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Quasi-two dimensional electron systems exhibit peculiar transport effects depending on their density
profiles and temperature. A usual two dimensional electron system is assumed to have a δ like density
distribution along the crystal growth direction. However, once the confining quantum well is sufficiently
large, this situation is changed and the density can no longer be assumed as a δ function. In addition, it is
known that the density profile is not a single peaked function, instead can present more than one
maxima, depending on the well width. In this work, the electron density distributions in the growth
direction considering a variety of wide quantum wells are investigated as a function of temperature. We
show that the double peak in the density profile varies from symmetric (similar peak height) to asym-
metric while changing the temperature for particular growth parameters. The alternation from sym-
metric to asymmetric density profiles is known to exhibit intriguing phase transitions and is decisive in
defining the properties of the ground state wavefunction in the presence of an external magnetic field, i.e
from insulating phases to even denominator fractional quantum Hall states. Here, by solving the tem-
perature and material dependent Schrödinger and Poisson equations self-consistently, we found that
such a phase transition may be elaborated by taking into account direct Coulomb interactions together
with temperature.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

The interacting quasi-two dimensional (2D) electrons are ob-
tained at the interface of two heterostructures, which have different
band gaps. The dimensional constriction yields quantized energy
levels and the electron systems are commonly assumed to have zero
thickness, i.e. strictly 2D. At low or intermediate doping and at suf-
ficiently low temperatures, only the lowest sub-band is occupied and
assuming a δ function to describe a 2D electron system can be well
justified if the resulting quantumwell is narrow. In this situation only
a single peak is observed at the density distribution in the z direction
nel(z), which can be approximated by a z zelδ ( − ). However, the
lu).
situation becomes quite different if the well is sufficiently wide.
Then, the density profile may present more than a single peak, which
may have different amplitudes, pointing that also the higher sub-
bands are occupied [1,2,14,7]. The effect of surface states and effects
due to Coulomb interactions influence the effective potential drasti-
cally, together with the fact that the sub-bands become closer in
energy [8]. Among many other interesting effects observed at quasi-
two dimensional electron systems (2DESs), for instance quantized
Hall effects [9,10], the observations related with topologically pro-
tected ground states attract attention due to intriguing phase tran-
sitions [1,7,11]. The states which are claimed to be topologically
protected form at high perpendicular magnetic fields, where the
number density of electrons are a fraction of the number density of
magnetic flux quantum, the so-called the filling factor ν. At even
integer dominator filling factors, namely 3/2, 5/2ν = , quasi-particles
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are formed due to the many-body interactions. These particles can-
not be classified simply as Fermions or Bosons due to the uncommon
nature of the dimensionality. Hence, braiding statistics has to be
utilized which may give Abelian or non-Abelian commutation rela-
tions, yielding topologically protected states [11,3]. In particular,
electron–electron interactions are claimed to be the source of the
phase transitions [7] at wide quantum wells, i.e the phase transition
from topologically protected to insulating states.

The interactions are known to be less important in the absence
of strong magnetic fields B applied perpendicular to the plane of
the 2DES [12,13]. Once the WQW is subject to a B field, as a rule of
thumb to estimate the importance of the interactions one usually
compares the distance between these two peaks d in density to
the magnetic length eB/ℓ ( = ). The in-plane correlation energy
is inversely proportional to the magnetic length, namely
E De /Corr

2= ϵℓ where D is a constant of the order of 0.1, and the
Coulomb energy is similarly inversely proportional to the peak
separation d, i.e. E e d/Coul

2∝ ϵ [2,14]. Hence, the comparison of
these two energies together with the symmetric to asymmetric
energy gap SASΔ determines the properties of the ground state
[2,14]. It is reported that the observation of the intriguing frac-
tional states and the formation of insulating phases are strongly
affected by the symmetry of these peaks [1,7]. The experiments
show that even the denominator fractional filling factors

1/2, 1/4ν = are present if the density distribution is symmetric
and disappears at high imbalance, i.e. density distribution is
asymmetric. It is also reported that the insulating phases are ob-
served at low filling factors (e.g. at 1/5ν = ) [15] considering strong
imbalance and, in contrast to even dominator fractional states, are
washed out once the system is symmetric [1,4,5]. More interest-
ingly, these states are highly temperature dependent. As expected,
the fractional states show activated behavior and are characterized
by the many-body effects induced energy gap [2,14]. The tem-
perature dependency of the activated behavior is strongly influ-
enced by the nature of the wavefunction, i.e. whether the wave-
function is one-component (symmetric density distribution) or
two-component (asymmetric density distribution). Another me-
chanism to change the electron temperature is to drive an external
current that increases the electron temperature due to Joule
heating. The systematic experimental investigations evidence a
melting transition of the insulating phase, where an activated
behavior is observed below a certain threshold. This observation is
attributed to melting of the Wigner crystal [2,14].

