSAS (n = 40; 26/14

male/female; mean age: 56.7 ± 8.71 years), severe OSAS

(n = 55; 32/23 male/female; mean age:

57.8 ± 13.34 years) groups. The control group consisted

of patients with AHI\5 (n = 60; 23/37 male/female; mean

age: 42.9 ± 14.34 years). There were no significant dif-

ferences between two groups in terms of age and gender.

BMI and AHI were significantly different among groups

(p\ 0.001 for each). However, ESS did not differ signif-

icantly (p = 0.152). Neck, waist, and hip circumferences

were significantly different among groups (p\ 0.001 for

each) (Table 1).

Hippocampal sulcus width was 1.6 ± 0.83 mm in the

control group; while 1.9 ± 0.81 mm in mild OSAS,

2.1 ± 0.60 mm in moderate OSAS, and 2.9 ± 0.58 mm in

severe OSAS groups (p\ 0.001) (Table 1). Table 2 sum-

marizes PSG characteristics according to the severity of the

OSA. Correlation analysis of variables correlated with

hippocampal sulcus width was shown in Table 3. Corre-

lation analysis revealed that apnea hypopnea index

(rs = 0.483, p\ 0.001) was positively correlated with

hippocampal sulcus width (Fig. 3).

Discussion

In this study, we attempted to demonstrate whether there

was a relationship between hippocampal sulcus width and

severity of OSAS. Our study showed that apnea hypopnea

index was positively correlated with hippocampal sulcus

width.

OSAS, characterized by intermittent hypoxemia and

arousal from sleep, reduces oxygen content of breathing air

with subsequent decreased brain tissue oxygenation during

sleep [1]. The cerebral structures showed different vul-

nerability patterns to hypoxic, hypercarbic, or reduced-

Table 2 PSG characteristics according to the severity of the OSA

Control group

(n = 60)

Mild OSAS

(n = 54)

Moderate OSAS

(n = 40)

Severe OSAS

(n = 55)

p value

Sleep efficacy (%) 85.75 ± 16.95 84.2 ± 16.7 80.7 ± 11.7 79.4 ± 15.6 0.013 p(S–C) = 0.020

Mean saturation (%) 96 ± 2 95 ± 2 95 ± 2 93 ± 2 \0.001 p(S–Mi)\ 0.001

p(S–C)\ 0.001

p(S–Mo) = 0.001

p(Mi–C) = 0.006

p(C–Mo) = 0.004

Lowest O2 saturation (%) 90 ± 4.5 84 ± 8 86 ± 8 77 ± 17 \0.001 p(S–Mi) = 0.004

p(S–C)\ 0.001

p(S–Mo) = 0.001

p(Mi–C)\ 0.001

p(C–Mo)\ 0.001

Longest apnea (sn) 21.5 ± 5.5 29.5 ± 11 30.25 ± 9.2 41.5 ± 23.5 \0.001 p(S–Mi)\ 0.001

p(S–C)\ 0.001

p(S–Mo) = 0.001

p(Mi–C)\ 0.001

p(C–Mo)\ 0.001

Table 3 Correlation analysis of variables correlated with hippo-

campal sulcus width

Correlations rs p value

Apnea hypopnea index 9 hippocampal sulcus

width

0.483 \0.001

Epworth sleepiness scale 9 hippocampal sulcus

width

0.072 0.307

Fig. 3 Correlation between hippocampal sulcus width and apnea

hypopnea index
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perfusion consequences of repeated attacks of apnea or

hypopnea [3].

Several studies have demonstrated the presence of

cerebral structural changes in sleep disorders [15]. Cerebral

structural changes and chemical compositions might be the

underlying cause of functional deficits, defective memory,

emotional disorders, learning ability defects, and sleep-

wake disturbances [16]. Attention capacity of OSAS

patients decreases, which can probably account for

memorial difficulties [17]. The damage to the gray matter

contributing to cognition, autonomic, and respiratory reg-

ulation might be cause those symptoms [18]. Focal gray

matter loss in OSAS patients can contribute excessive

daytime sleeepiness [19]. White matter, including axonal

linking of the limbic system, is also affected in OSAS

patient with neuropsychological symptoms [20].

Cerebral MR imaging is more sensitive to detecting on

abnormalities of brain morphology and function. MP-

RAGE is a pulse sequence for high resolution 3D T1-

weighted volumetric imaging consisting of an inversion

recovery pulse followed by rapid gradient echo readout,

and introduces by the reproducibility of a particular algo-

rithm of brain volume change from other sources of vari-

ability [21]. In recent studies, MR spectroscopy, T2-

relaxometry MR, 18F-fluoro-2-deoxy-D-glucose positron

emission tomography, Voxel based morphometry shows

various hippocampal changes in OSAS [22, 23]. Unilateral,

bilateral, and non-reduced hippocampal cortical gray mat-

ter concentrations have been reported, inwith some studies

additional basal ganglia, thalamus and pontine concentra-

tion reductions appeared in OSAS [24]. In the present

study, we used 1.5-T MR imaging system with an eight-

channel head coil.

Hippocampus has been shown to be highly vulnerable to

hypoxic damage both in humans and animals [20]. In a

rodent model, intermittent hypoxia was shown to trigger

apoptosis, neurodegeneration, neuronal damage, altered the

dendritic arborization, and reduced neurotransmission in

hippocampus [25]. On the other hand, chronic recurring

episodes of apnea-hipopnea have been resulted excessive

release of neurotransmitters. Over-stimulation of postsyn-

aptic receptors occurred subsequently in the hippocampal

neurons [26, 27]. In a rat study, there was a marked

apoptosis in the hippocampus in conjunction with chronic

episodes of hypoxia [28]. In the present study, we observed

significant difference in the hippocampal sulcus width

between the OSAS and the control groups.

The main limitations of our study were retrospective

design and relatively small size of our series. Second, some

details of history and factors that may influence the out-

come may not be completely documented and our study

findings may potentially have been influenced by these

confounding factors. Third, this was a single-institution

study, and some caution should be taken before general-

izing the findings to other settings. Due to these restric-

tions, associations should be interpreted with caution.

Conclusion

Our findings demonstrated that severity of OSAS might be

associated with various pathologic mechanisms including

increased hippocampal sulcus width. However, further

randomized, prospective, controlled trials on larger series

are necessary for making more precise interpretations to

clarify these complex mechanisms.
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