In this letter, we explore the effect of temperature on the
density distribution considering a WQW by numerically in-
vestigating the band gap variation also in the interactions. We
utilize the semi-empirical temperature dependent band gap for-
mulation of Varshni [16] and Lautenschlager [17], and solve the
Schrödinger and the Poisson equations self-consistently. We show
that, depending on the heterostructure parameters, one can in-
duce a symmetry to asymmetry transition not only by changing
the potential applied to the top or bottom gates, but also by
changing the temperature. We propose that, by performing tem-
perature sensitive magneto-transport experiments, it is possible to
observe a reentrant Wigner crystallization. Such an effect is yet
uninvestigated both theoretically and experimentally.
2. The model

Solving the Schrödinger and Poisson equations in one-dimen-
sion considering a quantum well is a straightforward numerical
exercise. However, calculations become complicated if one also
takes into account different effective masses at the well and the
barrier, and in addition also the temperature dependency of the
energy gap Eg(T). In general, such temperature effects emanate
from electron–phonon interactions, lattice mismatch (i.e. thermal
expansion), etc. The detailed and systematic empirical, numerical
and theoretical efforts indicate that the energy gap is affected by
temperature effects even below 1 K [18]. Despite the fact that
there are improved calculation methods [19] (and the references
therein), the empirical relations proposed by Varshni [16]

E T E T T0 / , 1g
2α β( ) = ( ) − ( + ) ( )

and Lautenschlager [17–20]

E T E a T0 2 / exp / 1 , 2g B BΘ( ) = ( ) − ( ( ) − ) ( )

are rather simple and also fit the experiments excellently [21,22].
Here, α and β are the empirically obtained constants, whereas aB is
the electron–phonon coupling constant together with the average
phonon temperature BΘ . In our calculations, we utilize the rela-
tions (1) and (2); however, we observe that the exact temperature
dependency is not decisive. The effective mass is almost directly
proportional to the energy gap, both for GaAs and Al1�xGaxAs
heterostructures, as well as the stoichiometry of the heterostruc-
ture given by x. Keeping these dependencies, we solve the
Schrödinger equation

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟m z T

d
dz

V z T z E
k

m z T2 ;
;

2 ; 3

2 2

2

2 2

ψ−
( )

+ ( ) ( ) = −
( ) ( )

⋆
∥

⋆

with E k E k m T/2j j
2 2( ) = − ( )∥ ∥

⋆ for j¼w, b, where w and b are the
well and barrier dimensions, respectively, together with the elec-
trostatic potential V z T,( ). Hence, the equation yields for z d/2| | < ,

m T
E

4

2

w
wψ ψ

( )
″ =

( )⋆

and for z d/2| | > ,

m T
E V T ,

5

2

b
b 0ψ ψ

( )
″ = ( − ( ))

( )⋆

where V0 is the depth of the well, determined by the energy gap
difference of the heterostructure. This formulation allows us to include
the effects resulting from both the temperature and the different ef-
fective masses. The matching conditions impose that zψ ( ) and

m z T d z dz1/ ; /ψ( ( )) ( )⋆ are continuous, to guarantee the continuity of
the electron density n z z f E E T dE, ,n nel 0

2∫ ψ μ( ) = ∑ | ( )| ( − )= , where
f (ϵ) is the Fermi function, T is the temperature and μ is the chemical
potential. Furthermore, to satisfy the matching conditions, the current
density j z d z dz d z dz im z T/ / / 2 ;z ψ ψ ψ ψ( ) = ( ( ) − ( ) ) [ ( )]⋆ ⋆ ⋆ across
the interfaces and the equation of continuity n t j/ 0∂ ∂ + ∇· = should
hold. In our calculation scheme we assume that the system is doped
by donors, where the donor density is given by ND(z), and is transla-
tional invariant in the x y– plane. Then the total charge density is given
by

z en z eN z , 6Delρ ( ) = − ( ) + ( ) ( )

which generates the electrostatic electric field E z d z dz/z ϕ( ) = − ( )
and the displacement field D z z E zz zκ( ) = ( ) ( ), where zκ ( ) is the
dielectric constant of the materials. Poisson's equation can be
written as
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d
dz

z
dV
dz

e n z N z4 ,
7

H
el D

2κ π− ( ) = − [ ( ) − ( )]
( )

where V z e zH ϕ( ) = − ( ) is the Hartree “potential” and the total po-
tential energy of an electron is V z V z d T V z/2; H0Θ( ) = (| | − ) + ( ). At
this point a self-consistent numerical solution is required to obtain
the potential and the density given by Eqs. (3) and (7). For this
purpose we employ the numerical algorithm developed by M. Rother,
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which successfully simulates similar, however, even complicated
systems [23,24].

The exact temperature dependence of effective mass cannot be
extracted from our model, since both the gap and the mass depend
on temperature [6]. However, one should also note that at a given
low temperature both quantities are obtained self-consistently.
Fig. 2. The evolution of peak separation d as a function of well width W at 4.2 K.
Insets show density distributions at characteristic W. Once the well width is larger
than 50 nm, a double peak structure is observed where d scales linearly with W.
3. Temperature dependent results

Fig. 1a depicts the schematic presentation of the hetero-
structure under investigation, whereas Fig. 1b is a plot of the self-
consistently calculated conduction band, together with the prob-
ability z2ψ ( ) and the Fermi Energy EF (calculated at T¼0, otherwise
chemical potential μ) as a function of the growth direction. Here
the structure parameters are selected such that a double peaked
symmetric density distribution is obtained and no top/bottom
gates are imposed at the surfaces. To investigate the density dis-
tribution as a function of quantum well width W, we also per-
formed calculations by varying the thickness of the GaAs material
at fixed temperature, namely at 4.2 K, as shown in Fig. 2. We ob-
served that if the well is narrower than 40 nm, only a single peak
occurs. Interestingly, when the well width is slightly increased, a
flat density distribution is obtained within the well. We assume
that such a flat, thick electron density distribution yields stable

1/2, 1/4ν = states which is still a one-component system. Further,
increasing the well width essentially results in a linear increase of
the peak separation, which presents a symmetric distribution with
respect to the center of the quantum well.

So far we presented results which are somewhat well known or
understood in the existing literature, except the fact that we found
a well width interval where the electron density exhibits a con-
stant distribution before two well separated peaks occur. Next, we
focus on the effect of temperature on the density distribution. For
this purpose, we first start with a symmetrically grown crystal,
namely the center of the QW is 400 nm below the surface, where
the top (and bottom) 50 nm is capped by a GaAs layer and the
300 nm thick AlGaAs layer is δ doped by Si 70 nm from the surface
Fig. 1. (a) The schematic representation of the heterostructure. (b) The self-consistently
distribution ψz

2 (thick solid line) and Fermi energy (vertical line). The density distributi
(and from the bottom) with donor densities of the order of
1019 cm�3. Fig. 3 depicts the temperature dependency of a sym-
metric distribution considering a 57 nm wide QW. At the lowest
temperature only the lowest sub-band is occupied and we observe
a single peak centered around z¼400 nm. Increasing the tem-
perature from 50 mK to 100 mK results in the occupation of the
second level and the double peak structure is observed. Further
increase, essentially has approximately no influence on the density
distribution, however, the number of electrons within the well is
increased, as expected.

This behavior is completely altered when one already starts
with an asymmetric density distribution at lower temperatures.
The density asymmetry is obtained by doping the system asym-
metrically together with manipulating the distances of the donor
layers from the 2DES, as shown in the inset of Fig. 4. Our main aim
is to generate a density imbalance due to different interaction
calculated conduction band (thin solid line), together with the electron probability
on presents a double peak structure, separated by an average distance d.



Fig. 3. Temperature dependency of an initially symmetric distribution at 50 mK
(solid thick line), which evolves to a double peak structure at higher temperatures
starting from 100 mK (broken (red) line). (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 4. The A–S–A transition while varying the temperature. At the lowest tem-
perature (solid line) ground state is fully occupied, whereas the second level is
partially occupied. The electrons are mostly attracted by the lower donor layer,
hence, the double peak presents an asymmetry. The distribution is alternated to
symmetric at a slightly elevated temperature (36 mK, broken line), and asymmetry
is re-established at higher temperatures (70 mK, dotted line).

Fig. 5. Temperature dependency of the electron density distribution at a relatively
narrow quantum well. At 30 mK (solid line) a single peak is observed, which
evolves to a symmetric double peak structure at 50 mK (broken line) and to an
asymmetric distribution at the highest temperature 70 mK (dotted line).
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strengths of the electrons and donors, which is not the case for
typical experiments. For sure, similar density imbalances can also
be obtained by gating the sample; however, we confine our con-
sideration to a situation where charges are fixed by the growth
parameters. By doing so, we can eliminate additional effects that
may arise due to evaporation. Fig. 4 shows the evolution of the
electron density while changing the lattice temperature.

At the lowest temperature (solid line), the right side of the
WQW is predominantly occupied. Note that, in this situation, the
lowest two sub-bands are already filled with the electrons; how-
ever, the next sub-band is merely occupied. The asymmetric lo-
cations of the donor layers together with the unequal doping
strengths result in different interaction strengths; hence, the
electrons are mostly attracted close to the highly doped (lower)
donor layer. Once the temperature is increased, the second level is
more occupied; however, the extra electrons are repelled to the
upper edge of the quantum well, yielding a symmetric density
distribution at 36 mK. At the highest temperature the electrostatic
equilibrium is established only if the additional electrons are lo-
cated in the close proximity of the upper side and the density
asymmetry is re-constructed.

The observation of asymmetric–symmetric–asymmetric (A–S–
A) transition has important consequences on magneto-transport
experiments. As mentioned above, if the system remains in a
symmetric (balanced) situation, the even integer denominator
fractional states are mainly stable. However, we have seen that in
an unequally doped system such a stability is limited; hence, ob-
servation of fractional states is possible only in a narrow tem-
perature interval, which is still accessible by experimental means.
In contrast, the proposed insulating phase can be probed in a large
temperature interval, provided that a minimum occurs in the
visibility approximately at 36 mK. Such an effect, to our knowl-
edge, is yet uninvestigated experimentally and we propose that by
utilizing unequally doped heterostructures together with varying
the well width, it is possible to detect this symmetry transition.

In a further step, we change the well width and investigate this
transition considering a 57 nmwide well. Our motivation is mainly
to simulate the sample structure used by the Shayegan group [1].
Fig. 5 depicts the temperature dependency of the electron density
distribution. Similar to the previous case, we observe that the A–
S–A transition is still present; however, the system mainly pre-
sents a single peak structure, which suppresses the insulating
phase transition and enhances the stability of even denominator
fractional states. This numerical observation agrees well with the
experimental findings that once the electron layer becomes thin-
ner the system presents the properties of a single layer. Hence, our
prediction of A–S–A transition can be merely observed for the
mentioned experiments. In the opposite limit of a thicker electron
layer, the temperature dependent density profile presents the A–
S–A transition. This is shown in Fig. 6, where the peak electron
density at left (L) and right (R) are plotted as a function of tem-
perature, for two different widths of the WQW (80 nm, open
symbols and 100 nm, filled symbols). One can clearly observe that
there is a critical temperature TC where the electron densities at
different peaks become approximately equal, namely for a 80 nm
wide WQW T 47 mKC ≃ and for 100 nm T 52 mKC ≃ . The density
mismatch and the temperature intervals compare well with the
experiments considering the 1/2ν = [7]; however, since the well
widths and the crystal structures are not compatible, we cannot
directly test our results against experiments. To support our



Fig. 6. Temperature dependency of the electron density distribution at wide
quantum wells, open symbols depict the 80 nm and filled symbols depict a 100 nm
wide well. Below 40 mK a single peak is observed for the 100 nm wide well,
whereas this temperature is elevated to 50 mK for the 80 nm wide well. The single
peak evolves to an asymmetric double peak above 50 mK for both structures.
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predictions, samples should be grown in a controlled and sys-
tematic way; in addition precise temperature dependent magneto-
transport measurements should be performed.
4. Conclusions

In this communication we have reported our findings obtained
by solving the Schrödinger and Poisson equations self-consistently
also taking into account the influence of finite temperature on the
electron density distribution. We included the effect of tempera-
ture both on the occupation function and the band gap calcula-
tions. In particular, we investigated the symmetric to asymmetric
transition of the double peaked density distribution considering
different growth parameters. It is shown that if one already starts
with a symmetric density distribution within a wide quantumwell
at low temperatures, the behavior remains unaffected also at
elevated temperatures. In contrast, by breaking the symmetry of
the growth parameters and starting with an asymmetric density
profile at low temperatures, it is observed that the double peak
structure goes through a transition, where at intermediate tem-
peratures the profile becomes symmetric. The calculated tem-
perature dependence imposes important consequences on the
transport measurements if the 2DES is subject to high perpendi-
cular magnetic fields, such that the symmetric density results in
more stable even integer denominator fractional states and may
yield a topologically protected ground state, whereas the asym-
metric profile imposes that the insulating phase dominates the
measurements. Our calculation scheme can be further improved
by including the exchange and correlation effects; however, we
think that such an improvement would yield only better quanti-
tative results but the qualitative dependency will not be altered.

We would like to emphasize that our calculations impose results
on magneto transport experiments. The Symmetry to Asymmetry
transition can be observed clearly if the samples are exposed to
high magnetic field, where even denominator filling factor quan-
tized Hall Effect is measured. Since, such filling factors are sensitive
to the form of the ground state wave function in case of asymmetric
distribution the even denominator Quantized Hall Effect will dis-
appear. In contrast, in the case of symmetric wave function one
would observe even denominator Quantized Hall Effect.
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